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ABSTRACT
In the last decade, we have witnessed an unprecedented in-
crease in the adoption of mobile devices. A substantial num-
ber of these devices run on the Android operating system.
Android is an open-source operating system based on Linux,
which provides a permission-based security model that de-
mands each application to request explicit permissions (ap-
proved by the user) before it can be installed to run. How-
ever, end users cannot estimate application risk, so the user’s
decision is almost completely unrelated to the application
risk level. Moreover, due to the platform openness and the
plethora of available software, dangerous apps (even if not
necessarily malware) are now also very common for Android
devices.

In this paper we propose a new approach and a tool to
evaluate the potential risk of Android application packages
to help end user security awareness. The tool exploits both
static and dynamic analysis techniques. It examines the cor-
relations between app required permissions and the invoked
APIs, as well as the contents in the package, and subse-
quently it uses a dynamic analysis module to confirm the
suspicions proposed by static modules. The risk activities
detected by analysis modules are then mapped into finer-
grained risk categories and further evaluated using the fuzzy
logic algorithm. Fuzzy logic aims to deal with uncertainty
which arises from the nature of automatic analysis, as not
all detected activities intend to cause harm. For the sake
of both tech-uninterested and tech-savvy users, the results
contain a simple numerical value showing the risk level plus
a detailed report of detected activities and their mappings
to the risk categories. Finally, we tested our software on a
large set of real-world samples, demonstrating its efficiency
and showing a reasonable capacity to identify and evaluate
the potential risk of application packages, both the benign

and the malicious ones.
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1. INTRODUCTION
Android has become the most popular mobile operating

system, it is installed on the vast majority of smartphones
and a significant percentage of tablets. Every day, thousands
of different apps are published through the official or third-
party application repositories. As shown in practice, in this
huge number of applications, a lot of them contain security
and privacy risk [1], such as accessing the contacts, upload-
ing current location and retrieving device information.
This kind of dangerous behaviour is common in both be-

nign and malicious applications. Some are caused by de-
veloper’s misjudgement, e.g. invoking suspicious ad-ware or
recycled code. Some are caused to fulfil the requirements of
application functionality. For example, instant message ap-
plications such as Viber usually require to access to contact
list to find out who else is also using it. Moreover, as part of
authentication mechanism, it uses mobile phone number as
user identity. For this reason, in account activation process,
Viber server will send a SMS to the phone number with an
activation code. Then the app installed in mobile device ac-
cesses SMS and verifies the activation code to confirm that
the user owns the phone number. This kind of operations
on contact list and SMS is equally risky as in malware to
security-sensitive users, even if in this case there is an ac-
ceptable reason; in scenarios like this one, the boundary
between legitimate or malicious applications is blurred.
Android permission-based security model leaves to end

users the management of accessing controls to device re-
sources. But end users have almost no useful information
about the danger of their choices, since the potential risk
of an application is not evident. For this reason, we de-
signed and implemented an automated Android app anal-
yser, based on both static and dynamic analysis techniques,
able to evaluate a potential risk level of an Android app
package (apk). The analysis output consists of a detailed
app behaviour report and a simple numeric value as com-
prehensive risk estimation, that prior to apk installation can



give a risk indication for both tech-savvy and common users.
A big challenge in building fully automatic analysis sys-

tems is how to evaluate the analysis results in order to
present to end user a valid help for decision making. In fact,
an automated system can successfully deal with objective
truth but less easily with “reasonable” decisions. This phe-
nomenon is also valid in Android app analysis environment.
In all previous researches, static [2–8], dynamic [9–11] or hy-
brid [12] analysis approaches, this final decision is made by
calling for human intervention. The analysis modules will
filter out the majority of samples which do not trigger cer-
tain types of threshold, then human inspection is required
to categorise the rest samples. Although the filtering pro-
cess will significantly reduce the cost, it is still inconvenient
for a market-scale analysis. Further researches address this
point, applying complex reasoning techniques (e.g. machine
learning, data mining, ...) to allow analysers to make the
final decision. We, on the contrary, try to use fuzzy logic al-
gorithm to overcome this uncertainty limitation arises from
the nature of automatic analysis. However, we do not claim
the ability to directly detect malware, since, as a matter of
fact, applications can be low-quality, buggy and risky with-
out necessarily being malware.

This paper makes the following major contributions:

• We propose an automatic analysis approach exploit-
ing both static and dynamic analysis techniques for
Android app packages, and we map the detected ac-
tivities to finer-grained risk categories;

• We evaluate application risk level using fuzzy logic al-
gorithm, trying to overcome/mitigate the uncertainty
limitation arose from the nature of automatic analysis;

• We implement a prototype system, evaluating its effec-
tiveness by analysing real-world benign and malicious
Android apps, and we discuss the results and give an
insight on the discriminating characteristics of the re-
sults for these two sets.

The rest of the paper is organised as follows: in Sec. 2
we present the Android security model, showing the basic
mechanisms Android uses for protection, allowing readers to
understand their limitations. In Sec. 3 we describe our anal-
yser, including both static and dynamic analysis modules,
as well as fuzzy logic system used in computing final results.
After that, we present our evaluation results in Sec. 4, and
in Sec. 5 we discuss previous works on Android apps analy-
sis and compare them with our analyser. Finally, in Sec. 6,
we give a brief summary of our analyser and the results we
achieved.

2. ANDROID SECURITY MODEL
Android is based on the Linux kernel, and inherits its

security features, like the user-based permissions model used
to control app execution. A unique Linux user identifier
(UID) is assigned to every installed package; consequently,
applications will run as that user in separate processes. In
this way a kernel-level application sandbox is implemented.

Android apps are written in Java and run on a proprietary
Virtual Machine called Dalvik (DVM). Java sources are com-
piled into class files using the Java Compiler (javac), and
then converted into Dalvik bytecode (dex files) using the dx
tool. The resources (e.g., images and strings) are compiled
with the command aapt into a single file.

All the files are then packaged into an apk (Android Pack-
age) file, which is basically a zip compressed archive, using
apkbuilder. This file is then signed with jarsigner, using a
certificate generated and self-signed by the developer, which
is checked only at install time by the system.
The basic content of an apk file is the following:

• a META-INF directory, that contains developer’s cer-
tificate;

• a res directory, that contains raw resources;

• an optional assets directory, that contains application
assets;

• AndroidManifest.xml, the manifest file in binary XML
format;

• classes.dex, the source code of the application in Dalvik
Executable format;

• resources.arsc, a file containing pre-compiled resources.

The manifest file contains the essential data, which the op-
erating system needs in order to install and run the applica-
tion. Of particular interest, the list of permissions required
by the app and the used features (e.g., hardware sensors).
The permissions limit what the app can do; each permission
is identified by a unique label, for example android.permis-
sion.SEND_SMS, android.permission.INTERNET. If an ap-
plication tries to use a feature whose permission is not granted,
the system will terminate it.
At install time, the user is required to approve the per-

mission list requested by the app, as shown in Fig. 1.

Figure 1: Permissions requested by an application.

The permission model, while being intuitive for develop-
ers and users, has some flaws, and by itself is not enough
to prevent malicious or risky operations. For example, Ta-
pLogger [13] is a proof-of-concept key-logger which does not
need any permission; it uses information from motion sen-
sors of the device to deduce which keys the user has tapped.
Another possible way to circumvent Android security mech-



anism is using dynamic code loading; the code can be pre-
stored inside the apk or even downloaded from the Internet,
and may contain malicious parts which are much more dif-
ficult to detect.

3. ANDROID APPLICATION EVALUATOR
In mobile environment, risky operations can easily cause

privacy leaks or money losses for the device owner, due to
vulnerabilities in software or users tendency to allow more
permissions than needed (and developers inclination to ask
for more than needed).

To better inform users decisions, our risk analyser ap-
proaches Android app risk estimation problem exploiting
both static and dynamic detection techniques.

The more concise goal of our evaluator is to express, with
a simple numerical value, the potential damage that the ana-
lysed app can cause to device and/or user; this value is called
“risk score”. The purpose of this value is to give a quick indi-
cation to users, who can subsequently choose how to manage
the potential source of threat, e.g. carefully read the more
detailed report our tool provides.

In our context, the word “risk” is used for alerting about a
tangible danger (e.g., a privilege escalation is signaled when
a specific shell command is present, money risk when SMS
are sent or phone calls are made). Conservatively, it also
flags a potentially dangerous situation (e.g., the presence
of a generic embedded binary executable). Each situation
is mapped to a specific risk category as indicated in the
following subsections in different analysis modules.

3.1 Static Analysis
Static analysis is the process of analysing software appli-

cations without executing them. Usually the starting point
is decompiling the applications and generating a represen-
tation of the source code.

In Android, the first step is to unpackage the apk files
(e.g. with a simple unzip command). The application man-
ifest file (AndroidManifest.xml) is usually a key source of
information; it is packaged inside the apk in binary XML
format, and many tools exist to make it human readable
(e.g. AAPT, the Android Asset Packaging Tool included in
the Android SDK). Reading the manifest content, a number
of tools can point out possible insecurities. For example,
Manitree [14], among a number of others, searches for ser-
vices shared with other apps in the device without an intent
filter or a permission requirement, which would allow access-
ing from other apps; since malware often sets higher priority
values to forerun other app requests, it also looks at intents
and actions priority values searching for insecure points.

In case the application has to be used in a trusted envi-
ronment (e.g., on a device with sensitive data stored), static
analysis would require human inspections. To fully under-
stand what an application does, the main file (classes.dex )
has to be decompiled into human-readable code. Different
tools exist to dump Dalvik bytecode or to convert it to other
low-level representations (e.g., Smali [15]); the result in gen-
eral is easily understandable, unless obfuscation techniques
have been used to harden the readability. On the basis of the
analysis goal, the preferred human-readable representation
could differ. For example, an assembly-like representation,
which is often easier to re-compile but harder to read, would
be a better choice in order to modify and repackage the app.

The static analysis is implemented through several mod-

ules, which leverage extensively on the androguard APIs [16],
an effective set of tools written in Python for performing
static analysis on Android applications. We extended it
through two complementary modules, Behaviour and FileS-
can.

3.1.1 Behaviour module
Behaviour is the first static analysis module, aims to check

1) whether the permissions required by the application are
effectively used and 2) critical APIs usage to finds out po-
tential dangerous operations.
As first step, Behaviour scans the app’s manifest, retriev-

ing the permission list. Then it decompiles the app to obtain
the source code. After that, the source code is analysed to
find out what APIs are invoked and what operations the
app attempts to execute. In this way, the tool can check
potential risks, e.g. privacy violations, frauds, device abuse
and so on. In the final step, it correlates the APIs used with
the requested permissions and detect incoherencies among
them.
In order to detail the types of menace posed by dangerous

operations, we enlarged the androrisk risk taxonomy and en-
able Behaviour module to map all Android permissions [17]
to an augmented pool of risks. The source code which leads
to dangerous activities are mapped to the following risk cat-
egories:

• Root privileges escalation

• Encrypted code

• Binary code

• Internet

• Dangerous API

• Dynamic code loading

• Exploit

• Phone abuse

• SMS activities

• Money risk

• Signature and system permission

• Privacy violation

The rationale behind this mapping is to enumerate and
characterise the possible danger the user might face, and
present this result in a user meaningful way. Some of the
mappings are straightforward (e.g. the root privileges esca-
lation activity is categorised into Root privileges escalation
risk category). Some other activities are mapped into mul-
tiple risk categories; for example, the Internet activities are
categorised into both Internet and Money risk categories.
In this way, we can evaluate the app’s dangerousness not
only based on the detected activities, but on a finer-grained
level of risk categories and their violation occurrences, which
are more understandable by end users. Thanks to this more
accurate categorisation, the evaluator can compute the risk
score on a more detailed basis.

3.1.2 FileScan module
FileScan, our second static analysis module, analyses ev-

ery file stored inside the app package. It identifies the file
type using the information contained in file header, such as
magic number. In this way, FileScan module can detect dan-
gerous files, like embedded app, infected files or shell scripts
with suspicious commands.



Many malware apps attempt to conceal their purposes,
and often alter file names to use some innocuous extension
(e.g. png). For example the malware families of Droid-
Dream and GingerMaster use this trivial technique. FileS-
can, through magic number analysis, can identify the dan-
gerous files even they have been renamed. Moreover, it con-
siders the case of a renamed critical file (embedded applica-
tion or binary) as a clear sign of malicious intention.

Embedded apps are apk files stored inside the app pack-
age, that can be installed or loaded at runtime through dy-
namic code injection. Containing embedded application is
dangerous since the secondary app may contain malicious
code, and many static analysis systems are not able to de-
tect and analyse them properly. The elf binaries, whether
executables or shared libraries, can be used by the app for
a direct access to the system APIs. Shell script files are
textual files containing commands, which our module can
identify as threats; for example, they can be used to per-
form privilege escalation attacks.

Concisely, the risk categories considered and estimated by
FileScan are the followings:

• Hidden elf binary

• Hidden apk

• Hidden text

• Infected elf binary

• Infected dex code

• Input shell

• Shell install (Script with install commands)

• Shell privilege (Scripts with privilege escalation com-
mands)

• Shell other (Scripts with other critical commands)

FileScan is also able to look for URLs and phone numbers
inside textual files, which could be used by the app to com-
municate with malicious C&C (command & control) servers,
to make phone calls or send SMS messages to. URLs and
phone numbers are also searched in the string dictionary in
the application package, which is contained in the compiled
resource file (resources.arsc). The regular expression used
for URL addresses is able to identify URLs with escape char-
acters or formatted parameters, which could be manipulated
by the application to produce valid addresses. The regular
expression used for phone numbers is able to find potential
phone numbers composed by 4 or more digits, but the false
positive rate in this case is significant and manual checks
are needed. However, this shortcoming can be mitigated by
combining the analysis result of dynamic analysis module,
which outputs the phone numbers and URL addresses used
during sample’s execution.
FileScan is, to the best of our knowledge, the first tool ca-

pable to automatically analyse all the files in Android app
package and detect these kinds of menace. Although it is
not able to defeat more advanced techniques (e.g., file en-
cryption), it still achieves what is currently the best possible
result for an automated analysis of this type of menace.

3.2 Dynamic Analysis
Dynamic analysis is a run-time analysis of apps, performed

by executing the samples inside a controlled environment.
The environment should be instrumented to collect various
types of information during the execution, which can be in
a real environment or in an emulated one. Emulation is the

cheaper solution, but it suffers some limitations. For exam-
ple, the emulated environment does not connect to the real
communication network and some specific firmwares can-
not be satisfactorily emulated. The obvious advantage of
a real environment is the accuracy of the answers and the
connection to the real world, but it is much more complex
and expensive to manage in a secure way. For the sake of
reproducibility, we chose the path of emulation.
Our dynamic analysis module is developed on top ofDroid-

box [18], a well-known open-source dynamic analysis tool for
Android applications. The module enriches Droidbox in a
number of ways, from the input and output points of view.
The modified version can input the selected apps continu-
ously from a set of samples, and create a clean virtual device
image for each of them. In order to simplify the work for fur-
ther analysis, we extended the tool’s output such that all de-
tected activities and relevant information (e.g. phone num-
bers, URLs and file names used by the sample) are stored in
separated files. In this way, dynamic analysis can be totally
automatic to analyse multiple number of samples; this is,
to the best of our knowledge, very rare in dynamic analysis
systems.
Same as static analysis modules, the activities detected by

our dynamic analysis module are mapped into the following
risk categories, to provide a finer-grained basis for the fuzzy
evaluation system:

• Encrypted code

• Binary code

• Dynamic code loading

• Exploit risk

• Internet

• Money risk

• SMS activities

• Privacy violation

• Phone abuse

Our automatic dynamic analyser is very effective against
risky apps which execute dangerous operations directly after
they are installed and started by adb. If stealth techniques
are used, for example a hidden trigger, our analyser, as most
automatic systems, needs human interactions to bring the
dangerous operations. Nevertheless, the risk scores it com-
putes can offer realistic and reliable danger level estimations
from a fully automatic analysis point of view.
Another drawback of dynamic analysis consists in its time-

consuming nature. The emulator needs to start up for each
apk with a clean Android virtual device image, and then
it has to wait for the tested app to finish all its initial op-
erations. In order to obtain reasonable results, a complete
analysis of a single sample should take up to 5 minutes and
no less than 3 minutes. Therefore, for the sake of efficiency,
in many cases dynamic analysis is only performed on apks
which are classified as risky by the static analysis modules
(i.e., the static analysis risk score is situated above a thresh-
old), in order to confirm the dangerousness of the sample.

3.3 Applications Risk Evaluation
Fuzzy logic is widely used in decision making systems. As

stated by Prof. Zadeh in [19], “fuzzy logic is a precise logic
of imprecision and approximate reasoning”. It is capable to
converse, reason and make rational decisions in an environ-
ment of imprecision, uncertainty, incomplete information,



conflicting information, partiality of truth and partiality of
possibility, which is exactly the case of Android application
risk level estimation.

However, fuzzy logic is not the only option, and other
scoring algorithms can also be adopted. As a matter of
fact, we keep the analysis modules and evaluation system
separate intentionally, to facilitate further experiments with
alternative scoring algorithms.

In spite of the scoring algorithm, the risky activities de-
tected and their mappings to risk categories remain most
valuable outputs, which allow end users a fine-grained in-
spection of the application’s characteristics.

Consequently in our analyser we defined risk score as a
final output of our system, which aims to give a quick in-
dication to users about how dangerous the app may be, so
that they can give permission informed about the potential
sources of threat. It should be noted that, in our context,
the word “risk” is used for alerting about a tangible danger,
not necessarily the presence of malware.

To make the evaluator as flexible as possible, the fuzzy
logic risk scoring system is embedded alongside the three
analysis modules as indicated before, so that the modules
can be used independently (to have a quick feedback) or
together in cascade (to have a fully detailed insight).

3.3.1 Fuzzy interpretation of risk states
The input of the fuzzy logic system are derived from the

risk categories and their corresponding violation frequency
in each module. For each risk category, the dangerousness
level to end users is not equal. For instance, the risk cate-
gories associated to money and privacy are considered the
most dangerous ones as they are the biggest concerns to
end users. For each risk category, we defined four separated
states for each risk category, from the least to the most dan-
gerous estimation, they are LOW, AVERAGE, HIGH and UNAC-

CEPTABLE risk states. Linguistic logic is used since human
understandability matters to end users while it can be easily
interpreted using fuzzy logic.

Fuzzy sets assign a truth-value called probability in the
range [0,1] to each possible value of the domain. These val-
ues form a possibility distribution over a continuous or
discrete space. The violation occurrences combined with
truth-value of each risk category determine its state. If we
consider the violation occurrence as a discrete space [0,+∞)
with increment equals to one, then we can present graphi-
cally the possibility distribution of the state given the risk
category.

As an example: the risk states associated to BINARY_RISK

in Behaviour module is defined below and shown in Fig. 2.

• Definitely LOW from 0 to 6, and not LOW if higher
than 10;

• Not AVERAGE if lower than 6, AVERAGE at 10 and
not AVERAGE if higher than 15;

• Not HIGH if lower than 10, HIGH at 20 and not HIGH
if higher than 24;

• Not UNACCEPTABLE if lower than 23, and abso-
lutely UNACCEPTABLE if higher than 30.

For instance, if the violation occurrence is 7, then BI-

NARY_RISK is 75% in LOW risk state and 25% in AVERAGE

state. If scoring system need to be tuned that it gives more
weight to BINARY_RISK, the adjectives for each risk state can

Figure 2: Adjectives defined for BINARY_RISK.

be reduced hence BINARY_RISK reaches UNACCEPTABLE state
with less violation occurrence.
Selecting the boundaries for these adjectives have been

challenging. The expected outcome is the realistic risk level
of analysed samples; we needed to improve our experience
to achieve this result. The tool requires iterative tuning, so
that the most relevant risk categories (e.g. MONEY, PRIVACY)
weight more than others (e.g. INTERNET), until the final
result was meaningful for end users.
At the end of this step, each sample should have a set of

risk states for all categories.

3.3.2 Computing fuzzy risk level
To combine the states of all risk categories in scoring sys-

tem, fuzzy logic rules are required. However, before defining
these rules, the output of the rules were defined and their
adjectives were associated using singleton functions to sim-
plify the computation as following:

• NULL RISK to Singleton(0.0);

• AVERAGE RISK to Singleton(30.0);

• HIGH RISK to Singleton(70.0);

• UNACCEPTABLE RISK to Singleton(100.0).

Defining the fuzzy logic rules that associate the fuzzified
input variables (i.e. the risk state set) to the output ad-
jectives is a key domain in influencing the final result. In
the current configuration, the system is governed by more
than 30 rules aggregated in these three analysis modules,
and some of them are refined by up to 5 sub-rules. All the
rules will be evaluated, and if true they will contribute to
the final risk score.
To give a very simple example with parameters defined in

Fig. 2, if a rule states:

IF BINARY_RISK ISAVERAGE THEN output ISHIGH RISK

In the case that violation occurrence is 7, and this is the
only rule in the scoring system, the risk score will be:

Risk score = (truth level) ∗ (adjective) = 0.25 ∗ 70 = 17.5

If, the only rule in the system is changed to following:

IF BINARY_RISK IS LOW THEN output ISAVERAGE RISK

then with the same input value, the output would be

Risk score = (truth level) ∗ (adjective) = 0.75 ∗ 30 = 22.5

The last step to compute the risk score is defuzzification,
which can be performed in several different ways. In our



case, the fuzzy logic systems in all three modules use the
Centroid Method, which means to calculate the centre of
gravity for the area under the curve. Thanks to the choice
of singleton function, this computation is simple to under-
stand. The formula is the following:

COG =

∑b
x=a uA(χ)x

∑b
x=a uA(χ)

Variables a and b represent the attributes in the fuzzy
logic system, from NULL_RISK to UNACCEPTABLE_RISK. While
uA(χ) indicates the truth level for all the attributes, and
x is the adjectives for each attributes.
As an example, the final risk score with only two rules

defined before and input value equals to 7, is computed as:

Risk score =
(0.25 ∗ 70) + (0.75 ∗ 30)

0.25 + 0.75
= 40.0

Of course, there are rules with more complex conditions
in our fuzzy logic system. They combine multiple risk cate-
gories using logical operators like AND, OR and NOT, which
will highlight some specific dangerous operations treated as
heuristics. For example in dynamic analysis module, leaking
data to the Internet operation will violate PHONE_STATE_RISK
and INTERNET_RISK. Hence, if both risk categories are at
HIGH risk state, then the final risk score should be signif-
icantly increased. Similarly, for other obvious dangerous
actions, there are corresponding rules to leverage the final
score. On the contrary, if certain risk category combinations
are in LOW state, the final risk score will decrease.

For the rules with FALSE condition, they will be ignored.
Otherwise, the rule’s output will concur to the final risk
score. Hence, apps with less obvious dangerous operations
will have smaller risk scores than the ones with more obvi-
ous dangerous operations. Even though in some cases, less
risky app may have more violation occurrence in certain risk
category. So the result is not monotonic solely based on the
occurrences but leverage more on the heuristics, which gives
more accurate indications of application’s risk level.

4. EXPERIMENTAL RESULTS
To perform an extensive testing of our system, we devel-

oped an additional software module, the AppsDownloader,
which is based on the unofficial open source project named
Android Market API [20]; it can automatically retrieve free
apps from any Android repositories and also from the local
file system.

Exploiting the AppsDownloader and the workflow described
in Fig. 3, we tested our analyser against a set of 41000 free
goodware applications from Google Play (this set will be re-
ferred to as market); and a set of 1488 known malware sam-
ples from 90 distinct families, from the Android Genome
Project [21] and ContagioMiniDump [22] (this set will be
referred to as malware).

In the first place, as shown in Fig. 4, 40% of the mar-
ket apks obtained a risk score greater than 70 tested using
Behaviour module, while 88% of malware apks obtained a
risk score greater than 70. The result is in accordance with
Felt’s result [3], that one-third of apps in Google Play are
over-permissioned. For this reason, the discrimination power
of Behaviour is limited. However, risk score is only for in-
dicating risk level, thus apps exceed this threshold will be
considered risky in the case of permission abuse and calling

Figure 3: Danger level evaluator testing architecture.

Figure 4: Behaviour module results: app risk scores distri-
bution, market vs. malware.

Figure 5: Behaviour module results: average app risk value
per category, market vs. malware.

potentially dangerous APIs. From the risk score distribu-
tion, we can also see that scores of free applications are con-
centrated in the interval from 60 to 80, while scores of known
malware are in the intervals from 70 to 90. The histogram
from Fig. 5 shows the distribution of average app risk scores
for each risk category in both market and malware sets. The
distribution patterns are contrasting. Known malware has
conspicuous peaks on Dangerous API, Money and Privacy

risk categories, while market apps have a smoother distri-
bution.
Then, FileScan module tested both sets. The result is

shown in Fig. 6, 99% of the market apks has a null risk
score, while 40% of the malware apks has a risk greater
than 80. The distribution of applications on FileScan risks
categories is shown in Fig. 7, we can see that the HiddenElf,
ShellPrivilege and HiddenText are the most violated risk



Figure 6: FileScan module results: app risk scores distribu-
tion, market vs. malware.

Figure 7: FileScan module results: app percentage per vio-
lating risk category, market vs. malware.

categories by known malware. In our dataset, the samples
with peaking risk score (i.e., 100) are mostly from Ginger-

Master, which contains shell install commands inside the
package.

Figure 8: Dynamic analysis module result: app risk scores
distribution, market vs. malware.

Dynamic analysis works as a confirmation mechanism, to
prove the dangerousness of suspicious apps. The results for
dynamic analysis alone are shown in Fig. 8 and Fig. 9. 50%
of market apks obtained a risk score greater than 50, while
80% of malware apks exceed the same threshold. Shown
in Fig. 9, almost all known malware has violated the DY-

NAMIC risk, which is derived from the use of system’s na-
tive functions, such as dynamic code loading. This sug-
gests that dynamic code loading needs stricter control. And
only known malware exploits the activities related to BI-

NARY (BaseBridge samples) and SMS (HippoSMS and Fake-

Player samples) risk. Moreover, the phone numbers, URL

Figure 9: Dynamic analysis module result: app violation
percentage per risk category, market vs. malware.

addresses and the activities detected during execution are
valuable, since they indicate real behaviour of the analysed
samples after installation and initiation.
From an overall perspective, the analysis of market apks

gave an unexpected high risk values on Internet, exploit,
phone and dangerous APIs risk categories, while the mal-
ware set gave high values on others, like money, dynamic,
and privacy violation, and significant risk on archive files
(HiddenElf, ShellPrivilege and HiddenText). As far as
malware set is concerned, user privacy violation is the
most significant risk category encountered, whilst, for mar-
ket apks, the dangerous APIs risk category is the highest.
Besides risk scores, the analysis system exposes and con-

firms 288 suspect URL addresses and 5 phone numbers iden-
tified in the tested applications. We found out that the most
frequent URL addresses detected are PayPal websites which
provide payment services, and often among them we can
find collectors of the leaked information from malware. Re-
garding the misusage of SMS and phone calls, only certain
known malware tries these unauthorised communications,
since they are pretty easy to be detected by users.

Figure 10: embedded commands in market apps.

We also investigated the most common shell commands
encountered in the apps from market and malware datasets.
The results are presented in Fig. 10 and Fig. 11. Although
only a limited number of analysed apps contain FileScan
targeted activities, the results show that, practically, there
is no difference between the most recurrent commands iden-
tified in both sets.



Figure 11: embedded commands in malware apps.

A significant result of our tests is that the market apks
could not be as innocuous as users are inclined to think.
This may be an effect of a poor programming or presence
of potentially unwanted code (mainly due to adware or re-
cycled code), but the risk is there, even for apps that users
may be tempted to trust. The main critics to developers
is the permission abuse (i.e. permissions requested but not
used), the presence of recycled dangerous code and the use
of dangerous APIs, where alternatives do exist. All these
weaknesses transform apks in attractive and powerful tar-
gets for Trojans, which can exploit these over-permissioned
apks to unrestricted act on end user devices.

5. RELATED WORK
Our analyser aims to analyse a market-scale number of ap-

plications without any human interaction, and try to over-
come the uncertainty arises from the nature of automatic
analysis. Its goal is to highlight the risk level but not to
directly detect malware.

As stated in Sec. 2, Android relies on permissions to limit
the apps functionality. The principle of “least privilege” is
recommended and suggests that an application requests only
the most restrictive set of permissions for performing the
task at hand. Unfortunately, this principle is seldom re-
spected, because of either Android’s disorganised documents
on Permissions or developers’ tendencies to require more
than needed, which easily create risks for users. Thus, many
methodologies check the requested permission in search of
risks of misbehaviour. In [23], the authors use probabilistic
generative models for evaluating the potential risk of ana-
lysed applications. However, this evaluation system relies
solely on the number of permissions required by the sam-
ple and gives monotonic result. Another tool in this cat-
egory is Stowaway [3]; it identifies app permission abuses,
by mapping the permissions required in the manifest to the
invoked APIs, and detects the incoherencies between them.
In their experiments, one-third of the apps were found to
be overprivileged. A more effective approach is proposed
in [24]. The authors evaluate app risks on the basis of how
rarely permissions are required for apps in a specific cate-
gory, like navigating or games. Since Android’s permission
model fails to fully control application behaviour. Thus,
analysing solely the permissions requested can only be a
start point, but it is incomplete when evaluating the appli-

cation risks.
Except permission-based, other static analysis approaches

are also proposed. Taint analysis addresses the problem of
analysing Android apps based on their data flows. In [4],
the authors propose FLOWDROID, a novel and highly pre-
cise static taint analysis for Android apps. With the help
of Android-specific challenges like the application life-cycle
or callback methods, FLOWDROID can give more concrete
results of data leakage. CHEX [5], AndroidLeaks [6], Leak-
Miner [7] all use the same static taint analysis approach
to analyse data leakage caused by Android apps. Inter-
component communication (i.e. ICC) is also a studying
point to analyse Android apps. In [25], the authors re-
cast ICC analysis to infer the locations and substance of
all inter- and intra-app communication in an Android envi-
ronment. In this way, it can detect dangerous communica-
tions between applications and identify new types of risky
operations such as transitive privilege usage [26]. Similarly,
ComDroid [8] also attempts to identify security risk in An-
droid apps by analysing inter-application communications.
However, as in the permission-based approach, the analysis
results using previous methods can only partially cover the
surface of Android application risk analysis.
One important component in applications is advertise-

ment libraries, especially for free applications. Many devel-
opers include such libraries to obtain some remuneration for
their efforts, but few of them fully understand the risk impli-
cation or fully control the behaviour. AdRisk [27] analyses
in-app advertisement libraries, and systematically identifies
the potential risks. The results show these libraries may also
contain potential dangerous operations ranging from leaking
user’s private information to executing untrusted code. We
suspect that, it is one of the reasons that benign apps have
unexpected high risk scores.
RiskRanker [2], among others, has a broader coverage. It

exploits a proactive scheme that requires no malware spec-
imen and their signatures. It provides two orders of risk
analysis, firstly by statically analysing whether sample ex-
ploits platform-level vulnerabilities, and secondly searching
for specific behaviour patterns, which malware commonly
adopt but that is uncommon among legitimate apps. The
result shows that RiskRanker is quite efficient to detect zero-
day malware. But the detection mechanism can be easily
circumvented by informed malware developers. Our work
shares the same goal with RiskRanker, to identify the appli-
cation risk in advance but, our analyser provides a broader
coverage. Our static analyser extends this approach with
the FileScan module, which analyses all the files stored in
apks. It is able to pin point dangerous and potentially mali-
cious files, such as embedded apps or hidden commands. In
this way, by combining the analysis performed by Behaviour
and FileScan modules, our static analyser strives to cover
a larger surface and gives more concrete results of the risk
level of analysed samples. Furthermore, our dynamic analy-
sis module provides a thorough analysis of the analysed app
running in an emulated environment, showing the real be-
haviour of the suspicious samples, and possibly confirming
its potential risks.
DroidRanger [12] uses a permission-based behavioural foot-

printing and heuristics-based filtering to analyse Android
applications, and call for dynamic monitor to detect the
maliciousness. The analysis result, supported by human in-
spection, shows this system is effective for both known and



zero-day malware detection. Our analyser works in similar
approach, using the static analysis to highlight suspicious
apps, and the dynamic analysis module to confirm the dan-
gerousness. Yet, we have different purposes. DroidRanger
aims to detect malware in official and third-party markets,
with maliciousness confirmed by human experts. On the
contrary, our analyser aims to evaluate application risk en-
tirely without human inspection, while the final decision is
made by fuzzy logic scoring algorithm.

Dynamic analysis techniques follow another path. Taint-
Droid [9] exploits taint analysis on data flow in an emu-
lated environment. It is still the state of the art taint track-
ing system for Android. It taints sensitive data and tracks
them in the operating system, and gives alerts when they
leave the device at taint sinks. However, it has significant
false positive rate when tracked data contain configuration
identifiers. Moreover, the native library loader used in the
image has to be modified so that applications can only exe-
cute in user-space and with native system libraries. Droid-
Scope [10] supports virtualisation-based malware analysis,
and provides both OS-level and Java-level semantics. On
top of DroidScope, the authors develop several analysis tools
to collect behavioural information. VetDroid [11], on the
contrary, reconstructs app’s behaviour with permission use
analysis. Dynamic analysis requires a significant amount of
time, usually not less than 2 minutes for a complete run.
Moreover, the false positive and negative rates are relatively
high. Furthermore, it is hard to be automated and to detect
hidden triggered operations. Thus, the information collected
is most likely to be incomplete. Hence it is advisable to be
used as a confirmation mechanism instead of a stand-alone
evaluation tool, as what we have in our analyser.

In order to process market-scale apps, a fully automated
analyser is required, however using retrieved information to
make clever and automatic decisions is a challenging task.
In previous works, machine learning techniques have been in-
troduced to overcome this problem. In this context, MAST [28]
uses Multiple Correspondence Analysis (MCA) technique
to measure the correlation between declared indicators of
functionalities to be presented in app’s package. It needs a
large dataset (including both benign and malware samples)
as training data, then applies the correlations to the ana-
lysed samples. Similarly, in [29], the authors apply pattern
mining technique to permissions request patterns of Android
apps. They discover the correlation between applications’
permission request pattern and their belonging categories.
Furthermore, they devise low-reputation apps often deviate
from the pattern identified from high-reputation apps. Us-
ing machine learning technique to make the final decision is
promising, but it requires a huge amount of preparation to
fetch a training set with necessarily large number of applica-
tions. On the contrary, using fuzzy logic algorithm is simpler
and straightforward. Also the cost is fair; each computation
takes only around two seconds. Although parameters need
to be tuned to improve accuracy, the results can still give
acceptable indication of analysed sample’s risk level.

6. CONCLUSIONS
In this paper we presented a combined static and dynamic

analysis tool for Android application risk evaluation. Its
purpose is to effectively evaluate the risk level of an appli-
cation (be it malware or not), to inform user decision to use
it or not.

The analysis system is based on the software modules Be-
haviour and FileScan for the static analysis of the code and
archive files, and on our improved version of DroidBox for
the dynamic analysis as a confirmation mechanism.
The system can execute static and dynamic analysis sep-

arately or in cascade. This allows for flexibility in a number
of scenarios. If time is constrained, the dynamic analysis
can be performed only on the apks labelled as potentially
harmful by static analysis. If a more accurate check is re-
quired, both can be conducted to provide a complete report
for the application.
Finally, we performed a detailed analysis on a statistically

significant dataset containing more than forty thousand ap-
plications to test the efficiency of the system. The tests
highlighted the capability of our analyser to evaluate the
risk level of Android applications. Furthermore, since mal-
ware and goodware have been categorised according to a
set of risk parameters (derived from the Androguard tax-
onomy), our system gives a statistically sound insight into
present app risk characteristics. On the one hand, this can
help short period strategies planning to contrast malware
diffusion. On the other, this highlights excessive amounts of
required permissions from app developers, and is a flag to
demand more security-aware application development guide-
lines.
Future developments will include improvements in risk in-

dication reliability and understandability, experimenting our
methodology with different risk evaluation algorithms, and
presenting a customisable set of risk indicators on the basis
of the specific end-user characteristics.
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