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ABSTRACT
With the popularity of smart devices such as smartphones,
tablets, contents that traditionally be viewed on a personal
computer, can also be viewed on these smart devices. The
demand for contents thus is increasing year by year, which
makes the content providers (CPs) get high revenue from
either users’ subscription or advertisement. On the other
hand, Internet service providers (ISPs), who keep investing
in the network technology or capacity to support the huge
traffic generated by contents, do not benefit directly from
the content traffic. One choice for ISPs is to charge CPs
to share the revenue from the huge content traffic. Then
ISPs will have enough incentives to invest in network
infrastructure to improve quality of services (QoS), which
eventually benefit CPs and users. This paper presents a
novel economic model called Stackelberg-Bertrand game to
capture the interaction and competitions among ISPs, CPs
and users when ISPs charge CPs. A generic user demand
function is assumed to capture the sensitivity of demand to
prices of ISPs and CPs. The numerical results show that
the price elasticity of ISP and CP plays an important part
on the payoff of the ISP and CP.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network
Operations—Network Management

General Terms
Economics, Management

Keywords
Network neutrality, Content provider, Internet service
provider, Stackelberg-Bertrand game

1. INTRODUCTION
The Internet service providers (ISPs) keep investing in the
network technology or capacity to provide better quality of
service (QoS) for end users. However, new broadband
applications generate huge amount of traffic, which
originates from the existence of content providers (CPs),
without generating direct revenues for ISPs. Hence, ISPs
want to get additional revenues from CPs that are not
directly connected to them. One choice for ISPs is to
charge the CPs. Actually, whether ISPs can charge CPs
or not remains the centre of network neutrality 1 debate
[2][11][16].

In Japan, the Ministry of Internal Affairs and
Communictions (MIC) has published a series of white
papers related to network neutrality debate [1].
According to MIC, the pricing between ISPs and CPs can
be left to consultation among ISPs and CPs. In this
paper, non-network neutrality is assumed: the ISP can
charge CP to cover the investment cost.

Ma et al. in [9][10] proposed Shapley value methods
[12][14], which developed from cooperative game theory, to
solve the revenue sharing problem between ISPs and CPs.

1network neutrality is the principle that Internet service
providers and governments should treat all data on the
Internet equally, not discriminating or charging differentially
by user, content, site, platform, application, type of attached
equipment, and modes of communication.
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Different from [9][10], in this paper, non-cooperative nature
of ISPs and CPs is considered while ISPs and CPs compete
with each other to maximize their revenue. Hande et al.
in [6] generalized the well-known network utility
maximization (NUM) based rate allocation model [8][4] to
study the pricing of CPs under monopolistic and perfectly
competitive ISPs markets. However, the NUM model
highly depends on utility function, which can hardly be
known exactly. In NUM model, the dual gradient
mechanism developed from convex optimization theory [3]
is always proposed to converges to the equilibrium prices
when utility function is concave. In this work, generic
demand function is adopted without any concavity
assumption on the utility function. Recently, Joe-Wong et
al. in [7] studied the impact of sponsored data plan by
ISPs on users and CPs. A sponsored data plan provided
by ISPs allows CPs to determine how much they pay for
the network connectivity for network users. They shown
that sponsored data plan benefit users proportionally more
than CPs. However, CPs may choose do not use
sponsored data plan provided by ISP, then ISPs investment
cost may not be recovered by this way. Further more,
competition is also omitted in [7].

In this paper, a simplified market, which is composed of
one ISP, one CP, and large number of users is considered.
The ISP charges end users based on their usage. The CP
charges end users the subscription fee. Furthermore, the
ISP also charges the CP to cover the investment cost.
Please refer to Figure 1 for the money flow between the
ISP, the CP and end users.

A Stackelberg leader-follower game [5] is a strategic game
in which a leader player commits a strategy first and then
other followers move sequentially. In the Bertrand game
[15], different firms strategically choose prices
independently at the same time while supplying quantities
demanded at the chosen prices. Based on Stackelberg
game and Bertrand game, a novel Stackelberg-Bertrand
game is proposed to obtain the equilibrium price of ISP
and CP. At the firststage of the Stackelberg-Bertrand
game, the ISP sets the price for CP. Then in the second
stage of the game, the ISP and the CP play a Bertrand
game. We solved the equilibrium of the
Stackelberg-Bertrand game by backward induction [5].
Given the price set for CP by ISP, the Bertrand game
between ISP and CP is solved firstly. Then the ISP sets
the optimal price to charge CP through backward
induction.

The main contribution of this paper are as follows:

• A novel Stackelberg-Bertrand game is proposed to
model the noncooperative behaviour between ISP
and CP. Unique Nash equilibrium of the game is
established.

• Generic user demand function is utilized to calculate
the utility of ISP and CP.

• The effect of payment from CP to ISP is evaluated
under different user demand functions.

The rest of this paper is organized as follows. Basic modle
of ISP, CP and users are presented in Section 2. In section
3, a novel Stackelberg-Bertrand game modelling firstly,
then unique Nash equilibrium of the game is established.
Numerical results are presented in Section 4. Section 5
concludes this paper.

Figure 1: Money flow between ISP, CP and users.

2. BASIC MODEL
As the first step to understand the interaction among
players of the ISPs, the CPs and end users, a simplified
model with one ISP, one CP and large number of users is
considered. The price charged by the ISP for the CP is pt

per unit demand. The ISP charge usage-based fee ps

from end users, where ps is the non-negative price of per
unit demand. The CP charges users a non-negative price
pc per unit of content within a finite time. Though pc has
a different unit as ps, it can be mapped from the price per
content into the price per bps. The set of ps and pc is
denoted as

SISP = {ps|ps ≥ 0} (1)

and

SCP = {pc|pc ≥ 0} (2)

respectively. The users demand is a function of ps and pc.
We define the users generic demand function by D as follows:

D(ps, pc) = max{0, D0 − αps − βpc} (3)

where D0, α and β are all positive constants. The
parameter D0 reflects the total potential demand of users.
The parameters α and β denote the responsiveness of
demand to the price (note that in economics, we also call
the parameter α and β as price elasticity of demand [13]).
The meaning of Eq. (3) can be interpreted as this way:
when the prices of ISP and CP increase (or decrease), the
demand from users decreases (or increases).



Therefore, the payoff of ISP can be expressed as follows:

ΠISP = (ps + pt)D(ps, pc) (4)

The payoff of CP can be expressed as follows:

ΠCP = (pc − pt)D(ps, pc) (5)

3. STACKELBERG-BERTRAND GAME
MODELLING

We propose a novel game called Stackelberg-Bertrand
game to model the noncooperative behaviours between ISP
and CP. At the first stage of the Stackelberg-Bertrand
game, the ISP sets price pt for the CP. At the second
stage of the game, given the price pt, ISP and CP play a
Betrand game by simultaneously setting ps and pc for end
users respectively. In order to solve the equilibrium price
of the game, we adopt the method of backward induction
in which the second stage game is solved firstly and then
the first stage is solved.

The proposed Stackelberg-Bertrand game modelling is
shown in Figure 2.

Figure 2: Stackelberg-Bertrand game modeling.

Now we consider the second stage game firstly. Given the
price pt, we formulate the game between ISP and CP in the
second stage as a Bertrand (price) competition game. The
Bertrand game, Γ(Player,Strategy,Payoff), is described
as follows:

• Player: The ISP and CP are players of this game.

• Strategy: For the ISP, the strategy is the usage
price charged users; and for the CP, the strategy is
the content price charged users.

• Payoff : For both the ISP and CP, the payoffs are
given in Eq. (4) and Eq. (5), respectively.

Nash equilibrium (NE) is a profile of strategies such that
no player in the game can improve its payoff by changing
its own strategy unilaterally. In other words, each player
is doing the best response to the others. For the NE of the
above Bertrand game, we have the following definition.

Definition 1. Given specific pt∗, the NE point {ps∗, pc∗}
of game Γ can be expressed as follows:

ps∗ = arg max
ps∈SISP

ΠISP(ps, pc∗, pt∗) (6)

pc∗ = arg max
pc∈SCP

ΠCP(ps∗, pc, pt∗) (7)

In NE, neither ISP nor CP can improve its payoff by
changing its own price unilaterally. Both ISP’s payoff and
CP’s payoff are maximized at NE point.

Proposition 1. The NE point {ps∗, pc∗} of Bertrand
game Γ can be expressed as Eq. (8) and Eq. (9)

ps∗ =
D0 − (2α+ β)pt

3α
(8)

pc∗ =
D0 + (2β + α)pt

3β
(9)

Proof. To maximize ΠISP, we have the following optimal
condition,

dΠISP

dps
= 0 (10)

By solving Eq. (10), we have

ps = BRISP(pc)

=
D0 − αpt − βpc

2α

(11)

The optimal price of ISP is a function of pc given specific pt,
which is defined as function BRISP(pc). In game theory [5],
we call the function BRISP(pc) as best response function
of the player ISP.

Similarly, to maximize ΠCP by letting

dΠCP

dpc
= 0 (12)

We can get the best response function of player CP as
follows.

pc = BRCP(ps)

=
D0 + βpt − αps

2β

(13)

Combining Eq. (11) and Eq. (13), we can get the Nash
equilibrium point as the following

ps∗ =
D0 − (2α+ β)pt

3α
(14)

pc∗ =
D0 + (2β + α)pt

3β
(15)

Secondly, the ISP sets price pt to maximize his payoff.

Lemma 1. The users’ demand in the second stage
Bertrand game can be expressed as in Eq. (16)

D(ps∗, pc∗) =
D0 + (α− β)pt

3
(16)



Proof. By substituting the Eq. (8) and Eq. (9) into Eq.
(3), we can get the demand as Eq. (16) at the NE point.

Lemma 1 expresses the demand as a function of pt. By
substituting Eq. (8) and Eq. (16) into Eq. (4), we can
express the payoff of the ISP as function of pt as the following
Eq.(17),

ΠISP =
[D0 + (α− β)pt]2

9α
(17)

Similarly, by substituting Eq. (9) and Eq. (16) into Eq. (4),
we can express the payoff of the CP as a function of pt as
the following Eq.(18),

ΠCP =
[D0 + (α− β)pt]2

9β
(18)

We evaluate the effect of pt on the payoff the ISP and the
CP by numeric analysis in section 4.

4. NUMERIC ANALYSIS
Numerical results are presented in this section to show how
the price and payoff of ISP and CP evolve when the price
charged to CP by ISP changes.

We consider three kinds of demand function:

D(ps, pc) = 100− 2ps − 4pc (19)

D(ps, pc) = 100− 2ps − 3pc (20)

D(ps, pc) = 100− 4ps − 2pc (21)

The NE points of the Bertrand game are shown in Figure 3
and Figure 5 under above three kinds of demand functions.
The payoffs of ISP and CP are shown in Figure 4 and Figure
6 under above three kinds of demand functions.

We can see from Figure 3 and Figure 4 that the relative
price elasticity of ISP and CP plays an important part in
price strategy of ISP and CP. When α equals to 2 and β
equals to 4, the ISP gets much higher payoff by setting a
relative lower pt. When α equals to 4 and β equals to 2,
the ISP tends to set a much higher pt to pursue much more
payoff.

We can see from Figure 5 and Figure 6, when α equals to 2
and β equals to 4, the ISP gets much lower payoff than that
when α equals to 2 and β equals to 3. When α equals to 4
and β equals to 2, the prices ps and pc are much lower than
that when α equals to 2 and β equals to 3.

5. CONCLUSIONS
By adopting a generic user demand function, this paper
proposed a novel Stackelberg-Bertrand game to study the
noncooperative behaviour between ISP and CP, the Nash

Figure 3: NE point prices of ISP and CP.

Figure 4: Payoff of ISP and CP.

Figure 5: NE point prices of ISP and CP.

equilibrium of the Bertrand game between the ISP and CP



Figure 6: Payoff of ISP and CP.

has been established and impact of payment charged by
ISP for CP has been evaluated.

The numerical results show that the price elasticity of ISP
and CP plays an important part on the payoff of the ISP
and CP. When price elasticity of ISP is less than that of CP,
the ISP gets much higher payoff by setting a relative lower
price for CP. When price elasticity of ISP is higher than
that of CP, the ISP tends to set a much higher price for CP
to pursue much more payoff.

This paper only considered one ISP, one CP and many
users. The case that many ISPs and many CPs should be
considered in the future work. In this case, there are
competitions among ISPs as well as competitions among
CPs. For CP, only the revenue from users’ subscription is
considered. But many CPs actually generate revenue
from advertisement that inserted into contents. The
model that incorporate the revenue from advertisement
should also be considered in the future work.
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