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Abstract—Physical activity provides many physiological bene-
fits. On the one hand it reduces the risk of disease outcomes. On
the other hand it is the basis for proper rehabilitation in case of
or after a severe disease. Both aspects are especially important
for the elderly population. Within this context, the present paper
proposes a personalized, home-based exercise trainer for elderly
people. The system is based on a wearable sensor network that
enables capturing the user’s motions. These are then evaluated
by comparing them to a prescribed exercise, taking both exercise
load and technique into account. Moreover, the results are
translated into appropriate feedback to the user to assist the
correct exercise execution. A novel part of the system is the
generic personalization by means of a supervised teach-in phase.

Index Terms—physical activity monitoring, home-based reha-
bilitation, HCI, wearable sensors, health promotion, personaliza-
tion.

I. INTRODUCTION

Physical activity provides many physiological benefits, re-
duces the risk of disease outcomes, and generates important
psychological gains [1]. The nature of physical activity can
be categorized as aerobic activity promoting cardiovascular
fitness or strength exercises promoting musculoskeletal fitness.
Particularly in frail population, balanced activity of both types
is important for keeping functional independence [1]. It is
then essential to promote the practice of physical activity
especially at home since it has been shown that adherence
to exercise is greater when performed at home than when
performed in centers [2]. However, this physical activity has
to be supervised in order to improve physical fitness whilst
minimizing the risk of an overuse injury [3]. Moreover, this
supervision of physical activity has to be achieved whilst
providing feedback to the user regarding his activity. This
preserves or increases motivation and program adherence.

The supervision of physical activity at home has been until
now mainly related to rehabilitation follow-up. Information
and Communication Technologies (ICT) have been used for
that purpose by providing rehabilitation services at home over
telecommunication networks and the internet. This constitutes
the recent field of telerehabilitation [4]. However, only a few
of these projects have tried to elaborate a more complete
approach of services including a monitoring of physical ac-
tivity, a wellness diary, mentoring sessions, and a web-portal
to facilitate personal goal setting and to assess the progress
of each patient in the program [5]. Additionally, most often
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these telerehabilitation projects focus on a specific aspect of
physical activity related to a special disease or pathology and
do not consider physical activity as a whole.

The aim of the present project is to promote physical activity
especially in elderly by creating a platform that can supervise
and help the practice of physical activity. This platform can
also be used as a support of home-based physical rehabili-
tation. An overview of the overall system with its different
configurations, functionalities and services is presented in
Section III.

This paper focuses on the physical activity monitoring
aspects. As previously mentioned, two different categories
of physical activity are recommended: aerobic and strength
training activities. Recently developed methodologies based
on inertial sensors have been proposed to monitor aerobic
activities [6], [7]. With such methodologies it is possible
to control, whether the FLT.T. (Frequency, Intensity, Type,
and Time of training) principles of training [8] are well
respected by the subject. A similar approach has already been
implemented for the present project [9].

During strength training, to our knowledge, no method
has been proposed. Current video games include feedback
provided by accelerometers in order for users to follow some
fitness exercises, but only few parameters are taken into ac-
count and the proposed methods are not documented. Studies
have shown that strength training can result in injuries when
exercise technique is not respected [8]. Now, the number of
these injuries and the damages caused by these injuries might
increase in both frailer population and population not used
to practice strength training such as elderly or pathological
population. Therefore, an appropriate monitoring of strength
training has to be proposed. This work presents a methodology
for this monitoring, describing design, implementation, and
evaluation of respective hardware and software infrastructures,
algorithms and applications.

II. USE CASE: PERSONALIZED EXERCISE TRAINER

The overall system (cf. Section III) can be used in different
configurations providing a broad set of functionalities and
services. This paper, however, focuses on the special use case
of the system as personalized exercise trainer, in particular
when performing unusual exercises. This personalized trainer
has then to help the subject to follow a physical activity
program and to perform the recommended exercises correctly.
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Fig. 1: Overview of the personalized exercise trainer use case. A reference motion is recorded during a guided teach-in phase.
From this a personalized model is generated and then used in the trainer mode at home as evaluation reference.

Within this context, data collection, processing and presen-
tation are detailed putting emphasis on two major aspects:
(a) Usability for elderly: As argued in the previous section
physical activity and particularly strength training have to
be promoted within the elderly population but the incorrect
execution of exercises could occasion more damages than
benefits. (b) Personalization: Personalized training implies to
respect limited mobility of the individual subject during the
training and automatic exercise evaluation. This is particularly
important for the elderly population, where a higher percentage
of limiting pathologies is to be expected.

The basic idea for enabling personalized exercise training
support is depicted in Figure 1. The aim is to accurately eval-
uate the movement performed by the user and, based on this,
to provide valuable feedback in real-time. In short, the aim is
to help the user to perform the training correctly. However,
what is correct depends on the limitations and goals of the
individual user. Hence, in order to achieve personalization in
a generic way, the idea is to create a personalized reference
for evaluation within a first supervised training session (see
Figure 1). During this session, the proposed system is used
in a teach-in mode. While the patient is shown how to
perform the exercises according to his special needs, inertial
data are recorded and preprocessed (cf. Section IV). The
estimated motion sequences are further processed to derive
a personalized model for each exercise (cf. Section V-A). At
home, the patient uses the system in the trainer mode. In this
mode, the performed motion is evaluated by comparing it to
the stored reference models (cf. Section V-B). The evaluation
results are translated into helpful audio and visual feedback
for the user. The user interface also provides a guided exercise
preparation and a summary at the end (cf. Section VI).

III. SYSTEM OVERVIEW

The overall system is modular and flexible: It is composed
of four self-contained components that communicate with each
other over network using standard and customized protocols.
The individual components (data collection, data processing,
data presentation, and data management) are outlined in the
following.

The data collection component is based on a network of
(wireless) sensors and a mobile processing unit that are worn

by the user. The data collection allows measuring his motions
and vital signs. The complete set-up comprises up to ten
miniature inertial sensors and complementary sensors, such
as a heart rate monitor. Preprocessing includes correction,
filtering and synchronization of the raw sensor data, as well
as, the derivation of higher-level information, for instance, the
estimation of body posture in terms of joint angles from the
data of several body-mounted inertial sensors.

The data processing component consists in softwares for
analyzing and characterizing the physical activity of the user
based on the preprocessed data. Several individual algorithms
have been developed for enabling sophisticated analysis. As
indicated in the introduction, these range from the derivation
of the general F1.T.T. parameters to the accurate evaluation of
strength exercises, the latter being in the focus of the present
paper. This way, the data processing component supports a
holistic way of physical activity analysis.

The data presentation component is a web application for
physical activity visualization, guidance and feedback. Indi-
vidual user interfaces have been developed for presenting the
different dimensions of physical activity as described above.
Particular effort has been spent in developing the trainer mode.
In this mode, the user gets instructions on how to prepare for
and perform special strength exercises, such as biceps curls
or push-ups. During training, he receives audio and visual
feedback on the way he executes the training program. This
feedback is based on the evaluation of the performed motion as
delivered by the data processing component. After the training
session, the user gets a summary of the exercise quality. This
enables self-monitoring and can motivate him to increase his
performance in the next session.

The data management component is based on a web appli-
cation for collecting and managing all relevant information in
an electronic health record (EHR). Apart from physical activity
data, this web application also includes a comprehensive sum-
mary of a medical record, a rehabilitation plan management
module and a health status survey module. This component
extends the system for usage as a remote patient monitoring
system. Healthcare professionals are facilitated in maintenance
of an EHR of their patients and in the establishment and follow
up of personalized rehabilitation plans. In turn, the patients,
who can gain access via web or on interactive TV (i-TV)
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Fig. 2: Functional upper body model with indicated IMU
placement.

interface, are provided with the means to stay in touch with
their healthcare professionals. The i-TV solution is used to
increase the acceptance and ease the learning amongst elderly
users, who generally are not very familiar with computers.

The following sections describe the design, algorithms,
implementation, and evaluation of the components that make
up the personalized exercise trainer.

IV. BODY SENSOR NETWORK AND MOTION ESTIMATION

In order to accurately evaluate the exercises whilst being
performed, precise body motion estimation is required in real-
time. The section describes how this information is deduced
from the data of inertial measurement units (IMUs) attached
to the body.

A. Inertial measurement units (IMUs)

Two generations of IMUs have been developed in close co-
operation with the company Trivisio [10]. The first generation
wired sensors are lightweight (22 g without cable) and small
(30 x 30 x 13 mm). The latest wireless generation has, due to
the integrated battery (10 hours operating time), an increased
weight of 48 g and dimensions of 56 x 42 x 19mm. Each
IMU contains a 3-axis MEMS accelerometer and gyroscope,
and a 3-axis magneto-inductive magnetic sensor, all sampled
at 100 Hz.

B. Inertial body posture estimation

The pose and motion of the body are contained in the
measured accelerations, angular velocities, and magnetic fields
from the IMUs attached to it. These measurements are com-
pared to predictions based on a biomechanical body model.
The pose kinematics are then determined using model based
sensor fusion. A drawing of the IMUs in relation to the upper
body model is depicted in Figure 2.

The biomechanical model determines the degrees of free-
dom (DOF), and based on this, the set of movements that
can be captured. In the context of the proposed system, the

model is a compromise between simplicity and accuracy: It
is detailed enough to provide accurate data for the exercise
evaluation and user feedback. At the same time it enables
an efficient real-time estimation. The complete model is a
functional model consisting of ten rigid bodies (torso, pelvis,
upper arms, forearms, upper legs, and lower legs) connected
by anatomically motivated restricted joints. The model is
parameterized by the segment lengths, so that it can be
personalized for the individual subject.

At least one IMU is required at each segment that should
be monitored in order to obtain its complete orientation. For
an accurate capturing of the whole body pose, ten sensors
are needed. The sensors’ placement is indicated in Figure 2.
It is chosen with respect to several constraints: it should be
unobtrusive, limit the skin and muscles motion artifacts, and
ensure an easy positioning and accurate data. Therefore, IMUs
are placed at bones, ligaments, and between muscles.

In order to obtain easy, fast and repeatable positioning on the
body, two prototypical fixation methods have been developed
for the upper extremities and are currently tested: (a) a jacket
with integrated sensors, (b) velcro straps with clippers for
fixation above the normal cloths (see Figure 3).

To be able to use the IMU measurements for estimating the
body pose, the poses of the sensors, more specifically, their
orientations relative to the body segments must be calibrated.
For this, an easy to perform calibration procedure based on
IMU measurements taken under known static poses [11] has
been developed. The devised procedure requires the user to
stand upright with the arms straight down and the thumbs
forward, and then bent over.

The estimation of the body posture in terms of joint angles,
angular rates and accelerations is carried out by a set of nested
extended Kalman filters (EKFs) [12]. The configuration of the
limbs (arms, legs) and the trunk segments are each estimated
in an individual EKF. The EKFs are then loosely coupled.
The measurement equations are based on forward kinematic
equations and the functional model presented above. Given
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Fig. 3: Sensor fixation: sensor jacket (a) and velcro straps (b).



the joint angles from the filter and the model, the body pose
is fully determined. The algorithm is described in more detail
in [13].

C. Implementation and evaluation

The method for body motion estimation is implemented in
a modular, self-contained C++ software component, which is
decoupled from the low-level IMU communication and, hence,
independent from the actual IMU hardware. The software
automatically identifies the connected sensors and tracks the
respective parts of the body at 100 Hz. Besides local data log-
ging functionality, it provides a bidirectional network interface
for receiving commands and sending off the processing results
with minimal delay. For this, a customized protocol and binary
message format has been developed.

The accuracy of the body tracking system has been eval-
vated against a validated optoelectronic motion capture sys-
tem [14] in combination with a validated biomechanical
model [15]. The results are detailed in [16]. In short: The
estimation method can be considered to provide accurate
data. The proposed biomechanical model can be considered
adequate, if the differences found between the two methods are
repeatable for one subject. This repeatability will be confirmed
by realizing additional experiments.

V. EXERCISE EVALUATION

As previously mentioned, exercise evaluation comprises a
teach-in mode and a trainer mode (see Figure 1). The aim
of the teach-in mode is to obtain for the individual subject
and for each exercise a personalized model of one motion
cycle, which can serve as reference. The method is to learn this
model from correctly performed example executions. For this,
motion data (according to the previous section) is collected
during the teach-in phase, where the subject is supervised by
a physical activity specialist. The model generation from the
recorded data is detailed in Section V-A.

The aim of the trainer mode is to control the subject’s
movements when exercising alone at home. In particular, this
means to automatically count the repetitions and to accurately
evaluate each repetition based on the respective reference
motion. This is explained in Section V-B.

A. Teach-in mode

This section presents a fully automated method for con-
structing a reference model from a very short training sequence
(see Figure 4). The training data in terms of recorded joint
angles is assumed to contain a pre-defined number of exercise
repetitions correctly performed by the subject. A Hidden
Markov model (HMM) is used to represent the reference
model. This representation has been chosen for two reasons:
Firstly, it naturally takes variations in motion into account
by allowing for time-warping and has thus been successfully
applied in domains such as speech, gesture, or handwriting
recognition. Secondly, standard algorithms, such as the Viterbi
algorithm, can be used for segmentation. The proposed method
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Fig. 4: Teach-in Mode: The best motif candidate (red area)
and its occurrences (green areas) in the training signal. The
five graphs show the measured joint angles of the right arm
during a guided training session.
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for model generation consists of two steps: The first step au-
tomatically detects candidates for the recurring motion cycles
in the training sequence. The second step uses the detected
motion cycles to construct the model.

1) Candidate detection: The problem of locating patterns
in real-valued, multivariate time series is a known problem and
several approaches have been proposed [17], [18]. However,
all of these methods are based on a pre-defined window size.
Here, the windows size is equivalent to the time needed
to execute one exercise repetition. Since the execution time
is unknown, the first step consists in estimating a suitable
window size. Based on the assumption that the exercise repe-
titions during the teach-in phase are performed consecutively
with roughly the same speed, a dominant frequency will be
present in the signal. This can be extracted using the combined
power spectral density (PSD) [19]. The window size is then
initialized as the wavelength of the dominant frequency. Based
on this preprocessing step, an extended version of [18] is then
parameterized with the window size to detect the reference
motion candidates. The best candidate is evaluated and chosen
as final result. Figure 4 illustrates an example of a candidate
reference motion cycle and its segmented occurrences in the
training signal.

2) Model generation: The observation probabilities of the
HMM are modeled as Gaussian mixtures. Here, the different
channels (joint angles) are handled separately, so that the
system is capable of identifying, in which angle a deviation
occurs. The reference motion cycles which have been extracted
during the candidate detection are used as training samples
for the model. Since traditional parameter estimation methods
for HMMs, such as the Baum-Welch algorithm, typically
fail when applied to too few training examples, a simple
construction algorithm is used to capture the characteristics
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Fig. 5: Personalized Model: HMM for one channel of the
signal.

of the reference motion. This algorithm builds a HMM with
a left-right topology, which is a wide-spread approach to
model time-varying sequential data. Self-transitions and skip-
transitions are added to allow for a faster and slower execution
of the motion. The number of states is chosen in relation
to the estimated window size. Accordingly, each subsequence
is divided into equal-length adjacent segments, whereas each
segment is assigned to a state. Figure 5 illustrates an example
model with only four states. For each state a Gaussian mixture
is trained using an expectation-maximization algorithm on all
elements of the respective training set. Thus, each segment is
described by a normal distribution.

B. Trainer mode

The trainer mode consists of two phases that build upon
each other. First, the reference model is used to detect and seg-
ment the repetitions while being performed. During this step,
deviations from the reference motion are already identified, but
not further characterized. Once, a repetition is completed, the
second phase consists in accurately evaluating the quality of
the performed motion cycle according to the evaluation criteria
introduced below.

1) Motion cycle detection: As already stated, the HMMs
obtained during the teach-in mode enable the online detection
of the represented reference motion within continuous motion
data by means of the Viterbi algorithm. In general, the standard
Viterbi algorithm computes the most likely path of states given
a sequence of observations. Here, the observations are given by
the continuous joint angles as streamed by the data collection
component. Thus, the algorithm can determine, to which state,
respectively frame, of the reference motion the current motion
matches. If the log probability of the Viterbi algorithm is
too low, the current observation is considered as noise that is
random motion. Whenever a complete motion cycle has been
detected, the detailed evaluation starts as described below.

2) Motion cycle evaluation: According to the literature on
strength training, in order to ensure safety and effectiveness,
it is fundamental to check both the intensity and the technique
of exercise. The load of the exercise, the muscles that work
but also the posture taken during the exercise have then
to be evaluated. Translating these constraints into objective
data that are implied in the measurements resulted in the
following criteria: For movement load, the exercise intensity is
quantified by the number of repetitions, the movement speed,
the movement amplitude, and the movement smoothness. For
the muscles to work, it was chosen to characterize the axes
of rotation. Finally, for safety issues, it was also chosen to
characterize the posture by evaluating fixed distances or angles
that are recommended when performing the movement. This
could, for instance, be the distance between the feet during
squat exercises, or the angle at the pelvis during push-ups.

The number of repetitions and their duration are given by the
segmentation step described above. For the other criteria, an
algorithm has been developed, which evaluates each detected
motion cycle using the model constructed during the teach-in
phase as reference. The different steps of the algorithms are
the following. First, the joint trajectory that has the greatest
range of motion during the movement is identified. This range
of motion is compared to the reference motion constructed
during the teach-in phase. Then, different fixed angles and
distances that have to be respected during the movement
in order to avoid injuries are computed and compared with
those obtained during the movement of reference. Afterwards,
the mean rotation axis is computed for the current cycle
at each joint based on the quaternion formalism. The mean
rotation axes are then compared to the ones obtained during
the movement of reference. Using the same formalism, the
rotation amplitudes are also compared. Finally, the number of
extrema in the derivative of the joint trajectory (i.e. its velocity)
that has the greater range of motion during the movement
is evaluated and compared in order to determine movement
smoothness. The procedure is illustrated in Figure 6. If a
deviation greater than a certain percentage is detected in any of
the above parameters, the user is informed by an explanatory
feedback. After completing the exercise, a summary of the
quality is provided by computing the result statistics across
all repetitions. This enables detailed feedback after each cycle
and a summary at the end.

C. Implementation and evaluation

The methods for exercise evaluation are currently imple-
mented in Python and Matlab. Work is in progress to port
these to a C++ software component that communicates with
both, the data collection software and the data presentation
software.

The exercise evaluation has been evaluated in a prelimi-
nary study with four subjects. The subjects had to perform
three strength training exercises typical in cardiac patients’
rehabilitation. In this preliminary study, only upper-extremity
exercises were considered, since they generally imply a greater
variation in the amplitude and joints to work and they are
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Fig. 6: Training Mode: The personalized model depicted in
Figure 5 is used to evaluate the signal of one joint angle
(a). The detected motion cycles are evaluated separately. The
cycles overlaid with a red area show a significant deviation
from the reference movement (illustrated as dashed red lines),
either in amplitude (b) or in the number of extrema (c). The
green area indicates a correctly performed cycle.

generally less familiar to beginners. These exercises were
biceps curls with light weight, overhead press with a stick,
and wall push-ups.

The subjects repeated the exercise series four times. The
first time, they respected the number of repetitions and the
recommendations provided by the rehabilitation program. This
corresponds to the teach-in phase. The other times, they
modified their posture, the range of motion, the rhythm,
and/or the number of repetitions. In order to ensure that
the developed algorithms are not material dependent, subject
movements were captured by using the motion capture system
presented in Section IV, but also the reference setup described
in Section I'V-C.

The results of applying the developed method to each series
of exercise are: The present algorithm was able to identify
when the number of series was not respected. For the other
parameters, one of the issues was to decide until when the
deviation from the reference movement could be considered
as being tolerable. With a threshold of ten per cent, the move-
ments that look incorrect to the examiner were all detected
as being incorrect by the algorithm. The preliminary tests
seem promising but another study including physiotherapists
and physical activity teachers will be conducted in order to
confirm objectively that the parameters and the thresholds
chosen to evaluate the movement are in adequation with their
own expertise.

VI. DATA PRESENTATION AND USER INTERFACE

This section details the data presentation component, i.e.
the component that presents the information provided by the
other system parts to the user. The focus is on introducing

a user interface concept designed for older adults. The chal-
lenging problem is: The elderly user should be unaware of the
complexity of the underlying software and hardware details.
Moreover, the interface should be developed for elderly people
with little or no computer experience. The core philosophy
is therefore a minimalist design and simplicity of the user
interface. The general concept is first introduced and then
illustrated in the calibration and exercise mode. The last
part of this section describes the implementation of the data
presentation component.

A. User interface design

1) General: One of the most difficult problems in adopting
technology is the usage of interfaces that are often not well-
suited for elderly users. Especially, the aspect of technology
acceptance needs to be addressed. The technology should aim
at being less noticeable than traditional hardware and better
integrated with the lifestyle of the elderly [20].

The current set-up for the elderly makes use of a television.
The patients are able to enter information interactively via a
remote control. With a television being the primary focal point
in the everyday lives of the elderly, it is an ideal candidate
for a technological aid by embedding intelligence into it [21].
Using the television the need to learn a new interface is
negligible, as the user will utilize an already familiar interface.
Furthermore, the user is unaware of any underlying software or
hardware details within the system, as the monitor visually and
behaviorally represents a television with the remote control
still being the primary input device.

In addition to the previous described hardware the graphical
user interface is the main component with which the user
gets into contact. Modern interface design requires the use
of memory and sight; all faculties that decrease with age [22].
As people age, their abilities change. This process includes
a decline over time in the physical, cognitive and physical
functions at different rates relative to each other. Visual
changes among aging adults include problems with reading
speed, seeing in dim light, reading small print, and locating
objects.

For the current system the symbols were designed to be
simple and large. A large and clear font was also used in
the application and only the most necessary information for
use is displayed on the screen (see Figure 7). To support the
presented text information a speech output has been introduced
for limited vision users. At every point in the interaction it tells
the user what he has to do next.

2) Calibration: As indicated in Section IV-B, a valid
calibration is important for ensuring repeatable and accurate
motion data. Therefore, special work has been undertaken
to ensure a valid calibration process. Figure 7 illustrates the
step-wise calibration of the upper body. As introduced in
Section IV-B, particularly age-related impairments of the mus-
culoskeletal system have been considered for the procedure.
The system leads the user through the three-step calibration
process. Firstly, the user is asked to stand up straight. For
each single step, as mentioned above, text, image, and audio



Fig. 7: By means of visual (text and images) and audio
instructions the personalized trainer guides the elderly user
through the calibration process.

instructions are used to guide the user. With “Please bend
forward” the system switches to the next step. Finally, the
user is asked to take again an upright body position with
the arms straight down and the thumbs forward. When the
calibration is completed, the system is ready to visualize the
user’s movements through his virtual alter ego.

Currently, the calibration step has one limitation: the validity
and accuracy of the result is not evaluated after the procedure.
In order to tackle this problem, two possible solutions are
considered: In case of the sensor jacket, where the positioning
of the sensors is roughly fixed, the current calibration can
be compared with the previous results. In case of the velcro
fixations, it is considered to use an additional reference posture
for an interactive check.

3) Exercise: Figure 8 shows the user interfaces in a training
mode, e.g. biceps curls. Here, the user only carried out three
of five repetitions (see Figure 8a). The system can be used
as virtual memory. The application does not require the user
to remember how many repetitions he has to perform or he
already did. The aim is to avoid causing an excessive memory
load on the user. Thus, the elderly user is able to concentrate
on the correct execution of the exercise. The digital trainer has
the knowledge of the type of exercise, number of repetitions
to perform, and successfully carried out repetitions.

Furthermore, the system intervenes when an exercise is
performed incorrectly. If the patient moves his shoulder too
much a dedicated feedback is displayed on the television (see
Figure 8b). Finally, the system is capable of protecting against
overexertion. At certain points during the exercise the system
sets a pause (see Figure 8c). Thus, it minimizes the risk of an
overuse injury.

B. Implementation and evaluation

As mentioned in section III, the system is set-up modular
and is constructed to act as a client server system. The graphi-

cal user interface (client) communicates via a standard TCP/IP
connection to the data processing component (server) within
the Intranet or the Internet. The communication between client
and server is defined by a customized protocol, the Motion
Tracking Binary Format (MTBF) protocol, as indicated in
section III. The MTBF protocol is designed to only send
the necessary information. Therefore, the traffic and amount
of data is reduced dynamically. This allows to visualize the
data in real-time. The client interprets the MTBF packages
correspondingly and displays the information graphically.

Due to the above mentioned aspects it is necessary to im-
plement an application, which is independent of the hardware.
The core technology used for the user interface is based on the
Java™ programming language. Independence, neutrality and
portability are the reasons why the visualization component is
implemented as a Java™ Web Start application. This allows
for the development of a distributed and platform independent
application. The system not only runs on a television set-
up as described above but also on any personal computer. A
physician could make use of the data presentation component
to analyze the movements of the patient, for example. To illus-
trate the movements of the avatar the component exploits the
Java3D™ library. Furthermore, the user interface is designed
for different countries and supports multiple languages.

Moreover, an important objective is the maintainability of
the content with a minimum maintenance requirement. The
Java™ Web Start technology supports updates of the software.
Any changes or updates in the data presentation component
will be downloaded automatically. Therefore, the patient does
not require any technical expertise and, hence, the need of
technological knowledge can be reduced.

First informal evaluations of the user interface have been
conducted during several fairs and demonstrations. The feed-
back has been collected and used to further improve the

Fig. 8: Interfaces during an exercise: Besides the number of
repetitions (a), the system provides feedback in case of wrong
execution (b) and protects against overexertion (c).



system. A formal evaluation of the overall system is the next
step.

VII. CONCLUSION AND FUTURE WORK

This paper outlines a powerful system for supporting the
practice of physical activity in clinical settings and in out-
hospital environments. While providing a short overview of the
overall system and its functionalities, the paper then focuses
on the special use case of home-based exercise training, more
specifically strength exercise monitoring for both prevention or
rehabilitation, and in this on the two aspects of personalization
and usability for elderly. The first aspect is mainly taken
into account in the developed method for exercise evaluation,
while the second aspect mainly becomes important in the data
presentation, user feedback and interaction.

The system is currently still under development and (tech-
nical) evaluations of the individual components have shown
promising results as described in the respective sections.
The evaluation of the overall system is planned within a
clinical assay including 30 subjects, 20 cardiovascular and
functional disease patients and 10 fit and healthy subjects,
all over 60 years. The strength exercise monitoring use case
is planned in supervised sessions at a rehabilitation hospital
and a sports medicine unity with about three subjects per day.
The goals of the clinical assay will be technical evaluation of
the components working together, evaluation of feasibility and
usability of the user interfaces, and evaluation of the system
in terms of helping the user in his involvement in regular
and long term physical activity. The latter two aspects will be
based on questionnaires. The clinical assay is at the moment
in the application phase and is planned for September 2011 to
June 2012 including patient recruiting and data treatment and
evaluation.
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