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ABSTRACT

Developing region road traffic has a unique characteristic of
high heterogeneity in vehicle types. In this paper, we de-
scribe VividhaVahana1, a smartphone sensor based system
to categorize road vehicles into four predominant categories:
two-wheeler bikes, three-wheeler auto-rickshaws, four-wheeler
cars and public transport like buses. Using a variety of sen-
sor based features, our system is able to achieve above 90%
classification accuracy, evaluated over 1500+ Km of driving
data, on two urban road stretches in the Indian city of Delhi.

We also apply VividhaVahana to empirically examine four
representative transport applications, namely travel time es-
timation, driving behavior detection, traffic state classifica-
tion and road surface monitoring. We show how each of
these applications would benefit from a vehicle class spe-
cific analysis, compared to the vehicle agnostic analysis as
has been done in the past. Our work gives useful insights
on how such applications can be re-designed, to better fit
developing region traffic characteristics and requirements.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Ubiquitous and mobile computing

∗This work was done when the author was a Masters student
at Indraprastha Institute of Information Technology, New
Delhi.
1The name is a direct Hindi translation for the two key
words heterogeneous and vehicles - heterogeneous, trans-
lated as Vividha and vehicles, translated as Vahana.

.
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1. INTRODUCTION
Road traffic problems are prevalent in all parts of the

world. The issues are exacerbated in developing regions and
growing economies like India, where infrastructure growth
rate does not match the growth rate in urban population
size and number of vehicles. Traffic congestion regularly
increases exposure to pollution and fuel consumption and
causes unpredictability in travel times. Poor conditions of
road surfaces and irregular driving cause accidents.

Intelligent Transport Systems (ITS), are systems to moni-
tor traffic and road conditions, and disseminate useful infor-
mation to citizens, in an attempt to alleviate some of these
issues. Though a number of ITS solutions have been built for
lane-based traffic in developed countries [1, 2, 3, 4, 5], and in-
creasingly more for non-laned traffic in developing regions [6,
7, 8, 9, 10, 11], an important characteristic of developing
country traffic has been overlooked till date. This is the het-
erogeneity of vehicles, where two-wheeler bikes and scooters,
three-wheeler auto-rickshaws, four-wheeler cars and larger
public transport like buses, ply on the same road. Fig. 1
and Fig. 2 give a visual comparison of the lane based ho-
mogenous traffic in developed countries, vs. the non-laned
heterogeneous traffic in developing regions.

Vehicle heterogeneity is probably a combined artifact of
absence of proper public transport and high income disparity
among people in developing regions. The former motivates
people to use some form of personalized transportation, and
the latter regulates the purchasing power for the same. Thus
cheap two-wheelers and enormously expensive sports cars
ply the same road. In the absence of personal vehicles –
buses, auto-rickshaws and taxicabs are used by people with
increasing purchasing power in that order. Fig. 3 shows an
example of the high proportion of two and three-wheelers,
which is a common sight on Indian roads.

The different vehicles have very different physical and me-
chanical characteristics, and this causes them to behave dif-
ferently in similar traffic situations. Two-wheelers can ma-
neuver much more freely in congestion, compared to bigger



vehicles. Auto-rickshaws can attain much less maximum
speed on an empty road, compared to cars. Thus traf-
fic monitoring systems should consider how to incorporate
this non-uniformity, in deciding thresholds for congestion
detection or irregular driving detection. Travel time and
route prediction softwares should consider the vehicle spe-
cific characteristics, possibly giving different predictions for
different vehicle classes. The current ITS systems being ve-
hicle class agnostic, these intuitively important aspects have
not been handled so far, as we discuss in more detail in Sec-
tion. 2.

In this paper we present VividhaVahana, a system to clas-
sify different vehicle categories, based on smartphone sensor
data. We examine a wide range of sensor features and clas-
sification algorithms in this context, to classify vehicles into
four categories - a) two-wheeler bikes, b) three-wheeler auto-
rickshaws, c) cars and d) buses. Our heuristics achieve over
90% accuracy on real road data, collected over 1500+ Km
of driving, on two different road stretches, using multiple
smartphone models.

We also apply VividhaVahana to identify four representa-
tive ITS applications, that would benefit from vehicle class
specific analysis. The first is travel time estimates, where
we empirically show different vehicle categories take differ-
ent times to travel from the same source to the same desti-
nation, following the same route under the same traffic con-
ditions. This is a necessary motivation for vehicle specific
travel time maps, or route prediction softwares. The sec-
ond is driving pattern detection, where we do a micro-level
analysis of how vehicles classes behave differently in similar
traffic situations. This might motivate much more nuanced
modeling of traffic flow to build more realistic models and
predictors of traffic signal clearance cycles, or better road
designs.

A third ITS application examined is detection of traffic
states like congestion vs. free-flowing, where crowd-sourcing
different vehicle classes need the information to be assimi-
lated in a more intelligent way than uniform sampling and
averaging. Training the traffic classification thresholds on
slower vehicles like public transport, will cause the system
to have high false negatives when the test data comes from
faster moving two-wheelers. More false positives will occur
in the converse use of train and test data. Finally, we also
examine the different signatures that different vehicles gen-
erate on same road surfaces, which motivates vehicle specific
road surface monitoring applications to be designed.

The rest of the paper is organized as follows. Section 2
discusses the related work in this context, identifying impor-
tant differences between existing literature and this work.
Section 3 describes the sensor data and ground truth collec-
tion details, followed by the overall system architecture in
Section 4. The algorithmic details and evaluation of vehi-
cle classification are given in Section 5. Section 6 describes
the four representative ITS applications, that we empirically
show to depend on vehicle categories. We discuss some re-
lated issues and future work in Section 7, and finally con-
clude in Section 8.

2. RELATED WORK
ITS solutions are an active area of research, as well as

commercial product development and deployment. The four
classes of ITS applications examined in this paper, all have
several precedents in literature. The first application of

travel time estimation has been extensively examined with
GPS and cellular data [1, 2, 3]. The second application
involves micro-analysis of driving patterns and its possible
use in building traffic models. Driving behaviors have been
examined using smartphone sensors [10, 12] and traffic mod-
els to relate the fundamental transportation parameters like
density, speed and flux [13] have also been studied [11, 14,
15, 16, 17].

The third application of traffic state classification as con-
gested vs. free-flowing, has been examined by researchers [4,
6, 7, 8, 9], as well as by commercial products [18, 19]. These
have been based on different inputs either from (a) static
road-side sensors – video or images from cameras [6], RF
signals from wireless radios [7], audio signals from micro-
phone [8] or (b) from probe sensors on vehicles – GPS [4] or
smartphone sensors [9]. Finally smartphone accelerometer
based road surface monitoring has also been examined [5,
20].

However, though several solutions exist for each of the four
application classes, they are all vehicle category agnostic.
This is understandable in the subset of solutions designed
for laned homogenous traffic in developed countries as in
[1, 2, 3, 12, 4, 5]. There, the absence of this specific traffic
characteristic of vehicle heterogeneity, retains the utility of
the solutions. However, the solutions developed for non-
laned heterogeneous traffic of developing regions like [10, 11,
14, 15, 16, 6, 7, 8, 9, 20], will definitely improve by factoring
in the vehicle non-uniformity artifacts. We will empirically
show the dependency of the applications on vehicle category,
to elaborate on this in Section 6.

Vehicle classification has been done in a context differ-
ent from ITS applications, in the field of human context
monitoring, activity recognition and human mobility mod-
eling [21, 22, 23, 24]. Though we examine all the smartphone
sensor features discussed in these works during our design of
vehicle classification heuristics in Section 5, we differ from
these works in two important ways. Firstly, these works orig-
inating from developed countries, have much fewer and more
easily distinguishable vehicle categories like train, tram, bus
and metro [21], where the vehicle forms and travel zones
or tracks are quite different. Applying the feature sets to
classify vehicles that ply on the exact same road stretches,
and are yet different from each other, is a contribution of
this paper. Secondly, as the application domains of those
works were different, the link between vehicle classification
and ITS solutions, that we explore in Section 6, is missing.
We seek to bridge this gap between vehicle classification lit-
erature and ITS literature.

Finally, there is one system [25], which does vehicle clas-
sification for developing regions, and therefore handles the
same set of diverse vehicles as we do. However, this solution
uses video image processing on data from road side cameras.
Thus though vehicle classification works, the ITS applica-
tions [25] can handle, are a subset of what VividhaVahana
is capable of, as travel time estimation and driving behav-
ior micro-analysis, are only feasible with in-vehicle probe
sensing. Our smartphone based system has this important
advantage over any static sensor based solution. Secondly,
our sensors based schemes are much less computation inten-
sive than video or image processing, thereby resulting in a
simpler solution for the vehicle classification problem.

3. DATA COLLECTION



Figure 1: Lane based homogenous traffic
Figure 2: Non-laned heterogeneous

traffic
Figure 3: High proportions of bikes
(2-wheelers) and autos (3-wheelers)

We collected smartphone sensor data from two driving
stretches in the Indian city of Delhi. The first is a 30+
Km driving stretch along Ring Road, from Punjabi Bagh
to Lajpat Nagar (route shown in Fig. 4). The second is
a 10+ Km stretch inside an educational institute campus.
The first road, being one of the main arterial roads of Delhi,
provided an uncontrolled experimental environment, where
traffic situations and presence of other vehicles were natural
and realistic urban phenomena. The second stretch being
a road inside an educational campus, gave us more experi-
mental control. We will refer to these two road stretches as
city-road and campus-road henceforth.

Figure 4: The 30 Km long Ring Road route from (A)
Punjabi Bagh to (B) Lajpat Nagar

On campus-road, data was collected using the following
three vehicle types: car (Tata Indica), 2-wheeler bike (Hero
Honda CBZ extreme/ Honda Activa) and three-wheeler auto-
rickshaw (standard model driven in Delhi). Each of the three
vehicle types were driven for 10 days with 10+ km. each day,
generating 300+ Km data in all. To differentiate the vehi-
cles, while the road and traffic conditions remained same,
these vehicles were started at the same time from the same
source, and they were driven towards the same destination,
along the same route. Data was collected following the same
methodology on the city-road, from the above three vehicle
types, and additionally from buses. The four vehicle types
were driven over 10 days with 30+ km each day, generating
1200+ Km data overall. The details of the 1500+ Km of
sensor data collected overall are summarized in Table 1.

The smartphones were carried by different people in the

Road Vehicle Km per day Days Total
classes per class Distance

(Km)
Ring Road bike, auto, 30+ 10 1200+

(Punjabi Bagh car, bus
to Lajpat Nagar)

Educational bike, auto, 10+ 10 300+
campus car

Table 1: Details of driving experiments

four vehicle categories, to prevent user related bias in data
collection. Also other than the start time, source, destina-
tion and route, nothing else was specified to the smartphone
carriers. To capture their natural behavior, they were urged
to either drive or travel in public transport, as they would
have normally done in a non-experimental trip scenario.

Accelerometer, magnetometer, GPS, gyroscope, orienta-
tion, light and microphone sensors were sampled using LG
Optimus 4x, Google Nexus 4 and Samsung Galaxy Ace phones.
The phones were placed in the front pocket of the trouser in
each case. The intuitions behind why these particular sen-
sors were sampled, and what features were extracted from
each type of sensor data, are detailed in Section 5. The sen-
sors were sampled in the UI mode, with average sampling
frequencies of 18 Hz for each sensor. Higher sampling rates
could be obtained using the Game and the Fastest modes.
But we chose not to use them for reasons of saving smart-
phone battery, and as our features gave good classification
accuracies even at this reduced sampling rate. The sensors,
phone models and sampling frequencies are summarized in
Table 2. The sampled data was continuously sent to a back-
end server over a data connection, and logged in the server
for offline analysis.

Sensors Phone Sampling
models frequencies

accelerometer, LG Optimus 4x UI mode
gyroscope, Google Nexus 4 18 Hz

orientation, GPS, Samsung Galaxy Ace
magnetometer, light,

microphone

Table 2: Details of sampled sensors and phone models

Ground truth about traffic situations and road conditions
were manually noted and later verified using the Google traf-
fic data. Locations of traffic signals were noted from Google
Maps. Special cases of traffic situations resulting from one-
off events like wedding processions, political rallies and ac-
cidents were separately noted down. Though the vehicle
classification evaluation depends only on the vehicle type
ground truth, these additional ground truth information on



traffic and road conditions have been used in Section 6, to
understand how the different vehicle categories reacted to
the different traffic and road conditions.

4. VIVIDHAVAHANA ARCHITECTURE
Fig. 5 shows the envisioned architecture for VividhaVa-

hana. It resembles most existing ITS system architectures
with smartphone clients on the roads and one or more ITS
application servers residing on the cloud. The smartphones
send sensor data to the cloud (shown by solid arrow in
Fig. 5), where the ITS application servers process the indi-
vidual client data, aggregate data from multiple clients and
generate useful services and information. These outputs are
either sent back to the client devices (shown by dotted ar-
row in Fig. 5) or utilized by the metropolitan traffic control
authorities for traffic management or urban planning (not
shown in the figure).

This paper introduces a new server in the cloud, termed
as the VividhaVahana server, which also receives the same
sensor data from the client smartphones, and processes it
to generate vehicle category information. This output is fed
to the traditional ITS application server. The application
server uses this additional category information in its com-
puting, to generate more nuanced ITS information.

Figure 5: VividhaVahana envisioned architecture

The workflow inside the VividhaVahana server, is also
outlined in Fig. 5. First the sensor data is pre-processed
to clean missing or additional samples due to sampling fre-
quency quirks, which sometimes happen on android phones.
Then vehicle mobility is detected, as vehicle classification
can happen only for moving vehicles. We detect the stan-
dard deviation of acceleration magnitude, to exceed some
threshold for consecutive time windows, to detect mobility.
This is a standard method of mobile vs. stationary disam-
biguation in literature [21].

The third step in the VividhaVahana workflow is the ex-
traction of suitable features for vehicle classification, from
appropriate time windows of data. The fourth and final
step is running the vehicle classification algorithm on these
extracted features. An analysis of what features and what
algorithms give what kind of classification accuracy will be
detailed in Section 5.

The four classes of ITS applications, that have been shown
to depend on vehicle categories, are outlined for the ITS

application server in Fig. 5. These will be described in detail
in Section 6. There can be many more ITS applications
running on such ITS application servers, which may or may
not be dependent on vehicle category. The final services or
information sent back to the mobile clients, have not been
implemented in this paper, and hence that arrow has been
shown as a dotted line in Fig. 5.

5. VEHICLE CLASSIFICATION
We describe our vehicle classification system in details in

the section. We begin by giving an intuitive idea about why
we choose certain sensors to be sampled from the smart-
phones on the vehicles, reasoning about the potential of
those sensors for vehicle classification. We then present the
concrete set of features extracted from those sensor streams,
the algorithms applied on the features for vehicle classifica-
tion, and finally the evaluation to compare different features
and algorithms.

5.1 Sensor Features
Among the vehicles which ply on the same road stretches,

we choose (a) two-wheelers or bikes, (b) three-wheelers or
auto-rickshaws, (c) cars and (d) buses, as the four target
vehicle categories to disambiguate. These are the four pre-
dominant vehicle classes, that carry people on roads of de-
veloping regions.2 Due to the experimental overhead of col-
lecting adequate data for each category, we restrict ourselves
to these four broad and predominant categories. More cate-
gories or sub-categories might be explored further in future,
using the methodology described in this paper.

Having defined the set of target labels, we next explore
why these categories should be differentiable in an auto-
mated way, and what sensors might help in the disambigua-
tion task. The four vehicle categories, are visibly different in
their make and form factors. While bikes and auto-rickshaws
are smaller and have less cushioned design, cars and buses
are typically larger with much better shock-absorbing facili-
ties. Thus when these vehicles travel on a road stretch, they
might exhibit different mobility characteristics, because of
these design differences.

Fig. 8 shows the average speed along y-axis vs. time along
x-axis, for a free-flow drive by the four vehicle types, on a
smooth road. The speed is computed from the accelerometer
magnitude (

√
ax

2 + ay
2 + az

2), where ax, ay and az are the
accelerations measured in the different axes of a 3-axis ac-
celerometer. We plot speed instead of acceleration to present
a smoother curve for aid of visual comparison. As can be
seen, the bike and auto curves have much more fluctuations,
than the smoother car and the bus curves. This shows that
different amount of jerks are experienced by these vehicle
classes, because of their design differences. It is important
to note that we take the worst case of free-flow traffic and
smooth road in this example. Heavy traffic might cause
the smaller bikes and autos to maneuver more erratically or
rough roads can cause them to vibrate more, thereby en-
hancing these characteristic signatures further.

2There might be more vehicle categories other than these
four, that ply the same road stretch, like goods trucks
and non-motorized vehicles like bicycles and cycle-rickshaws.
There might also be sub-categories within each broad cate-
gory, like motorbike vs. ladies’ scooters in the two-wheeler
category or high end vs. low end cars.



Figure 6: Spectrogram of bus engine noise Figure 7: Spectrogram of auto engine noise
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Figure 8: Average speeds on a smooth road in free-flow
traffic for four vehicle categories

Secondly, to differentiate between vehicles with similar
jerk signatures, the absolute value of speed might help. Bikes
have much higher speeds than autos, and cars are much
faster than buses. This is also intuitive, as personal vehicles
like bikes and cars typically have more expensive engines
and are better maintained than public transport like buses
and autos. Also the smaller sizes of bikes, compared to au-
tos and of cars, compared to buses, might cause the smaller
vehicles to be faster. A third factor affecting speed might
be intermittent stop and go behavior to pick up and drop
passengers for public transports, while the same behavior is
absent for personal vehicles like bikes and cars. This third
factor is absent in this particular example shown in Fig. 8, as
the 15 minutes plotted belonged to free-flow driving without
stops.

Inertial sensors like accelerometer, gyroscope and orien-
tation sensors on the smartphones, might help in monitor-
ing these mobility related features. Though speed can be
measured with accelerometer, as has been done in Fig. 8,
GPS sensing will give directly measured less noisy speed es-
timates. The concrete features extracted from these four
sensors, to capture the mobility related vehicle characteris-
tics, are summarized in Table. 3.

Sensor Features
Accelerometer mean, median, min, max, linear speed,

variance, energy, FFT coefficients
Gyroscope rotational speed
Orientation orientation

GPS linear speed

Table 3: Smartphone sensors for mobility features

We also explore a second category of features for vehicle
classification, which are more dependent on individual vehi-
cle environment. These include (a) the magnetic field which

might depend on the vehicle size, (b) the ambient light which
might distinguish public transport at night from other vehi-
cle categories, as the internals of buses are typically brightly
lit and (c) the ambient noise, as different vehicles might have
very different sound signatures. Fig. 6 and Fig. 7 show the
spectrograms for bus and auto engine noises, and the fre-
quencies shown as numbers on the left are visibly different.
Table 4 summarizes these environment related features, and
the corresponding smartphone sensors which provide the rel-
evant information.3

Sensor Features
Magnetometer magnetic field
Light sensor ambient light
Microphone ambient noise

Table 4: Smartphone sensors for environmental features

It is intuitive that the environment related features will
be affected by multiple external factors. Heavy traffic would
cause magnetic field or sound from multiple surrounding ve-
hicles, to add noise to the characteristic magnetic and acous-
tic signatures of a particular vehicle. Putting the phone in
pocket would muffle noise and cut off the light sensor. Thus
the mobility related features are expected to be more robust
than environment related features, but we include the latter
in our analysis for comprehensiveness.

5.2 Classification Algorithms
We examine several standard ML classifiers for our four

way classification task. These include (a) non-linear clas-
sifiers like Decision Tree (C4.5 DT), K Nearest Neighbor
(KNN) and Hidden Markov Model (HMM) and (b) linear
classifiers like Support Vector Machine (SVM) and Naive
Bayes classifier. For the linear classifiers, we use the one-

vs-all variants, where the classifier is trained to differentiate
between one class to be detected as positive and all other
three classes to be detected as negative. Thus n classifiers
need to be trained for n categories. This has less train-
ing overhead than training n

C2 classifiers, to differentiate
each class against each of the three remaining classes, which
is necessary in the one-vs-one variants of the same algo-
rithms.

One minute of sensor data is buffered to compute the fea-
tures listed in Table 3 and Table 4. As mentioned earlier,
the sampling frequency is about 18 Hz for each sensor. Thus

3The smartphone models, used in our experiments, only had
internal temperature sensors to detect phone heating. But
recent smartphone models like the Samsung Galaxy S4 have
external temperature sensors included. So ambient temper-
ature might be added to this list of environment related fea-
tures. Buses and cars might be air-conditioned, while bikes
and autos have open structures and exhibit atmospheric
temperature, thereby showing some distinctive patterns for
classification.



18∗60 i.e. approximately 1000 samples are used to compute
each feature. These features are passed to the ML classi-
fiers, to classify the one minute window into one of the four
vehicle classes. The windows are slid by 20 seconds, so that
each minute effectively gets 3 labels. 15 such labels are ac-
cumulated over 5 minutes, and then the overall 5 minute
window is classified into one of the four vehicle categories,
according to majority voting. This simple bagging method
reduces spurious misclassification errors for each individual
one minute classification window.

Thus our minimum classification latency is 5 minutes, or
in other words, vehicles have to move for minimum 5 min-
utes for VividhaVahana to output a vehicle category label.
Typical trip times for vehicles on Indian roads exceed sev-
eral tens of minutes. So this 5 minute latency is suitable
for most use cases, though there might be some scope of
improvement in future.

5.3 Evaluation
To evaluate and compare the different features and classi-

fication algorithms, we create a dataset of 2150 window in-
stances, each with 5 minutes of continuous vehicle motion,
as labeled by our mobile vs. stationary detection heuristic.
These windows are extracted from the overall 1500+ Km.
of driving data described in Section 3, and therefore cover
different traffic situations and road conditions.

The instances comprise of 678 ground truth labels of 2-
wheelers, 715 3-wheelers, 448 cars and 314 bus instances.
4-fold cross validation is run on this dataset, using the stan-
dard ML library WEKA, for each of the algorithms and
features described above.

Metric Definition
Accuracy(Acc) #(TP + TN)/#(P +N)

Precision/
Positive predicted value(PPV) #TP/#(TP + FP )

Recall/Sensitivity(Se) #TP/#(TP + FN)
Negative predicted Value(NPV) #TN/#(TN + FN)

True Negative Rate/Specificity(Sp) #TN/#(FP + TN)

Table 5: Metrics used to evaluate vehicle classification

We use some standard metrics for evaluation, as summa-
rized in Table 5. T and N are the number of ground truth
labels for the positive class (one vehicle category) and the
negative class (the other three categories), for a particular
classification task. TP denotes the true positives, or the
number of positive instances correctly classified as positive,
TN denotes the true negatives, or the number of negative
instances correctly classified as negative. FP denotes the
number of negative instances wrongly classified as positive
and FN the converse. The overall accuracy metric values,
for the different classifiers, are given in Table 6.

Algorithms bike auto car bus
C4.5 DT 92.69 90.41 93.76 94.65

KNN 73.87 77.45 79.23 75.23
HMM 82.67 79.25 81.22 78.98
SVM 76.50 74.32 75.23 78.23

Naive Bayes 70.86 75.67 71.34 73.24

Table 6: Classification accuracy for different algorithms

As can be seen from the accuracy values, the C4.5 Decision
Tree outperforms the other linear and non-linear classifica-
tion algorithms by a large margin. The confusion matrix

for the four vehicle categories for the C4.5 DT is given in
Table 7. The high values along the diagonal of the matrix,
show the instances correctly classified by the algorithm, and
validate the high accuracy values.

Actual/ bike auto car bus
Predicted

bike 603 43 20 12
auto 43 600 23 49
car 36 26 376 5

public transport 3 22 24 265

Table 7: Confusion matrix for C4.5 DT

In many classification tasks, the positive class is more in-
teresting than the negative class. For example in case of de-
tecting an event like traffic congestion, the positive instances
of congestion are more important to be detected, than the
negative class of free-flow traffic, as some corrective action
might need to be taken for the congestion instances. Thus
evaluation of the positive instance classification with metrics
like precision (how many of the positive classifications are
correct) and recall (how many of the positive instances have
been correctly classified), are more common to consider.

Vehicle class PPV Se NPV Sp
bike 88.93 88.02 94.42 94.88
auto 83.91 86.83 93.65 98.89
car 84.87 84.87 96.07 96.07
bus 85.48 80.06 96.4 97.52

Table 8: Metric values for C4.5 DT

In our vehicle classification task, however, the positive
and negative classes are equivalent, as both represent some
vehicle category. Thus in addition to precision and recall,
we also measure similar metrics for negative instance clas-
sification, namely negative predicted value (how many of
the negative classifications are correct) and specificity (how
many of the negative instances have been correctly classi-
fied). These metrics have been summarized in Table 5 and
the metric values for the C4.5 DT are given in Table 8. As
can be seen, both positive and negative instance classifica-
tions are fairly accurate, thereby making C4.5 DT a good
choice for our vehicle classification problem.

To explore which sensors are more suitable for the ve-
hicle classification task, we run the C4.5 DT on features
extracted from each individual sensor and also some combi-
nations. Fig. 9 shows the accuracy values along y-axis and
the sensor names along x-axis. The mobility related features
from accel, gyro, orientation and GPS sensors consistently
perform better than the environment related features from
magnetometer, light sensor and microphone. This observa-
tion is in accordance with our earlier intuition, that external
factors would make the environment related features noisy.

Among the mobility related features, combining accel with
orientation gives very high accuracy. Adding GPS or gyro
to the accel-orientation combination, does not increase ac-
curacy much, as can be seen from the bar labeled “mobility-
all”. This is important if we consider the sensing related
battery drain on the participatory smartphones. As inertial
sensors like accelerometer and orientation sensor, are much
less energy consuming than GPS [26, 27], sampling GPS or
the environment related sensors might be turned off to con-
serve battery, without any visible reduction in the vehicle
classification accuracy.
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Figure 9: Accuracy with different sensor combinations

6. APPLICATIONS DEPENDENT ON VEHI-

CLE CLASS
As discussed in the previous section, VividhaVahana can

accurately detect four vehicle classes at minimum latencies
of 5 minutes, using mobility related features extracted from
accelerometer and orientation sensors on smartphones. To
understand the practical importance of such an automated
vehicle classification scheme, we next explore some well-
known ITS applications. These applications are currently
vehicle class agnostic, and we show empirically from our ex-
perimental data, why adding the vehicle category informa-
tion can make these applications more accurate and better
suited for developing region traffic.

The scope of this section is the analysis of four ITS appli-
cations, to show their dependence on vehicle category. The
re-design and actual implementation of the applications, in-
corporating vehicle category related changes, are an avenue
of future work.4

6.1 Travel time estimation
The first application that we consider is travel time esti-

mation, which is one of the most popular ITS applications
around the world. As described in Section 3, the data from
the four vehicle types in our experiments, were collected with
the vehicles starting from the same source at the same time,
and driven towards the same destination, along the same
route. Fig. 10 shows the average speeds on the y-axis vs.
time in minutes along the x-axis for one such experimental
trip, during peak hours. The curves end when each individ-
ual vehicle arrives at the destination, which is at a driving
distance of about 6 Km from the source.

As can be seen from the figure, the travel times of the
different vehicle classes vary, by upto 15 minutes between
bikes (travel time - 30 mins) and buses (travel time 45 mins).

4We envision that in future, standard ITS apps for smart-
phones, which either collect participatory data for traffic
applications from the phones, or provide traffic related in-
formation and services to the phones, would come inte-
grated with a vehicle classification software module. The
re-designed apps would use the category information to pro-
cess the participatory data in more intelligent ways, or pro-
vide more streamlined services. A person carrying the same
smartphone and traveling in different vehicles like buses, au-
tos or cars, can seamlessly use the ITS applications across
different vehicle categories, without manual intervention.
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Figure 10: Variable travel times of different vehicles

This variation is for a short driving stretch of 6 Km. Thus
longer routes would have more divergent travel times. A
travel time prediction service, which takes only the source
and the destination as inputs, and does not consider the
vehicle category, might therefore be erroneous by an order
of magnitude.

Fig. 11 shows an example where vehicles with shorter
travel times, gain over the ones with comparatively longer
travel times. The y-axis of the plot shows the distance from
a particular traffic signal. This distance gradually decreases
as the vehicles move towards the signal, and time passes in
minutes along the x-axis. As we can see, the bike is able
to reach the signal in 20 minutes, whereas the car is sta-
tionary at a distance of 40 m from the signal from the 10th

minute onwards. If the signal now turns green, the bike will
quickly attain maximum speed, being at the head of the
traffic queue, while the car will accelerate slowly with many
vehicles in front, and might get caught in another red cy-
cle. Such small gains in every traffic situation, cumulatively
create a significant travel time difference.

6.2 Driving pattern detection
The difference in travel times between vehicles, especially

in micro instances like near a traffic signal as discussed
above, motivates the analysis of driving pattern for each
vehicle type. This is to better understand how the faster
vehicles actually achieve their lower travel times. Fig. 12
shows the angle measured from the north by the smartphone
orientation sensor, for the same 20 minutes as discussed in
Fig. 11. This visually explains the erratic driving of the bike,
with sharp changes in direction, as it maneuvers making way
through bigger vehicles standing at the signal. The physical
characteristics of the bike and the non-laned driving preva-
lent in developing regions, jointly make this feasible. The
car being much larger, cannot mimic this behavior, and has
to wait patiently behind other vehicles.

Traffic signal and road design use vehicle mobility models.
Such models often make simplistic assumptions even for de-
veloping region traffic, like uniform speed for all vehicles at
a given road stretch [11]. As is evident from the above em-
pirical examples, heterogeneous vehicles have more nuanced
dynamics even in similar traffic situations, which are signifi-
cantly more complex than uniform speed for all. Incorporat-
ing such vehicle category specific information, might make
the models better capture real road scenarios.
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Figure 11: Different speed characteristics of bike and car at a
traffic signal
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Figure 12: Sharp angular changes due to erratic bike driving
in congestion

6.3 Traffic state detection
Traffic state detection for specific road stretches is another

widely used ITS application [18, 19]. Here the road network
of a city is visualized in different colors, according to the de-
gree of congestion in different road segments. For example
in [18], empty roads are color coded green, segments with
moderate and heavy traffic are color coded yellow and red
respectively, and zones of anomalous traffic events like acci-
dents are colored black. These traffic states are inferred from
participatory speed estimates, for example from GoogleMap
users and Android phone users for [18], or the Traffline app
users and some GPS enabled buses for [19].
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Figure 13: Speed anomalies among different vehicles in
characteristic traffic situations

Fig. 13 shows the importance of considering vehicle cate-
gory information in training such traffic state classification
models in developing regions, and also in classifying the traf-
fic states based on the trained models. The y-axis shows the
speeds on a particular road stretch, averaged over 10 days
of data collection, during traffic states of empty road (green
in [18]) and moderate traffic (yellow in [18]). The shaded ar-
rows show the speed similarities between bikes in moderate
traffic and cars in empty road, while the solid arrows show
the speed similarities between cars in moderate traffic and
autos and buses on empty road.

Due to variation in (a) physical properties like vehicle size,
(b) mechanical characteristics like engine quality, (c) level of

maintenance for private vs. public vehicles, (d) the driving
patterns of stop and go for passengers in public transport vs.
continuous mobility for personal vehicles, the average vehicle
speeds vary under similar traffic situations. Also, speeds for
different vehicles are similar in different traffic situations
(as shown by the arrows in Fig. 13). Thus speed samples
annotated with vehicle type information, can enhance the
train and test accuracies of the traffic state classification
models, reducing possible errors in the confusion matrix.

Figure 14: Accident image

Fig. 14 and Fig. 15 highlight another situation, where traf-
fic state detection might benefit from vehicle category infor-
mation. In normal high congestion like near a traffic sig-
nal, different vehicles have different speed characteristics, as
seen previously in Fig. 11 and Fig. 12. However, in cases of
serious or anomalous events like road accidents, almost ev-
erything comes to a standstill, to prevent exacerbating the
situation or impossibility of any movement caused by road
blocks and road rages. Fig. 15 shows how speeds for both
cars and bikes drop to zero for nearly 30 minutes, on a road
stretch following an accident (Fig. 14).

Thus disambiguating the normal high congestion (red in [18])
from serious incidents (black in [18]), and quickly detecting
the latter for appropriate action, might benefit from vehi-
cle category information. This is analogous to a situation
where a human population has significant variance in immu-
nity levels, and the seriousness of an infection is gauged by
its effect on the different immunity classes. When the most
immune show signs of succumbing, it is similar to even bikes
showing zero speeds for considerable time periods. The seri-
ousness of the traffic situation can thus be better assessed if
the speed samples are annotated with category information.
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Figure 15: Similar slow driving of different vehicles
after road accident
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Figure 16: Different acceleration signatures on a
speed-breaker

6.4 Road condition monitoring
The final application that we discuss in this context is

road condition monitoring. Similar to crowd-sourced traffic
maps discussed in the previous section, this application uses
crowd-sourced sensor data from smartphones and detects
road surface anomalies like potholes, bumps, speed-breakers
etc., based on the sensor signatures [5, 20].

Fig. 16 shows the difference in acceleration along the yaw
axis, faced by a bike and a car, while crossing the same road
bump or speed-breaker. The sensor signature is visibly dif-
ferent between the two vehicles. This can be intuitively ex-
plained by the different form factors and mechanical charac-
teristics like shock absorbers for the two vehicles. The larger
size and more cushioned design of cars give a much less pro-
nounced signature than the smaller, bare-bone bike. Thus
similar to traffic state classification models, road anomaly
detection models might also benefit from vehicle category
information, to better detect and classify road surface char-
acteristics.

7. DISCUSSION AND FUTURE WORK
ITS being an area of active research, the associated ser-

vices and applications are ever-growing in multitude. In that
respect, this paper explores only a representative subset.
There might be many more interesting applications, which
would benefit from a vehicle category specific analysis. [28]
measures fuel consumption and carbon emission of vehicles,
and if combined with vehicle type detection, this might help
in building statistical emission datasets for different vehicle
categories. Similarly, [29] which aids in automobile auto-
tuning in different traffic situations, or [30] which helps in
detecting empty parking spaces, will intuitively benefit from
vehicle type information.

The ITS applications discussed so far are such that even
a small fraction of participating vehicles can make a marked
difference in the related service. These services like travel
time estimation or road surface monitoring, can deal with
the non-deterministic sparsity of participatory sensing. But
there might be another category of services, for whom dense
data, or sparse data which is at least deterministically sparse,
is necessary. An example is road infrastructure planning as
commonly done in India. Decision to add any new trans-
portation resource like traffic signal or flyover is driven by
PCU or passenger count units, faced by the road location
under consideration. Passenger count units are vehicle de-

pendent as different vehicles can carry different number of
passengers.

However, in such cases, to get a statistical measure of what
different categories of vehicles ply the road segments in what
proportion, sparse participatory data from smartphones as
VividhaVahana provides, might be too unreliable for appro-
priate decisions. Static sensors like [25], which process the
videos of the entire road segment under consideration for ve-
hicle categorization, might be more suitable. Or appropriate
incentive mechanisms need to be studied and deployed [31],
to increase levels of participatory sensing. Such incentive
studies are especially important in the context of develop-
ing countries, where smartphone penetration itself might be
low. Thus the choice between competing sensing modes –
participatory vs. static, should be driven by the application
requirements.

The current work can also be enhanced in several system
level aspects. Automatic detection of smartphone orienta-
tion [9, 20], with respect to the direction of vehicle motion,
will be a useful addition. This will remove the necessity of
keeping the phone in a pre-determined location and orienta-
tion. Secondly, appropriate filters to remove pedestrian data
or spurious motion of the phones using activity recognition
techniques [32, 33], will increase the robustness of vehicle
classification. Thirdly, with the recent high proliferation of
wearable devices [34, 35], the scope of using wearables in-
stead of smartphones might be explored. Finally, the ITS
applications have only been analyzed to show their depen-
dency on vehicle category information. Actually incorpo-
rating the vehicle class information and providing working
systems for each application, would require significant addi-
tional engineering efforts in the future.

8. CONCLUSION
In this paper, we explore a unique characteristic of devel-

oping region traffic, in the form of high heterogeneity of vehi-
cle classes. We present VividhaVahana, a smartphone sens-
ing based system to classify vehicle categories. VividhaVa-
hana achieves above 90% accuracy for four vehicle classes
on 1500+ Km of driving data. We also analyze four repre-
sentative ITS applications to empirically show their depen-
dence on vehicle categories. This is an effort to highlight the
importance of incorporating vehicle class information in ex-
isting ITS applications, to make such services better suited
for developing countries.
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