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Abstract—Walking is a commonly available activity to main-
tain a healthy lifestyle. Accurately tracking and measuring
calories expended during walking can improve user feedback
and intervention measures. Inertial sensors are a promising
measurement tool to achieve this purpose. An important aspect
in mapping inertial sensor data to energy expenditure is the
question of normalizing across physiological parameters. Com-
mon approaches such as weight scaling require validation for
each new population. An alternative is to use a hierarchical
model to model subject-specific parameters at one level and
cross-subject parameters connected by physiological variables
at a higher level. In this paper, we evaluate an inertial sensor-
based hierarchical model to measure energy expenditure across
a target population. We first determine the optimal physiological
parameter set to represent data. Weight is the most accurate
parameter (p<0.1) measured as percentage prediction error.
We compare the hierarchical model with a subject-specific
regression model and weight exponent scaled models. Subject-
specific models perform significantly better (p<0.1 per subject)
than weight exponent scaled models at all exponent scales
whereas the hierarchical model performed worse than both.
We study the effect of personalizing hierarchical models using
model results as initial conditions for training subject-specific
models with limited training data. Using an informed prior
from the hierarchical model produces similar errors to using
a subject-specific model with large amounts of training data
(p<0.1 per subject). The results provide evidence that hierarchical
modeling is a promising technique for generalized prediction
energy expenditure prediction across a target population in a
clinical setting.

Index Terms—Accelerometer, Bayesian Linear regression, Gy-
roscope, Hierarchical Linear Model

I. INTRODUCTION

Regular physical activity is important due to its role in
weight control, reducing risk of cardiovascular disease, type 2
diabetes, some cancers and in improving mental health and
bone strength [1]. An easily available practice to maintain
an active lifestyle is to walk regularly [2]. Characterizing
energy expenditure from walking would provide a valuable
input in characterizing activity intensity and duration and in
the assessment of activity-based intervention measures.

Inertial sensors such as accelerometers and gyroscopes have
gained traction as promising tools for the ubiquitous detection
and quantification of energy expenditure from human move-
ment [3, 4, 5, 6]. With reference to energy expenditure from
walking, one common technique is to relate inertial sensor
features to ground truth values using a regression technique
[7]. An important aspect in mapping movement to energy
expenditure across populations is the question of normalizing
for differences in physiological parameters such as height,
weight, leg length, age, sex etc. One of the most important and
well studied physiological parameters for estimating energy
expenditure from walking is the weight of the participant.

A common technique to account for weight is to scale V̇ O2

values by a suitable weight exponent. Most common scaling
coefficients include a range from 0.6 − 1.0 [8], the most
popular being 0.67 [9], 0.75 [10] and 1.0 [11, 12, 13]. A
common issue with weight scaling is determining the appro-
priate scaling coefficient across a target population. Scaling
coefficients vary across age groups and stages of development
in individuals [10]. Therefore, a different scaling coefficient
has to be validated for each study. Likewise, the effect of other
physiological parameters such as sex, stride length and heart
rate on energy expenditure during walking also have to be
incorporated [11]. The challenge is to fuse all these parameters
into a unified framework while maintaining the simplicity of
standard regression techniques.

One way to extend the capability of single linear regression
is by Hierarchical Linear Modeling (HLM) [14]. Given a target
population with a set of participants, HLM based techniques
use linear models at levels within and across participants. We
adopt this approach in our study by designing a multilevel
HLM. At one level we have participant specific models relating
inertial sensor features to energy expenditure. At a second
level we capture the inter-dependence of different subject-
specific models on physiological parameters using a (second)
regression model. The advantages of such an approach are
many. Using a second level to capture commonalities across
subjects allows the separation of the dependence on physiolog-
ical parameters from participant-specific inertial sensor data.
Such an approach also allows flexibility in deciding the right
combination of physiological parameters to represent partic-
ipants. Training this model allows joint modeling of cross-
level interactions in a population. Most importantly, HLM
allows one to generate informed participant-specific models
using only higher level information. This is an advantage when
limited or no data is available for a new participant. Thus
we retain all the benefits of subject-specific monitoring using
linear regression while capturing the generalizability across
populations.

This paper describes an experimental evaluation of a Hi-
erarchical Linear Model to predict energy expenditure using
on-body, wireless inertial sensors for level treadmill walking.
We describe sensor hardware and method of capturing human
movement in Sec. II. We present the details of a subject-
specific Bayesian Linear Regression model and an HLM to
map movement information to energy expenditure in Sec. III.
We present experimental results identifying the best represen-
tative physiological parameters to predict energy expenditure
in Sec. IV-A. The model with the optimal physiological param-
eters is compared with subject-specific models in Sec. IV-B.
We examine the effect of personalizing of HLMs using them as
informative initial conditions for subject-specific models with
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(a) Sensor board used to collect data. Data
streams consist of triaxial accelerometer and gy-
roscopic information. Source:www.sparkfun.com

(b) Illustration of population statistics plotted as Weight (vs)
Height for each subject. Each point is color coded by BMI.
Average weight = 72± 21 kgs. Average height = 1.73± 0.11m.

(c) An example recording pro-
cedure for a single participant.

Figure 1: Illustration of hardware, ground truth collection and population statistics

limited training data in Sec. IV-C Both models are in turn
compared with weight exponent scaled models in Sec. IV-D.
In doing so, we provide a technique for the normalization
of energy expenditure prediction using inertial sensors across
a population for treadmill walking in a clinical setting. Our
approach builds on earlier work in developing data-driven
subject-specific regression models [15].

II. CAPTURING HUMAN MOVEMENT

A. Hardware

Human movement was captured using a modified Sparkfun
6DoF Inertial Measurement Unit (IMU) [16, 17] worn on
the right iliac crest. The sensor provided 6 sensor streams
conveying triaxial acceleration (Freescale MMA7260Q tri-
axial accelerometer) and triaxial rotational rates (2 Invensense
IDG300 gyroscopes) allowing translational and rotational mo-
tion capture in all three planes – sagittal, frontal and transverse.
Data were sampled at 100 Hz and transmitted via Bluetooth
(RN-41 Bluetooth module) to a nearby PC. Figure 1a illus-
trates the sensor board used for collecting data.

B. Representation of human walk

We use the principle that steady state human walk is cyclic
in nature [18] to represent walking. Inherent periodicity was
captured using a single inertial sensor worn above the iliac
crest on the right hip. Sensor data corresponded directly to
the accelerations and rotational rates of the hip in the sensor’s
local frame of reference. A natural candidate to represent the
periodicity of walk is the Fourier transform of sensor streams
[19].

C. Data collection

Nine healthy adults (Five men, four women) participated in
the study. Height and weight of each participant were recorded
using a Healthometer balance beam scale. Figure 1b illustrates
participant statistics using a Weight (vs) Height graph. Each
point is color coded by Body Mass Index (BMI). Informed
written consent was obtained from participants and the study
was approved by the Institutional Review Board, University of
Southern California. Participants had average weight = 72±21
kgs and average height = 1.73± 0.11 m.

Rate of oxygen consumption (V̇ O2, mL/min) as measured
using the MedGraphics Cardio II metabolic system with
BreezeSuite v6.1B (Medical Graphics Corporation) was the
representation of energy expenditure. Before each test, the
flow meter was calibrated against a 3.0 L syringe and the
system was calibrated against O2 and CO2 gases of known
concentration. This system outputs data at the frequency of
every breath. Figure 1c illustrates a typical recording proce-
dure. Each participant was asked to walk at 5 speeds (2.5,
2.8, 3.0, 3.3, and 3.5 mph) on a motorized treadmill for 7
minutes of recording time per speed. At each speed transition,
V̇ O2 readings were allowed to stabilize for 2 minutes prior to
the start of data collection. Speeds were chosen based on the
Compendium of Physical Activities [20].

Each sensor stream from the IMU was passed through a
lowpass filter with 3dB cutoff at 6 Hz. The cutoff frequency
was chosen based on manual inspection of the Fourier trans-
forms and keeping in mind that everyday activities fall in
the frequency range of 0.1-10 Hz [21]. Each of the 7 minute
streams from the IMU were divided into 10 second intervals or
epochs. The 10 second interval was chosen based on previous
successful implementations [4] on this time scale. Thus each
subject’s data consists of roughly 210 data points. Within each
epoch, feature vectors were extracted from each sensor stream
by computing the 1024 point FFT for the signal stream in each
epoch. The FFTs for all sensor streams within an epoch were
then concatenated to obtain the complete feature vector. Data
for each user was thus a set of points consisting of epochs,
each containing concatenated FFT features from the IMU and
the average rate of oxygen consumption (V̇ O2) for that epoch.
These represent per-user data while walking at five different
speeds.

III. ENERGY ESTIMATION ACROSS POPULATIONS

Our approach to energy expenditure estimation involves
learning data-driven user models and using these models
to predict energy expenditure for unseen data points. One
candidate techniques is to train an individualized parametric
model Bayesian Linear Regression (BLR) model for each
participant and energy consumption for unseen data points
relevant to that participant alone. Such models are not likely to



Figure 2: Illustration of individualized energy prediction
model. Training the model is equivalent to finding optimal w
to maximize data likelihood. A distribution is assumed over
w : w ∼ N (w : 0, α−1I). α is a hyperparameter.

be successful for unseen data points of another participant. To
model cross-participant dependencies, one has to incorporate
joint modeling of participant data based on physiological
parameters (e.g., weight and height). This is done through a
Hierarchical Linear Model (HLM).

A. Subject-specific energy estimation models with Bayesian
Linear Regression

We first describe the individualized regression model. A
linear relationship between the feature vector and target energy
expenditure is assumed. We adopt a Bayesian framework
through Bayesian Linear Regression (BLR). The approach is
similar to our earlier work in predicting energy expenditure
[4]. Fig. 2 represents a graphical model based plate represen-
tation of the conventional BLR technique.

In the context of energy prediction, for a given person p,
with input feature dataset Xp = {xnp}

Np

n=1 and target energy
values Yp = {ynp}

Np

n=1, assuming a linear model, we have for
each data pair:

ynp = wT
p xnp + ε, ε ∼ N

(
0, σ−2p

)
(1)

where ε is a noise parameter and wp = (w0p , . . . , wM−1p)
T

are the model weights. Training a model amounts to learning
the weights wp and the noise parameters σp. Using the
properties of Gaussians, we have

p(ynp
|xnp

,wp, σp) = N
(
ynp

;wT
p xnp

, σ−2p

)
(2)

Bayesian Linear Regression (BLR) [22] adopts a Bayesian
approach to linear regression problem by introducing a prior
probability distribution, specifically a Gaussian prior, p(wp) =
N
(
wp;0, α

−1I
)

over the model parameters wp in Eq. 1
where α is a hyperparameter. The optimal prediction for a
new data point is given by the predictive distribution:

p(y∗p|x∗p,Yp, α, σp) = N (mT
Nx∗p, σ

2
N (x∗p)) (3)

and σ2
Np

(x∗p) = σ−2p + x∗p
TSNp

x∗p (4)

mNp = σ2
pSNXT

p Yp (5)

and S−1Np
= αI+ σ2

pX
T
p Xp (6)

Model parameters are estimated using an iterative approach by
finding the best α and σp to maximize the evidence function
and finding the best parameters ŵ to maximize the likelihood
given a fixed α and σp alternately until convergence. This
technique provides a subject-specific BLR model that can be
used on one participant alone.

Figure 3: Illustration of generalized model for energy expen-
diture prediction for P people and Np training points per
person . Each person has a subject-specific weight wp that is
influenced by physiological parameters such as height, weight
and age through k and in turn influences energy prediction
given an input point xnp. The task is to learn wp and k given
instances of each person’s physiological parameters and energy
training data per person.

B. Generalized Energy Estimation Models with Hierarchical
Regression

1) Model description: We build on the individualized
model to obtain an HLM incorporating physiological pa-
rameters. Consider a test population consisting of P par-
ticipants. For each participant p, Let there be Np data
points collected, consisting of the energy values Yp =
{y1p , y2p , . . . , yNp

} and D-dimensional Fourier transform in-
puts Xp = {x1p , x2p , . . . , xNp} as detailed in Sec. II-C. We
denote Y = {Y1,Y2, . . . ,YP } and X = {X1,X2, . . . ,XP }
to be complete set of training data for all participants. Let each
participant have a physiological parameters determined by
Physp and the complete set be PHY = {Physp}Pp=1These
include parameters such as height, weight and age (with a
constant term for bias). We model top-down dependence of wp

on each participant’s physiological parameters Physp through
a universal weight parameter k. Each wp in turn influences
energy predictions ynp

for an input xnp
. Fig. 3 illustrates the

plate representation of this model. Similar to Sec. III-A, each
output energy value, ynp is linearly dependent on input xnp .
This can be expressed as:

Yp ∼ N (Yp;w
T
p Xp, σ

−2
p I) (7)

or ynp ∼ N (ynp ;w
T
p xnp , σ

−2
p ) (8)

We assume that wp is not a point estimate but a distribution
with linear dependence of each participant’s parameter wp on
k and Physp:

wp ∼ N (wp;k
TPhysp, α

−1I) (9)

It is worth noting that both wp and k are hidden variables
which need to be estimated from data. Variable k is also not a
point estimate but has a prior distribution k ∼ N (k;0, σ−2I).
Each wp is now an informative prior dependent on the person’s
physiological parameters Physp through k. We denote W =
{wp}Pp=1



Training the multilevel model is equivalent to learning
individual wp’s, the overall parameter k as well as the noise
parameters {σp}Pp=1,α and σ. The HLM combines P local
regression models in two ways. First, the local regression co-
efficients wp determine energy values for each person. Second,
the different coefficients are connected through the group-level
model parameter k. Intuitively, the HLM captures the inherent
similarity in walking across different people while accounting
for individual walking styles and energy consumption.

2) Likelihood evaluation: We aim to find the optimal
parameters that maximize the likelihood of each energy predic-
tion ynp for each person p, given the input data points xnpand
the physiological parameters Physp. This likelihood can be
written as:

l = p(Y|X,PHY) (10)

=

ˆ
p(Y,W|X,PHY)dW (11)

=

ˆ
p(Y|W,X,PHY)p(W|X,PHY)dW (12)

p(W|X,PHYS) can be expressed in terms of hidden
variable k as:
p(W|X,PHY)

=
´
p(W,k|X,PHY)dk

=
´
p(W|X,k,PHY)p(k|X,PHY)dk (13)

From the graphical model in Fig. 3, the probabilities
p(Y|W,X,PHYS) and p(W|X,k,PHYS) can be broken
down into individual distributions as:

p(W|X,k,PHY) =

P∏
p=1

p(wp|Xp,k,Physp)

p(Y|W,X,PHY) =

P∏
p=1

Np∏
np=1

p(ynp |xnp ,wp,Physp)

From the model graph, we can infer wp ⊥⊥ Xp|k,Physp,
ynp
⊥⊥ Physp|xnp

,wp and k ⊥⊥ PhyspXp. Thus:

p(W|X,k,PHY) =

P∏
p=1

p(wp|k,Physp) (14)

p(Y|W,X,PHY) =

P∏
p=1

Np∏
np=1

p(ynp |xnp ,wp) (15)

p(k|X,PHY) = p(k) (16)

Substituting Eqs. 14, 15 and 16 into Eqs. 12 and 13, we have:

l = p(Y|X,PHY) =
ˆ P∏

p=1

Np∏
np=1

p(ynp |xnp ,wp,Physp)p(W|X,PHY)dW

p(W|X,PHY) =

ˆ P∏
p=1

p(wp|k,Physp)dk (17)

The pair of equations represented by [17] represent the like-
lihood of the observations Y given physiological parameters
PHY and inputs X. Maximizing the log-likelihood, L = log l
is equivalent to finding the optimal wp,k and respective

noise parameters that maximize these equations. Of particular
interest is parameter k ∈ RD which helps generate a person
dependent weight wp given only the physiological paramters.
The probabilities p(ynp

|xnp
,wp) and p(wp|k,Physp) are de-

fined by Eqs. 8 and 9 respectively. For the class of exponential
distributions in the absence of prior information, there is no
closed form solution for {wp}Pp=1 and k. Hence approximation
techniques are required.

3) Algorithm description: We propose an EM like al-
gorithm [23] to learn the parameters {wp}Pp=1 and k.
Our original aim was to maximize the likelihood L =
log p(Y|X,PHY). We approximate the likelihood term to
incorporate the Maximum Aposteriori estimates (MAP esti-
mates) of individual weights wp denoted by ŵp. Each ŵp

is now a point estimate assumed to be known and can be
interpreted as a parameter that has to be optimized. From Eq.
9, the MAP estimate corresponds to the mean of each wp. The
modified algorithm maximizes the incomplete log likelihood
log p(Y|Ŵ,X,PHY) by maximizing the expected complete
log likelihood

〈
log p(Y,Z|Ŵ,X,PHY)

〉
. This expectation

is written as:

Q(Ŵ,Ŵold) =∑
k

log p(Y,Z|Ŵ,X,PHY)p(Y,Z|Ŵ,X,PHY)

We treat k as a hidden variable that needs to be estimated and
hence Z = k. Correspondingly, we have the following steps:

a) Initialization: Initialize ŵp, σp, α to appropriate val-
ues. A good initialization condition is one obtained using least
squares estimates.

b) E step : Evaluate p(k|{ŵold
p }Pp=1, {Physp}Pp=1). For

this, we take advantage of the linear dependence of each per-
son’s weight vector ŵp given their physiological parameters
Physp through k. This means we have a dataset of P target
ŵp’s and their corresponding input variables Physp’s. We can
thus frame a regression problem from a person’s physiological
parameter variable Phys to a weight variable ŵ (of which
there are P examples) through k. Given that k ∈ RD and
there are no cross-correlations, we frame D separate linear
regression problems. The mth regression problem, maps the
physiological parameters to the mth component of ŵ through
the mth component of k. Thus we have D separate linear
regression problems mapping physiological parameters Physp
to wEM through k in a component-wise manner. We solve
each of these regression problems in a BLR framework similar
to that described in Sec. III-A to obtain a mean and variance
measure for k.

c) M step: Maximize likelihood of the dataset given k.
This corresponds to re-estimating parameters using the current
value of k. The learned k from the E-step is used to estimate
individual ŵp’s given their physiological parameters Physp.
From the linear relationship as defined by Eq. 9, we have:

ŵP = kTPhysp (18)

We use this estimate as initial conditions and maximize the
likelihood of the dataset. Given k (which is fixed after the E-
step), this is equivalent to maximizing individual likelihoods of



Figure 4: Illustration of prediction errors (expressed as per-
centage of ground truth) with different combinations of phys-
ical parameters. Maximum errors were obtained when only
height was used at feature vector. Among features chosen
weight is the single best physiological parameters to estimate
k. Combining weight and height marginally improved perfor-
mance and adding age degraded performance.

each of the participants. Maximizing the individual likelihoods
is the same as finding the optimal wp given Np data pairs
{xnp

, ynp
}Np

np=1. This is equivalent to solving P individual
Bayesian Linear Regression problems with the initial condi-
tions of wp’s as defined above and finding the optimal wp’s.

d) Evaluate log likelihood: The total log likelihood is
the sum of the P individual log likelihoods found from the
M step. We check for convergence of log likelihood and if
not, repeat the E and M steps again. Using this algorithm
we learn a generalized energy prediction model that maps
physiological parameters to subject specific weights wp and
uses these weights to predict energy expenditure for each
subject.

IV. EXPERIMENTAL VALIDATION

Given P participants, the subject-specific model simply
trains P separate regression models using the technique out-
lined in Sec. III-A. Whenever the generalized and subject-
specific models were compared for participant p, a percentage
of subject p’s data were partitioned into testing and training
data. The generalized model was trained using all data from
the remaining P − 1 participants and energy predictions
were made for participant p′s test data. Making a prediction
corresponded to learning the optimal k, using this k to
predict individual w′ps for and using this wp to predict energy
expenditure for unseen data points. Simultaneously, a subject-
specific BLR model was trained using participant p’s training
data. This model was then used to predict energy expenditure
for the same test data as the generalized model. Errors for
both models were measured as percentage deviation from the
ground truth value output from the metabolic cart. For each
participant, this was repeated 20 times with different randomly
sampled training and testing data and at different percentages
of training data. This was repeated for all participants and
errors were averaged across participants.

A. Choosing Optimal Physiological Parameters

Given the HLM, our first study examined the best set of
physiological parameters that minimized energy expenditure

Figure 5: Comparison of errors obtained from the HLM (red)
with individualized subject-specific models averaged across all
participants (yellow). The generalized model showed similar
errors to subject-specific models with 10% of training data.
With more training data available, subject-specific models
outperformed the generalized model.

prediction errors. The combinations of parameters used were
Height, Weight, Weight + Height, Weight + Height + Age.
Maximum errors were obtained when only height was used at
feature vector. The best individual physiological input for this
population was weight. Combining weight and height only
marginally improved performance and adding age degraded
performance. Based on the above results, it was decided to use
weight as the only physiological parameter (with a constant
term for bias). Fig. 4 illustrates the errors obtained.

B. Comparison with Subject-specific Modeling

An important question is how the HLM compares with
subject-specific models. The HLM showed comparable perfor-
mance for all percentages of training data and hence only one
bar is shown. The HLM showed comparable errors to subject
specific models with 10% of training data used. With more
training data available, subject specific models outperformed
the HLM. As is expected, the availability of more training
data allows stronger modeling capability of subject-specific
models. Using an HLM however is still equivalent to training
a subject-specific with small amounts of data and might be
a preferable trade-off in cases where subject-specific models
are not available. It can be shown that predictions from a
BLR model (used in estimating k’s) approach the ideal value
with increasing large amounts of training data. Hence it is
expected that as the target population is expanded, the HLM
will perform competitively with the subject-specific approach.
Fig. 5 illustrates the relative errors obtained when an HLM
(shown in read) trained using data from P − 1 people is
compared with a subject-specific model for the pth person
with varying training data (shown in yellow).

C. Personalization of HLM with Limited Training Data

Given the superior performance of subject-specific models,
this section of the study explores whether weights obtained
using the generalized model could be combined with limited
training data to obtain an equivalent (if not better) model



in terms of prediction accuracy. Such an approach would
be beneficial because of the potential in using less training
data for training subject-specific models. Given the learned k,
for an unknown subject, one can predict the subject specific
weight ŵp using Eq. 18. One can then train a subject-specific
model with this ŵp as an initial condition and limited subject-
specific data. Fig. 6 illustrates percentage errors obtained with
varying amounts of training data. Training a model with an
initial condition (red) shows smaller errors than when no such
condition is used (yellow). This effect is most pronounced
when small amounts of training data are used (p<0.1 per
subject). It can also be seen from the figure that using an
initial condition with small amounts of training data shows
comparable errors to training with no initial condition with
substantial training data. The use of this technique suggests
that while the HLM by itself produced higher errors than
a subject-specific model, the lowest errors can be obtained
by using the k from the model to obtain a subject specific
weight ŵp and using this ŵp as an informative prior with
small amounts of training data.

Fig. 7 illustrates the relative predictive capacities of the
HLM and subject-specific model as applied to one participant.
It can be seen that while the generalized model makes as good
V̇ O2 predictions as the subject-specific model in the middle
energy range, the model breaks down when predicting lower
or higher energy ranges. This can be understood as follows,
the HLM has to simultaneously fit model parameters across
participants and within each participant. Most participants’
walking styles differ the most at their lowest and highest
walking speeds. Typically, the higher the speed, the larger is
the energy consumed. Intuitively, given that the generalized
model has to tradeoff between overall accuracy and subject-
specific accuracy, the parameters are optimized over the most
similar looking input points which occur in the middle ranges
of speeds of each participant. This is typical of the bias-
variance tradeoff in learning such models.
D. Comparison with Weight-dependent Models

Current normalizing approaches model weight dependence
by using power law scaling. V̇ O2 values are scaled by a weight
exponent of the form W s. This section of the study focused
on how the HLM and subject-specific models compare against
such scaling based approaches. Here, all participants were
considered to represent a single dataset. Instead of modeling
dependence on physiological parameters, each V̇ O2 value was
scaled by a suitable weight exponent W s. This represented the

scaled V̇ O2 value, V̇ O2,scaled =
V̇ O2

W s
for that feature-energy

data pair. The input features were the same as previous models.
This unified dataset was divided into training and testing data
and regression models were trained. This was repeated for
different randomly sampled data and percentages of training
and testing data. Various exponent coefficients in the range
0.6 < s < 1.6 were used in increments of 0.1 and percentage
errors (as defined in previous section) were recorded. Thus
for different combinations of training data and exponent co-
efficients, we have an error surface. Fig. 8a illustrates such a
surface. From the figure, it can be seen that there exists an
optimal exponent-percentage combination basin that produces

Figure 6: Illustration of the effect of adding a small amount
of training data to the HLM. An informative initial condition
from physiological parameters is used to train a subject-specfic
model, shown in red. For comparison, a subject-specific model
(shown in yellow) with no such initial condition is also trained.
Using an HLM with initial conditions along with a small
percentage of training data produces similar errors to using
a subject-specific model with large amounts of training data
(p<0.1 per subject).

Figure 7: Illustration of the predicted values versus ground
truth using both generalized algorithms (red) and subject-
specific algorithms (blue) for a single participant. Similar plots
exist for other participants. HLMs perform poorly in the end
regions. This could be because the parameters are optimized
over the most similar looking input points. These occur in the
middle ranges of speeds of each participant.

the least error. Fig. 8b shows the same surface as seen from
above. This represents a color plot of errors for various training
percentage-exponent coefficient combinations. Lowest errors
(≈ 6.5%) were seen with an exponent coefficient of 0.7− 1.0
and a large percentage of training data (> 50%). This exponent
coefficient value corresponded to previous research indicating
that the optimal value is approximately 0.65− 1.0 [10].

Fig. 8c illustrates a comparative performance between
power law scaled approaches, generalized model and subject-
specific model based approaches for different power coef-



(a) Illustration of percentage errors obtained
as a function of weight exponent used and
training data available. There exists an opti-
mal exponent-percentage basin that produces
the least error.

(b) A colormap illustration of percentage errors
as a function of training data and weight expo-
nent extracted from the previous figure. Lowest
errors of ≈ 6.5% are seen when an exponent
coefficient of 0.7 − 1.0 and a large percentage
of training data (> 50%) are used.

(c) Illustration of the training errors as a function of different
exponents as compared with subject-specific models and HLM.
Subject-specific models outperform weight exponent scaled
models regardless of exponent. Generalized models perform
worse than subject-specific or weight exponent scaled models.

Figure 8: Comparison of HLM and subject-specific models with weight-scaled linear approaches. V̇ O2 values are scaled by
a weight exponent W s where 0.6 < s < 1.6 and probabilistic linear models are trained, these are compared against the
subject-specific and generalized model described in this study.

ficients at all training percentages. Subject-specific models
outperformed weight exponent scaled models irrespective of
exponent. This is because each subject-specfic model used
training data only from that particular participant. This would
naturally result in a better fit than any form of weight scaling
across all participants. Generalized models performed worse
than subject-specific or weight exponent scaled models.

V. CONCLUSION

Regular physical activity has a number of health benefits and
walking is a commonly available activity to maintain an active
lifestyle. Accurately tracking and measuring calories burned
from walking is important to help improve user feedback and
designing of effective intervention measures. The last decade
has seen the emergence of inertial sensors along with pattern
recognition techniques to detect, characterize and quantify
physical activity in general and walking specifically. An issue
with using inertial sensor data to estimate energy expenditure
is how data can be normalized across varying physiolog-
ical parameters such as height, weight, age etc. Common
approaches such as weight scaling require validation across
each new target population. An alternative is to extend the
capability of standard linear regression through Hierarchical
Linear Modeling (HLM). Using an HLM, at one level we have
participant specific models relating inertial sensor features to
energy expenditure. At a second level we capture the inter-
dependence of different subject-specific models on physiolog-
ical parameters using a second regression model. This paper
explored the validation of an inertial sensor based HLM to
measure energy expenditure while accounting for variations
in physiological parameters, specifically weight. The model
was described and an EM-like approach to learn parameters
was detailed. Our chief contributions are summarized next:

Flexibility in modeling physiological parameters: The use
of HLMs allows flexibility in incorporating new physiological
parameters. By placing these parameters at a higher level,
one can easily switch, add or remove various combinations

of parameters and examine their effects on prediction accu-
racy. Examining the relative weight coefficients also helps
determine which parameter dominates predictions. In our
study, weight was the single best physiological parameter.
Maximum errors were obtained when only height was used at
feature vector. Combining weight and height only marginally
improved performance. Adding age degraded performance.

Comparison with subject-specific and weight-scaled
modeling: Using a second level to capture commonalities
across subjects allows generalized modeling from participant-
specific inertial sensor data. We compared the modeling capa-
bility of a hierarchical model with a subject-specific linear
regression model and weight exponent scaled models. The
generalized model showed similar errors to subject-specific
models with 10% of training data used. Subject-specific mod-
els performed better than weight exponent scaled models for
all exponent scales. An important insight from our approach
was that generalized models were are good as the subject-
specific model in the middle energy range for each subject but
broke down when predicting lower or higher energy ranges.
This is most likely because most subjects exhibit similar
walking patterns in the mid-speed ranges.

Accurate models with sparse data: In many data collec-
tion studies, researchers often have to deal with inadequate
or unequal amounts of data from a subsection of participants.
A subject-specific model trained with sparse data might not
be as statistically significant as a model trained with co-
pious data. Capturing inter-participant dependencies through
a higher level of modeling allows researchers to effectively
“transfer” model information from those participants for whom
extensive data are available to those where only limited data
are available. In our study, an informative initial condition
initialized from physiological parameters was used as an initial
condition in training a subject-specfic model with limited data.
For comparison, a subject-specific model with no such initial
condition was also trained with the same training data. Using
an informative initial condition produced similar errors to a
subject-specific model with large training data. The use of a



generalized model as an initial condition for subject-specific
models allows for accurate modeling with smaller amount of
training data. This is also useful for obtaining more accurate
models for participants with sparse data sets.

VI. FUTURE WORK

We plan to expand our work in a number of directions.
The most important extension is to test our algorithm across
a much larger population to examine whether a larger dataset
improves the performance of the HLM measured against the
weight-scaled and subject-specfic models. Testing across a
larger population will also allow us to test the effects of other
physiological parameters such as height, stride length and sex
on prediction accuracies. The advantage of our approach is
that one can simply incorporate these parameters as additional
features in the top level of the hierarchical. We also aim to
test the algorithm in free-living conditions across common ac-
tivities such as walking, sitting and standing. Finally, we plan
to test algorithms that learn the parameters k and wp simulta-
neously. These include Gibbs-sampling algorithms, variational
approximations and belief-propagation based approaches.
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APPENDIX

Table I: Glossary of Terms

Term Description Dimension

xnp nth input data point for person p 1×D

ynp nth target V̇ O2 for person p 1× 1
wp Weight parameter for person p 1×D
k Universal weight parameter 1×D

Physp Physiological parameters 1× (M + 1)
σp Subject-dependent noise parameter 1× 1
σ Prior variance for k 1× 1
α Mapping variance for wp 1× 1
Np Number of data points for person p −
Xp Collection of input data for person p Np ×D

Yp Collection of V̇ O2 values for person p Np × 1
X Collection of all input data points P ×Np ×D

Y Collection of all V̇ O2 values P ×Np × 1
PHY Collection of all physiological values P × (M + 1)× 1
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