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ABSTRACT

The Internet of Things will encompass a rich variety of
sensing systems including mobile phones, embedded sensor
and actuator platforms, and even smart electricity meters.
Through their collaborative operation, billions of such de-
vices will realize the vision of smart homes, smart cities,
and beyond. Smart electricity meters can, e.g., already help
utilities monitor the stability of the power grid by periodi-
cally reporting each connected household’s energy consump-
tion. Even more sophisticated services can be realized when
data is available at higher spatio-temporal resolutions, e.g.,
when distributed smart power meters (sometimes referred
to as smart plugs) are deployed. In this paper, we present
one such novel service for the smart home, namely making
projections of an appliance’s future energy demand based
on previously observed power consumption data. In a first
step, our system identifies and isolates unique characteristic
signatures from collected power consumption traces. Sub-
sequently, time series pattern matching is applied to detect
these signatures in real-time data. Based on the occurrences
of the extracted signatures in real-time data, the appliance’s
future power demand is predicted. We evaluate our ap-
proach with more than 2,500 appliance activity segments
collected from 15 different appliance types, and show that
accurate forecasts can be made in many cases.

Keywords
Distributed appliance metering, power consumption predic-
tion, smart buildings, smart grids

1. INTRODUCTION

High electricity generation dynamics due to the immediate
dependency of renewable sources on environmental parame-
ters are increasingly gaining impact on power grids. One of
the core problems is the absence of energy storage compo-
nents in today’s grids. As a result, the surplus energy pro-
vided during periods of intense sunshine or high winds can-
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not be buffered. Instead, excess energy must be consumed
at the time it is being generated—or renewable sources be
shut down to not generate energy at all [23]. Similarly, to
cover the opposite case of unexpected low yields from re-
newable sources, spinning reserve plants are constantly kept
in operation, although their efficiency is mediocre. We ar-
gue that projections of the future power consumption of in-
dividual dwellings can be used to mitigate this situation.
Reliable forecasts would gain operators additional time to
proactively prepare supportive means to maintain the grid’s
stability. In fact, if the achievable prediction horizon is suffi-
ciently long, the spinning reserve can be downsized because
sufficient time will be available to start up supportive plants
on demand.

The consistently growing number of sensing devices for home
automation may come to the rescue. With an envisioned 50
billion networked devices by the year 2020 [12,13], a wide
distribution of both smart electricity meters as well as in-
telligent power outlets (smart plugs) can be expected [7,19].
By leveraging the data collection and processing capabilities
of these devices, households and businesses can make predic-
tions of their future energy consumption at much finer res-
olution than the currently used standard load profiles [11].
Sharing these forecasts with the utility companies enables
them to draw a fine-grained portrait of the expected power
grid status and activate reserve power plants only when nec-
essary. Power consumption predictions are thus vital for the
sustainable operation of the future smart grid [15].

In this paper, we present a case study on the use of smart
plugs, i.e., distributed data collection and processing de-
vices, to make forecasts of an appliance’s power consump-
tion. More precisely, we show how previously observed con-
sumption patterns can be leveraged to predict a device’s
future demand. To this end, we identify characteristic pat-
terns (signatures) in historical data first, which we annotate
by the power consumption for the remaining duration of the
appliance’s activity. Once a database of signatures has been
established, our system is ready to make consumption data
forecasts. It applies time series pattern matching to detect
the presence of the extracted signatures in incoming streams
of consumption data. When a signature match has been
found, the signature’s annotations are used in order to pre-
dict the appliance’s future power demand and its remaining
activity time. In sum, we make the following contributions
in this paper:



e We present the design of our consumption forecasting
system. The system autonomously extracts charac-
teristic signatures from power consumption data and
stores all signatures that allow for unambiguous power
consumption predictions in a repository.

e We show how time series pattern matching is applied
to identify the previously extracted recurring patterns
in real-time sensor data streams in order to make con-
sumption predictions.

e Using consumption data collected from real-world de-
vices, we evaluate the achievable prediction accuracy,
identify appliance types whose future power consump-
tion can be particularly well determined, and assess the
length of the achievable prediction horizon. An evalu-
ation of our system’s operability on embedded systems
concludes our evaluation.

This paper is structured as follows. We summarize existing
work on predicting power consumptions in Sec. 2, followed
by the introduction of our concept and design considerations
in Sec. 3. We detail its features and its mode of operation
in Sec. 4 and analyze the accuracy of the proposed system
in Sec. 5. Finally, we conclude our paper in Sec. 6.

2. RELATED WORK

Predicting electric energy consumption, or load forecasting
for short, has received a lot of attention in the last decade.
While early work has mostly targeted to predict the future
aggregate power demand observed at substations [1,25], the
increasing deployment of smart meters has allowed more re-
cent approaches to increase the spatial resolution of the fore-
casts. Several university research groups have, e.g., collected
consumption data for their campuses and applied different
regression and machine learning techniques in order to ex-
tract trends from the data and forecast future usage. Pro-
posed techniques include neural networks [26], support vec-
tor machines [9], and decision trees [27]. Furthermore, the
combination of historical campus power consumption data
with external data sources (e.g., weather information) to im-
prove the results has been presented in [2]. The approaches
achieve good accuracy results when a large number of build-
ings is monitored and time scales of 24 hours or more are
applied, because they benefit from the averaging effect of the
law of large numbers. Means to make consumption predic-
tions for individual households have been presented in [16],
thus increasing the spatial resolution of the forecast even fur-
ther. However, the approach is based on the manual entry
of data from electricity and gas bills and thus only oper-
ates on monthly time scales; well in excess of the short-term
forecasts targeted in this work.

From the domain of pervasive computing, the prediction of
future states has been analyzed for numerous sensing modal-
ities. Some of the resulting approaches have also been trans-
ferred to the domain of smart grids in order to predict the
electric power consumption of households. To this end, hid-
den Markov models have mostly been employed to deter-
mine the most likely power demand based on a building’s
previously encountered power consumption patterns [4, 8].
According to the results presented in these publications, the
efficacy of load forecasting without considering additional
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Figure 1: Superimposed power consumption traces
of seven operation cycles of the same dishwasher ap-
pliance (data taken from [22]).

environmental parameters (like building occupancy) is how-
ever limited. This observation is confirmed by results on
the predictability of individual households that take exter-
nal parameters into account in order to compensate for the
unpredictable user behavior [6]. However, this approach has
again been designed to predict a household’s accumulated
demand over 24 hours, and does not cater to short-term
predictions of load variations on time scales of seconds to
minutes. To the best of our knowledge, forecasts for individ-
ual households at temporal resolutions of seconds or minutes
have not been investigated to date, although the ubiquitous
presence of smart plugs and smart meters will enable future
buildings to provide data at exactly this resolution.

Infrastructure for the adaptation of supply and demand has
been installed on the Danish island of Bornholm within the
scope of the European Union’s EcoGrid project [14]. This
system however only features loads that monitor the mains
frequency and adapt to the current generation situation au-
tonomously. Consumption predictions, such as expected
load drops, which might lead to different actuation decisions,
are not currently being made by the system.

Our paper shares most similarities with the work presented
by Truong et al. in [24], which is also based on fine-grained
power measurements. However, while our work targets to
forecast the behavior until an appliance is deactivated, the
cited publication considers the opposite case, i.e., predict-
ing an appliance’s next activation. Household consumption
recordings of several weeks were used in [24] to extrapo-
late appliance activities and their interdependencies. As the
work exclusively relies on historical data, however, the so-
lution is unable to regard the impact of the user’s current
behavior on device actuations, and a non-negligible number
of false positives were reported in a conducted experiment.

3. CONCEPT AND SYSTEM OVERVIEW

Many household appliances are actively controlled by the
user, i.e., the user’s physical presence is instrumental to de-
termine when these appliances will be turned on. As a result,
the sole availability of power measurements makes accurate
forecasts of their activation time very difficult. In fact, to the
best of our knowledge, no related work succeeded in making
predictions of appliance activations that are accurate to the
minute or even finer temporal resolutions without consider-
ing additional environmental parameters. One of the main
reasons for this limited predictability is that very few ap-
pliances consume measurable power during periods of their
inactivity.
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Figure 2: A refrigerator’s activity segment with

five extracted signatures and parameter annotations
(threshold power Pipr.s to facilitate trace segmen-
tation, segment length [,.,, signature length [, =
wa + w1 + wa).

In contrast, the power consumption of almost all devices
increases once they have become active. Moreover, recur-
ring consumption patterns can be observed for many appli-
ances. Let us consider the seven superimposed dishwasher
operation cycles depicted in Fig. 1, in which three heating
phases can clearly be discerned. As the dishwasher’s clean-
ing program is pre-defined by the appliance manufacturer,
future operation cycles can be expected to lead to highly
similar time-power relationships. We thus focus on analyz-
ing appliances during their activity intervals, and target to
make accurate predictions of their power demand until their
deactivation.

3.1 System Overview and Terminology

In order to accomplish this task, we have designed a sys-
tem that extracts and later identifies short characteristic
sequences of power consumption data, based upon which it
emits power consumption forecasts. We argue that suffi-
cient information to make accurate forecasts is present in an
appliance’s past power demand, hence the system does not
rely on any additional environmental parameters. In short,
it operates as follows.

We first divide the continuous time series of past consump-
tion data into activity segments, i.e., time series represen-
tations of the appliance’s power consumption during indi-
vidual phases of its operation. Because each segment has a
finite duration, all further extracted characteristics can sub-
sequently relate to the start or end of the segment. In a
second step, short characteristic power consumption snip-
pets, so called signatures, are extracted from the segments.
These signatures are later matched against real-time data
in order to make predictions. All signatures are annotated
by their distance to the end of the segment and the power
consumption until then. For the sake of clarity, we visual-
ize one segment of a refrigerator’s operation in Fig. 2, from
which five signatures (shown in the inset boxes) have been
extracted.

Before relying on the extracted signatures to make predic-
tions, they must be verified to unambiguously indicate the
correct power consumption for the duration of the predic-
tion horizon (e.g., the next 1, 5, or 10 minutes, or the device
deactivation—whichever comes earlier). Their extraction is
thus followed by a subsequent quality analysis, which elimi-
nates all signatures that would lead to incorrect predictions.
Only the remaining unambiguous signatures are eventually
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Figure 3: Data processing flow of the power con-
sumption prediction system.

stored in a repository, based on which the future consump-
tion behavior of real-time collected data can be forecast. The
complete sequence of the steps taken during the system’s ini-
tial training phase, including the required preprocessing of
the input data, is visualized in Fig. 3 and described in the
following section.

During the system’s regular operation, incoming power con-
sumption data is matched against the signature repository
established in the previous step. This step is shown in the
bottom part of the figure. Due to the real-time nature of the
input data, however, preprocessing steps that require knowl-
edge of future date points cannot be applied. As a result,
only data interpolation is used in order to ensure that the
temporal resolution of signatures and input traces match.

4. DESIGN AND REALIZATION

In this section, we detail the operation of each of the pro-
cessing steps shown in Fig. 3. Where applicable, we also in-
troduce the parameter values that have been analytically or
empirically defined to provide the best system performance.

4.1 Input Data

In order to identify the limits of the achievable accuracy, we
conduct our analysis with device-level consumption data.
We source our data from the Tracebase project [22], which
features appliance-level power consumption traces collected
by smart plugs. As opposed to trace collections of circuit-
level data (like AMPds [18] or REDD [17]) or even household-
wide readings (e.g., BLUED [3]), each trace only contains
data of one appliance at a time. Hence, all observed charac-
teristics can immediately and unambiguously be attributed



to an appliance type. Samples are collected at high temporal
resolution, as visible from the traces plotted in Figs. 1 and 2.
We have deliberately designed our system for its operation
on data from individually monitored outlets, based on the
assumption that such a fine-grained power monitoring can
be anticipated in future smart buildings [7,19]. However,
for the sake of completeness, we also discuss the applicabil-
ity of our approach when data is only available at circuit- or
household-level in Sec. 5.3.

For the analysis of the prediction accuracy of our system, we
have selected a representative excerpt of the available power
consumption traces, using 15 different appliance types com-
monly found in households. The appliance types span a wide
range of consumption levels, from household appliances with
a power consumption in excess of 2,000 watts (e.g., washing
machines) to lamps that consume less than 20 watts. An
overview of the used data is given in Table 1.

4.2 Interpolation and Preprocessing

When inspecting the traces, we have observed that the data
collection interval of the Tracebase readings is not constant.
Although the data set only contains very few traces that
have gaps of more than 60 seconds between successive read-
ings, most of the traces have intervals between two and ten
seconds between readings. An interpolation of the data has
thus proven necessary in order to get data sets of equal tem-
poral resolution. As we did not want to diminish the qual-
ity of the traces that were collected using sampling rates
of one or even more readings per second, we have decided
to interpolate all traces such that one sample per second is
present, i.e., 86,400 samples per day. In order to interpolate
the gaps in the data, we have experimentally compared the
effects of linear interpolation between the current and the
previous data sample against the simple repetition of the
last encountered value until a new sample has become avail-
able. Our results have suggested the application of the latter
solution for two reasons. Firstly, the application of linear in-
terpolation significantly augmented the impact of spurious
readings by adding non-existent segments to the traces. Sec-
ondly, knowledge about both end points is required for linear
interpolation. For streaming live data, where future values
are not available, this introduces an unnecessary time delay
and thus reduces the achievable prediction horizon.

In some device traces, power spikes or very short activity
periods with durations of only a few seconds have occurred.
Even though these readings may be correctly capturing the
underlying appliance’s power demand, the prediction of very
short sequences is beyond the scope of this paper, in which
forecasts in the range of several seconds to minutes are tar-
geted. As a result, we have eliminated all occurrences of
consumption periods of less than 20 seconds in order to fa-
cilitate the subsequent segmentation of the traces.

4.3 Trace Segmentation

After the interpolation and preprocessing steps, 617 traces of
86,400 seconds duration each (equalling more than 1.5 years
of input data) remained. A manual segmentation of the
traces into individual operational phases would have clearly
been very time-consuming. Hence, an automated trace seg-
mentation component follows the preprocessing step. Its
task is to extract complete sub-traces that contain single
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Table 1: Statistics of the used input data set.

Appliance type # devices | # traces | # segments
Alarm clock 1 5 13
Coffee maker 6 74 141
Cooking stove 1 16 61
Dishwasher 5 74 141

Freezer 1 9 201
Iron 1 3 4
Lamp (halogen) 9 80 99
Microwave oven 7 56 133
Printer 2 12 20
Refrigerator 10 67 1,377
Toaster 4 23 46
Tumble dryer 2 9 16
Washing machine 9 55 74
Water boiler 1 2 42
Water kettle 9 132 421
Total | 68 | 617 | 2,789

operational cycles from the daily consumption data. For
many appliance types, this boils down to extracting individ-
ual periods during which the power consumption exceeds the
appliance’s standby power demand. Our automated trace
segmentation works as follows.

First, a power threshold value (Pinres) is determined in or-
der to estimate when a transition from standby to active
operation occurs, i.e., when a new activity segment begins.
Due to the appliances’ different standby power consump-
tions, we have based this value on the appliance’s power
amplitude, i..e, the difference between minimum (Pr,sr ) and
maximum (Ppqe) encountered power consumption in each
input trace according to Eq. (1). The decision in favor of
the cube root has been made based on the manual compar-
ison of different means to calculate Pip,es, where its usage
has resulted in the highest number of correctly separated
activity phases.

Pinres = Prin + \/3 Pras — Pmin (1)

However, we have also observed that some appliances con-
sume very little power during parts of their activity cycles,
e.g., the dishwasher depicted in Fig. 1 between its heating
phases. Our segmentation component thus needs to ensure
the coherent extraction of complete activity segments, even
when they contain power consumption values below Pjpres.
To this end, we have added a new parameter, the allowed
intra-activity idle time tmqzrdie. It bases the allowed idle
time during a segment on how long the appliance has been
active up to this point. For appliances that have been active
for a longer time tqctive, @ longer idle time is permitted be-
fore assuming the end of the activity segment. To ensure its
defined operation for appliances with very short operational
periods, we have lower-bounded %4141 by an empirically
determined parameter t,,;,. Likewise, the upper limit of
tmawrdle 18 bounded by ¢4 in order to reliably detect the
end of an activity segment, even when the appliance has
been active for a very long time already. tmazrdie iS calcu-



lated according to Eq. (2).

tmin lf tactive < tmzn
tmaac]dle = tactive if tmin S tactive S tmaw (2)
tmax if tactive > tmax

For most of the analyzed appliances, we could set the inter-
activity idle time parameters to empirically determined de-
fault values, bounded at t,,i» = 300 seconds and t,,q- = 1,800
seconds. An additional manual review of all input traces and
the resulting segments has suggested that few minor adap-
tations of these bounds were necessary for certain device
types in order to ensure correct segmentation. Besides visu-
ally confirming that a successful detection of each individual
segment was possible, this manual check also ensured that
activity cycles comprising idle phases were not split into sev-
eral parts. The proper segmentation of traces is a require-
ment to correctly annotate extracted signatures by their fu-
ture consumption until the underlying appliance’s deactiva-
tion. Hence, the user-assisted segmentation approach has
been chosen because it has allowed us to manually ensure
the correct segmentation upon which all further processing
steps rely.

Similar to the removal of all shorts bursts of power consump-
tion in the previous preprocessing step, we have removed all
short segments with durations of less than 20 seconds from
the data set in order to ensure that long-term predictions
can be made. The Tracebase data are stored in chunks of
24 hours duration each, starting and ending at midnight,
and very few coherent multi-day traces were available. As a
result, we have disregarded possible segments when the first
reading in a trace file was already above Pipres. Similarly,
we have not extracted segments when an activity started
before midnight and did not terminate before the end of the
input trace. In summary, we have extracted 2,789 activity
segments from the input data, as shown in Table 1.

4.4 Signature Extraction

The next step of our data processing sequence is the extrac-
tion of signatures from the segments. Signatures are short
snippets of the time series that serve as indicators for an ap-
pliance’s subsequent power consumption for a definable pe-
riod of time (the prediction horizon). We consider both the
appliance’s prospective deactivation and fixed-length hori-
zons in this paper. To be applicable for making consumption
forecasts, signatures need to fulfill two major criteria.

1. Signatures must be unambiguous. In other words, sig-
natures that occur in multiple input traces must be lo-
cated at identical or very close temporal distance from
the end of the segment or, in case of shorter predic-
tion horizons, correctly indicate the power consump-
tion pattern for the entire duration of the chosen pre-
diction horizon.

2. Signatures should be generic, i.e., ideally they should
occur in many of the segments. Signatures that have
occurred in the training data only once disallow for
their generalization, and thus their merit cannot be
assessed.
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All extracted signatures are comprised of an event window of
length w1, in which a notable change to the power consump-
tion must occur. Currently, power consumption changes
in excess of 10% of an appliance’s power amplitude swing
(Pmaz — Pmin) are considered sufficient to initiate the cre-
ation of a new signature. However, a trade-off between the
sensitivity of our solution and the number of resulting signa-
tures can be found by adapting the threshold value to the ap-
plication requirements. We have furthermore lower-bounded
the activity detection threshold to a minimum value of 5 W
in order to eliminate errors resulting from the measurement
noise observed in the input data. While this makes the ap-
proach less suited for small loads, their contribution to a
household’s overall load is smaller and thus forecasting their
consumption can be considered to be of lower relevance.
Alternatively, the use of higher-resolution sensors in smart
plugs can be expected to mitigate this problem and thus
allow to reduce the value of the lower bound even further.

We surround the event window by two context windows of
size ws, as depicted in Fig. 2. Throughout all our evalua-
tions, we have chosen wi = 10 seconds and w2 = 5 seconds,
hence most segments are 20 seconds in duration. Signa-
tures at the beginning/end of a segment, where no context
before/after the event window exists, may however also be
shorter and have durations between 15 and 19 seconds only.
We annotate all extracted signatures by their distance to
the end of their originating activity segment as well as the
power consumption until then. Please note that the cho-
sen window sizes are based on our observation that signif-
icant power changes usually occur within ten seconds. We
consider the investigation of different window sizes and win-
dowing techniques as future work. Based on our approach, a
total number of 46,735 candidate signatures were extracted
from the input data.

4.5 Signature Quality Analysis

Before the extracted signatures can be used to reliably fore-
cast the future power demand of appliances, confirming their
unambiguous prediction capability is of utmost importance.
To this end, a signature quality analysis step is applied to all
extracted candidate signatures. It checks for the presence of
each signature in all activity segments of the same appliance
type and removes signatures that fail to fulfill the criterion.
As smart plugs are designed to be connected to a single
device at a time, it is sufficient for signatures to be unam-
biguous within their particular appliance class. Nonetheless,
we also analyze the effect on the signature repository when
signatures from all appliance types are combined in Sec. 5.2.
All signatures remaining after the quality analysis step are
subsequently added to the signature repository and used to
emit predictions for real-time input data of this appliance

type.

In order to determine whether signatures are unambiguous,
the matching locations of the signature across the segments
need to be found. We accomplish this by sliding each candi-
date signature across all segments of a particular appliance
type and calculating the distance between them based on
the root mean square deviation RMSD shown in Eq. (3).
In essence, we sum up the squared differences between a
signature’s discrete power values Psig(t) and a segment’s
power values Pseq4(t) for all time points ¢ up to the signa-



Table 2: Signature statistics when extracted to make class-wise predictions with different prediction horizons.

Appliance Signature type (60s horizon) Signature type (600s horizon) Signature type (till deactivation)
type Unique Generic  Ambiguous Unique Generic  Ambiguous Unique Generic  Ambiguous
Alarm clock 3 2 9 2 3 10 3 2 10
Coffee maker 1,762 525 15,282 1,757 479 15,418 1,757 479 15,418
Cooking stove 44 14 41 44 13 44 44 13 44
Dishwasher 508 126 145 511 116 171 508 115 173
Freezer 161 14 57 156 8 83 156 8 83
Iron 88 17 21 88 17 21 88 17 21
Lamp (halogen) 26 14 80 27 11 94 25 10 101
Microwave oven 633 79 81 633 7 85 633 7 85
Printer 173 3 45 173 3 45 173 3 45
Refrigerator 266 107 1,084 254 63 1,370 236 30 1,540
Toaster 26 1 23 26 0 27 26 0 27
Tumble dryer 247 24 29 247 23 32 247 23 32
Washing machine 4,297 156 790 4,297 156 790 4,297 156 790
Water boiler 12 15 67 12 15 67 12 15 67
Water kettle 216 12 223 215 9 229 215 9 229

ture’s length (lsig), and normalize the result by dividing it
by the signature length.

RMSD(T) = \/Ef{”i’ (Paig(t) —

lsig

Piey(T +1))?

(3)

The value of RMSD(T) is calculated for all possible sig-
nature offsets in the segment (T'= 0, ..., lseg — lsig). All
resulting offsets T" where the RMS deviation is below a defin-
able threshold level are considered as signature matches. We
have chosen a threshold of 2W because it is small enough
to avoid ambiguities, but still large enough to compensate
for measurement noise introduced by the physical sensors.
In order to determine each signature’s unambiguous nature,
we analyze for each matching offset T' whether the power
consumption prediction to the end of the prediction horizon
is sufficiently close (i.e., within 10% of the actual consump-
tion) to the data annotated in the signature. If the appliance
deactivation time is being used as the prediction horizon, we
have allowed for a temporal difference between observed and
predicted appliance deactivation of up to at most 30 seconds.

The resulting numbers of signatures when performing the
signature evaluation step on the given input data are shown
in Table 2. We have tabulated data for three different pre-
diction horizons of 1 minute, 10 minutes, and the end of
the activity segment (i.e., appliance deactivation). Please
note that the signature quality assessment has been made
on a class-wise basis, i.e., signatures have only been matched
against segments of the same appliance type. Values are in-
terpreted as follows.

e Unique signatures occur exactly once across all seg-
ments. As it is hence unclear whether their predictions
can be generalized, these signatures are commonly not
added to the repository.

e (eneric signatures have occurred multiple times in the
training data, and at least 90% of their occurrences
predict the underlying device’s power consumption un-
til the prediction horizon within the tolerable bounds.
They are hence ideally suited to make power consump-
tion predictions in real-time data, and only these signa-
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tures are eventually carried over to the final signature
repository.

e Signatures in the ambiguous column have occurred
multiple times, but led to contradictory forecasts within
the specified prediction horizon, hence they are not
considered for addition to the repository either.

Firstly, the table conveys that more generic signatures ex-
ist for the shorter prediction horizon of just 60 seconds, as
compared to the other two settings. This can be explained
by referring back to Fig. 1, from which it can be visually
confirmed that readings closer to the beginning of an activ-
ity segment are much more similar than in later operation
phases. As a result, short-term predictions can be made
more easily, which the figures in the table confirm. Secondly,
it can be seen that across all appliance types, on average
only 4% of the signatures are generic, whereas around 50%
are ambiguous and 46% unique. While not a performance
indicator of our system, but rather a characteristic of the un-
derlying power consumption data, these figures help us as-
sess the system’s operability on memory-constrained sensor
nodes. In general, the results show that (with the exception
of the toaster appliance) at least one generic signature could
always be extracted.

5. EVALUATION

In this section, we evaluate to which our approach can al-
low smart plugs to emit power consumption predictions. We
start with an analysis of the class-wise prediction capabilities
before analyzing signature repositories that comprise signa-
tures for all appliance types. A discussion of our findings as
well as the observed limitations of our approach, including
an analysis of its applicability on embedded systems, con-
cludes this section.

5.1 Class-wise Prediction Model

In the first experiment, we have analyzed to which extent
the extracted signatures (cf. Table 2) are suited to predict
appliance deactivations. To this end, we have evaluated
the accuracy of the predictions emitted by the system by
means of their RMS deviation from the appliance’s actual
consumption. We have considered different prediction hori-
zons between 30 seconds to 30 minutes, as well as predicting
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Figure 4: Comparison of prediction errors for all considered appliances when using class-internal signature

repositories with generic and unabmiguous signatures.

the power consumption until the appliance’s deactivation.
The resulting prediction errors are visualized in Fig. 4 for
each of the 15 appliance types under consideration. All sub-
figures are furthermore annotated by the maximum power
draw, Pmaz, as well as the mean power consumption across
all activity segments (P) in order to put the results into
perspective.

From the results, a trend that the prediction errors signifi-
cantly depend on the type of the underlying appliance can
be observed. Relatively small errors were reported for most
devices for which (a) more training data was available and
(b) well-defined operational cycles dominate the power con-
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sumption. This is, e.g., the case for the refrigerator, the
freezer, or the water kettle. While both conditions also hold
for the dishwasher appliance, however, its prediction errors
are much larger and thus an unconditional generalization
of aforementioned observations is not possible. Still, with
the exception of the printer, all graphs indicate the excel-
lent short-term predictability of the attached loads, while
forecasts with longer horizons generally lead to increased
prediction errors.

Besides analyzing how accurate the signatures permit to pre-
dict the appliance’s future consumption, however, it is also
important to determine how many signature occurrences can
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Figure 5: Comparison between coverage of testing data segments for class-wise and combined signature

repositories.

actually be found in real-time data. For each segment in the
testing set, we have thus assessed whether it was covered by
a prediction at all, and whether the prediction was within
the tolerable bounds. The results are visualized in Fig. 5a
and show the fraction of segments for which correct predic-
tions have been made (green), for which incorrect forecasts
have been emitted (purple), and for which no predictions
have been made at all. On the one hand, the figure shows
that for many appliances correct predictions are emitted for
more than 70% of the testing traces, and only few false pos-
itive predictions are reported. On the other hand, however,
the false positive rate of the solution is significant for some
appliance types like the coffee maker. To sum up, our results
have shown that class-wise consumption forecasting does not
work perfectly across all 15 analyzed device types, but still
succeeds in making forecasts with small error for some of
them (e.g., the printer and the washing machine).

5.2 Combined Prediction Model

Next, we combine the signatures with multiple occurrences
from the previous analysis into a single model. While am-
biguities within each appliance class were eliminated in the
previous analysis, confusion may be newly introduced due
to the merging of many individual signature repositories.
Hence, a second repetition of the signature quality assess-
ment step has been applied to ensure that no ambiguities
exist in the resulting signature repository. We visualize the
impact of merging all individual signatures into a common
repository in Fig. 5b. The figure clearly shows that signifi-
cantly less correct forecasts can be made based on the com-
bined model. In fact, our systems no longer succeeds in mak-
ing more than 50% of correct predictions, while up to 90%
wrong predictions result for the washing machine and the
dishwasher now. Combining multiple signature repositories
is thus diametrically opposed to the goal of making accurate
predictions. Closer investigation of this matter resulted in
the insight that similarities between signatures from differ-
ent appliance types have led to correct predictions for more
than 90% of their occurrences. However, these signatures
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also matched the power consumption data of other appli-
ances, despite being unsuited to make correct predictions.

5.3 Observations and Discussion

The results indicate that many device classes with well de-
fined operational cycles (like refrigerators or washing ma-
chines) show a comparably large number of unambiguous
signatures when analyzed individually. This allows our ap-
proach based on time series pattern matching to emit accu-
rate predictions of their future power demand. Given the
comparably small size of the training and testing data set
(for some appliances less than 20 activity segments were
available in the data), we expect an even higher ratio of
correct forecasts in practical systems where a larger set of
historical data is available for training.

A further insight is that significantly less predictions can be
made when a combined model is being used as compared to
the case when appliance types are regarded independently
(i.e., comparing the results in Fig. 5). Instead of using a
combined model, it might thus prove beneficial to prepend
the presented system by a system that categorizes the un-
derlying appliance type first (e.g., [22]). As most house-
hold appliances remain connected to the same wall outlet
for most of their operational time, this step needs to be per-
formed once upon system installation and only needs to be
repeated when a high number of erroneous predictions are
being made.

While we have conducted all prior studies on a server com-
puter in order to analyze the full parameter space, the sys-
tem’s performance on embedded systems is crucial for its
applicability on smart plugs and smart meters. The ini-
tial configuration (i.e., the complete trace preprocessing if
historical input data and the extraction and assessment of
signatures) is only required during the system’s configura-
tion, and it can be safely assumed that it will be executed
on a server machine. Subsequent processing steps for the
real-time data, however, need to be executed on the embed-



Dishwasher® came - e =
Freezer] ® e
Microwave oven| ee

Refrigerator| e ese oo
Toaster| ®
Tumble dryer| ° o
WaShing machine o oafn e 0@® co@see e o o0 o0 o L] L] LI
Water boiler|e

Water kettle |@=

10 20 30 40 50 60 70 80 90
Time before appliance deactivation (minutes)

Figure 6: Visualization of the achievable prediction
horizon when using the resulting signatures (marker
size indicates occurrence frequency).

ded systems, where the available amount of memory limits
the number of signatures and forecasts that can be stored.
For each power reading, 16 bits are required (in order to
capture all values occurring in the data), such that each sig-
nature occupies 40 bytes of memory. Two more bytes per
second are required to store the corresponding predictions
in the node’s memory, which in turn are required in order
to emit the forecast. Assuming the case of when predic-
tions shall be emitted for 10 minutes, and 77 signatures have
been extracted (as observed in case of the microwave oven),
a memory requirement of 1.5kBytes for the signatures and
45 kBytes for the predictions is given. While these would
barely fit into the TelosB’s application memory of 48 kBytes
size [21], no space would remain for the actual application
implementation. A trade-off thus needs to be found between
the targeted prediction horizon and the number of signatures
in the repository.

In a supplementary experiment, we have quantified the max-
imum achievable prediction horizon when considering unam-
biguous and generic signatures. To this end, we have ana-
lyzed the temporal distance between a signature match and
an appliance’s deactivation. Please note that this is orthog-
onal to the previous analysis, in which we have determined
how accurate an appliance’s power demand can be detected,
because we now investigate how long in advance it can be
identified whilst ignoring its power consumption until then.
The results are shown in Fig. 6. The figure shows that the re-
sulting signature set permits the prediction of the remaining
operation cycle of the washing machine more than 90 min-
utes in advance. Moreover, it confirms that the achievable
prediction horizon for appliances with defined operational
schedules can reach tens of minutes easily. This confirms our
assumption that autonomously operating devices with pre-
defined operation cycles emit characteristic features which
can be used to estimate their remaining operation time.

As a final remark, the approach presented in this paper has
been based on device-level measurements instead of using
circuit-level data or even relying on meter-level data. We
have deliberately chosen this approach due to the availabil-
ity of a comprehensive data set which has allowed us to
extract the signatures for each device individually. The re-
sulting model can also be applied to circuit or meter level,
permitted that suitable means to extract signatures from the
aggregated load exist. For example, first order derivatives of
the signatures could be used in order to disregard the base
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load offset and apply our approach to aggregated load data.
While we believe that the repository of signatures extracted
on per-device level can be leveraged for its application on
circuit- and meter-level, the extraction of generic and un-
ambiguous signatures from aggregate data represents a more
complex task which is beyond the scope of this contribution.
Recent research results (e.g., [5,10,20]) have, however, shown
major breakthroughs in the capability of disaggregating load
data collected at a single sampling point. These approaches
are orthogonal to the prediction system presented in this
paper, and can potentially be combined in order to allow for
predictions of aggregate loads as well.

6. CONCLUSIONS

In this paper, we have analyzed to what extent the power
consumption of electrical appliances can be predicted based
on their historical consumption data. To this end, we have
designed a system to extract characteristic power signatures
from appliance-level data collected by means of smart plugs.
After having collected all signatures that allow for accurate
predictions in its repository, our system detects the presence
of these signatures in streaming real-time consumption data.
Upon a signature match, it emits a power consumption fore-
cast for the remainder of the appliance’s activity segment.
We have evaluated our system using more than 2,700 activ-
ity segments of 15 different appliance types, and have shown
that many signatures reliably indicate the device’s power de-
mand in the near future. Moreover, we have observed that
in conjunction with knowledge about the underlying device
type, large fractions of appliance deactivations can be cor-
rectly predicted. We believe that predictions of household
loads may bring a large benefit to both smart home systems
and operators of smart power grids. In combination with
approaches to predict when appliances will be activated, a
forecasting system can be implemented to match generation
and demand, and thus cater for a sustainable future.
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