
Dual Scheme Phone: A User Assisted Mechanism to
Effectively Run Sensor Analytics Applications on

Smartphones

Swarnava Dey, Arijit Mukherjee, Pubali Datta, Himadri S Paul
Innovation Labs Kolkata

Tata Consultancy Services
{swarnava.dey, mukherjee.arijit, pubali.datta, himadrisekhar.paul}@tcs.com

Anupam Basu
Computer Sc. & Engg.

IIT Kharagpur
anupam@cse.iitkgp.ernet.in

Categories and Subject Descriptors: H.4 [Information
Systems Applications]: Miscellaneous; D.2.8 [Software Engi-
neering]: Metrics—complexity measures, performance mea-
sures

General Terms: Theory

Keywords: smartphone, resource prediction, machine learn-
ing, usage pattern

ABSTRACT
In recent times, many human-centric applications are being
developed to leverage the diverse range of sensors present
in Android smartphones. Smartphones are also being used
as edge network gateways for fusing data from multiple sen-
sors. These applications often run as background services
and usually obtain and process sensor data. However, smart-
phones are traditionally optimized for prioritizing foreground
and interactive applications and the user remains unaware
about the resource-starved background applications, some
of which may be important to him. In this work we present
the argument in favour of optimizing the smartphones for
background services too with a certain degree of user inter-
vention. We exploit the user specific unique usage pattern of
smartphones and show that machine learning techniques can
be applied to predict CPU usage of applications. Based on
the system-wide and app-specific predicted values of CPU
usage, our system detects if any preferred background ser-
vice is resource-starved and alerts the user accordingly. We
show with an example sensor analytics application, that the
accuracy of data collection and analysis of that application
increase significantly by applying our scheme. We further
show that irrespective of variations in the accuracy of predic-
tion due to users, handsets and algorithms used, reasonable
period of forecast about future resource usage is possible us-
ing historical data about the applications under execution

and different context parameters including time of day, day
of week, network cell, location, accelerometer data.

1. INTRODUCTION
During the last few years, smartphones and the in-phone
sensors are being used to develop diverse range of appli-
cations (apps) and some of these even solve real time and
mission critical problems including monitoring fire-fighting,
heart rate. Smartphones are also used to fuse data from ex-
ternal sensors in Fog Computing [1] and IoT [2]. These apps
often run as background services and usually obtain and pro-
cess sensor data. The primary apps running in smartphones
are however games, browsers, social networking apps, or re-
lated to communication, productivity etc. [3]. As people
traditionally gauge the performance of a smartphone based
on the responsiveness of the user interface and foreground
apps, smartphones are optimised for prioritizing foreground
and interactive applications. However, in our opinion, to
maximize the benefit of running the new breed of sensor
analytic applications in smartphones, user’s idea of priority
should override some of the system defaults. In this work we
try to accommodate the resource needs of such background
services perceived important by the user, remaining within
the realms of currently existing smartphone scheduling poli-
cies. We propose a scheme and present a prototype imple-
mentation that exploits the user specific unique phone us-
age patterns and applies machine learning based time series
forecasting techniques to predict CPU usage based on differ-
ent context parameters including time of day, day of week,
network cell, location, accelerometer data and apps under
execution. Based on the predicted system-wide and app-
specific CPU usage, our system detects potential resource
starvation for preferred background services and alerts the
user. This spares the user selected background processes
from being resource starved. Effectively, the proposed im-
plementation serves as a wrapper on Android to implement a
different optimisation policy that favours the interactive and
foreground processes, but can accommodate the need of a
selected background service, when specified by the user. We
show that MobiDriveScore [4](a sensor analytics app that
logs GPS and accelerometer data from phone and analyses
the same to model driving behaviour and road condition)
experience lesser measurement and analysis lag when our
scheme is used.



2. DESIGN AND IMPLEMENTATION
Earlier research efforts including Falaki et. al. [5] etc. shows
that unique usage patterns exist for mobile phone usage on
a per user basis. With this idea of user specific patterns, we
try to predict future CPU load, based on the apps under
execution. Our usage prediction system can be specified as
follows: Let J = {j1 , j2, . . . , jn } be the set of apps
, J ′τ ∈ J be the set jobs that use relatively high memory
during the interval τ , jbg be the user preferred background
sensor analytics service, Cτ = {c1 , c2, . . . , ck } be
the set contextual parameters including time, day, location,
network cell etc. during interval τ ; For a time interval τ , the
output of the data collection will be the following: Ocpu

τ = {
low, average, high } depending on the combination of apps in
J ′τ , where the levels are obtained by running unsupervised
clustering on app wise CPU usage. A set of instances of
J ′τ , Ĵ = {J ′τ1 , J ′τn , ... J ′τp } may be used as features to
classify the output Ocpu

τ . Ĵ in conjunction with the context
parameters Cτ may be used as historical data for prediction
of system resources for an arbitrary interval τn.
If the predicted output from such a system, Ocpu

τn
, is high and

for the same τn CPU demand of jbg is also high, we raise an
alert for the user. As given in Fig. 1, the alert raised by our

Figure 1: Alert service to notify resource starvation of user’s pre-
ferred app

system will also allow the user’s preferred app to get access
to CPU, as the current foreground activity will be paused.

We implement the scheme in Fig. 2, where user intervenes
with the scheduling from userspace by pausing some fore-
ground app, to facilitate uninterrupted running of preferred
apps.

To build usage model, we log app wise and overall CPU
usage, context parameters from users. We implement an
adaptive lightweight data collection scheme given in algo-
rithm 1, that prolongs the data collection interval based on
average app usage time reported by Böhmer et. al. in [3].

We observe that CPU usage of the apps that vary at dif-
ferent periods, follow a pattern. Sometimes CPU usage per-
centage of these apps fall in a lower bracket and sometimes
in a higher bracket. However, the high or low bracket of
CPU usage continues for certain time. During this time pe-
riod, the per-app CPU usage remains quite uniform. This

Figure 2: Alert service for raising execution priority of preferred
app

(a) Mean Value - CPU usage
(b) Most frequent CPU usage
brackets

Figure 3: Determining the top CPU consuming apps

measure in Fig. 3b is different from per app average CPU
usage in Fig. 3a and helps in the selection of the top CPU
consuming apps during a time period.

We use Android APIs and Linux /proc filesystem to get
system load. We apply k-means clustering on the idle CPU
usage values, to reach three clusters low, average, high. We
apply standard machine learning algorithms after remov-
ing temporal ordering of individual feature instances, using
Weka tool API [6]. Weka achieves this by encoding the time
dependency via additional input fields, added as lagged vari-
ables in each row. We adjust the lag variables, try different
base learners for comparing prediction errors for selecting
the base learners for building offline usage models.

3. EVALUATION
We observe that SVM with polynomial kernel and Random
Forest gives better accuracy with respect to Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and Mean
Square Error (MSE). We present a sample MAE comparison
between SVM with polynomial kernel and Random forest
and comparison of SVM based prediction between datasets
of two users in Fig. 4. We observe that with a history data
of less than 24 hours, the prediction errors are high. Better
forecasting happens once we have data for more than a day,
i.e., the diurnal pattern is captured in the model. Beyond



Algorithm 1: Algorithm for data collection
1 Algorithm: CollectData:AppTable,CurrApp,LastApp, lastSkip
2 begin
3 foreach i e AppTable do
4 key ← getKey(i);
5 if key matches CurrApp then
6 value[] ← getValue(key);
7 avgRunT ime ← value[1];
8 lastRunT ime ← value[2];
9 if CurrApp matches LastApp then

10 timer ←
avgRunT ime − lastSkip − lastRunT ime;

11 LastRunT ime ← lastRunT ime + lastSkip;

12 else
13 timer ← avgRunT ime − lastSkip/2

avgRunT ime ←
(avgRunT ime + lastRunT ime)/2;

14 lastRunT ime ← lastSkip/2;

15 if timer >= 25 then
16 timer ← 25;
17 lastSkip ← timer;
18 value[2] ← lastRunT ime;
19 setKey(AppT able);

20 return (timer);

Figure 4: Comparison of different time series forecasting algo-
rithms and on our datasets from different users

the weekly patterns, however, there is not much noticeable
change in prediction accuracy. To demonstrate the useful-

(a) Without our scheme (b) Applying our scheme

Figure 5: Scheduling frequency of the MobiDriveScore test app

ness of our proposal, we have created a prototype app run-
ning on an Android smartphone which flashes alert when the
chosen background app MobiDriveScore is starved of system
resources. Fig. 5b and Fig. 5a shows that MobiDriveScore
app was scheduled periodically and got access to CPU more

often during a session of heavy movie watching and gam-
ing, by application of our scheme. Discussing the results of
MobiDriveScore with its developers, we understood that in-
accuracy in data collection and processing may not affect the
driving pattern recognition for a long drive but will surely
alter the road condition model created by that app.

4. CONCLUSIONS
The issue of low priority sensor analytics service not getting
access due the default scheduling policy of Android Operat-
ing System and producing inaccurate results can be solved
by implementing the service as a part of a foreground app.
What if the user has one preferred app among several fore-
ground apps running and needs to ensure that the preferred
one gets access to resources when needed? To achieve the
above goal we predicted systemwide and per-app CPU us-
age based on apps under execution and context data. We
devised a low overhead data collection scheme, analysed in
depth to find the CPU usage brackets of apps and applied
standard machine learning based time-series analysis tech-
niques to forecast heavy CPU load scenarios. If a preferred
app is CPU starved in those periods, our system provided
alert to the user to pause the then current activity. We
showed that a sensor data analytics app is benefitted by ap-
plying our scheme and overcame the lag in data collection
and analysis in smartphones under active usage. This work
is still in its preliminary stages and we plan to integrate this
into OS scheduling policy so that the smartphone OS pro-
vides options for accepting user’s idea of priority along with
system defaults.

References
[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog

computing and its role in the internet of things,” in Proc.
of the 1st Edition of the MCC Workshop on Mobile Cloud
Computing, MCC ’12, (New York, NY, USA), pp. 13–16,
ACM, 2012.

[2] A. Mukherjee, H. Paul, S. Dey, and A. Banerjee, “Angels
for distributed analytics in iot,” in Proc. of the 2014
IEEE World Forum on Internet of Things (WF-IoT),
WF-IOT ’14, pp. 565 – 570, IEEE, 2014.

[3] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and
G. Bauer, “Falling asleep with angry birds, facebook
and kindle: A large scale study on mobile application
usage,” in Proc of the 13th Int Conference on Human
Computer Interaction with Mobile Devices and Services,
MobileHCI ’11, (New York, NY, USA), pp. 47–56, ACM,
2011.

[4] T. Chakravarty, A. Ghose, C. Bhaumik, and A. Chowd-
hury, “Mobidrivescore: A system for mobile sensor based
driving analysis: A risk assessment model for improving
one’s driving,” in Sensing Technology (ICST), 2013 Sev-
enth Int Conference on, pp. 338–344, Dec 2013.

[5] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopou-
los, R. Govindan, and D. Estrin, “Diversity in smart-
phone usage,” in Proc of the 8th Int Conference on Mo-
bile Systems, Applications, and Services, MobiSys ’10,
(New York, NY, USA), pp. 179–194, ACM, 2010.

[6] “Time Series Analysis and Forecasting with Weka.”
http://wiki.pentaho.com/display/DATAMINING/
Time+Series+Analysis+and+Forecasting+with+Weka.


