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Abstract—Indoor localization applications are expected to 

become increasingly popular on smart phones. Meanwhile, the 

development of such applications on smart phones has brought in 

a new set of potential issues (e.g., high time complexity) while 

processing large datasets. The study in this paper provides an 

enhanced density-based cluster learning algorithm for the 

autonomous indoor localization algorithm DCCLA (Density-

based Clustering Combined Localization Algorithm). In the 

enhanced algorithm, the density-based clustering process is 

optimized by “skipping unnecessary density checks” and 

“grouping similar points”. We conducted a theoretical analysis of 

the time complexity of the original and enhanced algorithm. 

More specifically, the run times of the original algorithm and the 

enhanced algorithm are compared on a PC (personal computer) 

and a smart phone, identifying the more efficient density-based 

clustering algorithm that allows the system to enable autonomous 

Wi-Fi fingerprint learning from large Wi-Fi datasets. The results 

show significant improvements of run time on both a PC and a 

smart phone. 

Keywords- Time complexity of algorithms; Run time of 

algorithms; Density-based clustering algorithm; Fingerprinting-

based indoor localization.  

I.  INTRODUCTION 

A user’s location is a powerful context for many emerging 
location-based applications. Locating users by utilizing smart 
phones has become an essential function. Among the diverse 
approaches of indoor localization, detecting a user’s location 
from the Wi-Fi radio environment is regarded as a promising 
option, one interesting approach being called Wi-Fi 
fingerprinting-based technique. The basic idea is to discover 
the Wi-Fi signal characteristics in certain locations to form the 
“fingerprints (FPs)” of these locations. The location is then 
recognized when the real-time measurement matches a 
particular fingerprint. In recent years, various fingerprinting-
based indoor localization approaches, such as UnLoc [1], 
ARIEL [2], have been developed to make use of the smart 
phones to localize themselves. 

Particularly, one of the potential indoor localization 
approaches on smart phones is called DCCLA (Density-based 
Clustering Combined Localization Algorithm) [3], which is 
proposed by ComTec, Kassel University. It is an autonomous 
indoor localization system on smart phones to learn 
fingerprints from Wi-Fi received signal strength indicators 
(RSSIs) from surrounding access points (APs) in an 
unsupervised manner. 

The algorithm automatically discovers clusters and 
generates fingerprints from the raw Wi-Fi datasets directly 
without explicit pre-deployment effect of data annotation or a 

prior assumption about the number of clusters. For the building 
of a Wi-Fi fingerprint database, DCCLA performs density-
based clustering, namely, DCCLA cluster learning algorithm 
[3] [4], to discover the “high-density” clusters. It works based 
on the assumption that the periodically collected Wi-Fi data are 
similar in a significant place (e.g., home, office), presenting a 
“high-density” distribution. Unlike the above-mentioned 
approaches [1] [2], DCCLA enables generating a complete Wi-
Fi fingerprint database on a smart phone without 
communication to a server or a PC, with the consideration of 
privacy that people are not willing to share their locations, 
especially in their private lives. 

DCCLA discovers Wi-Fi fingerprints based on density-
based clustering. However, the density-based clustering 
algorithms typically have a fundamental limitation: high time 
complexity while dealing with large-scale data [5]. This 
limitation raises an efficiency problem of building fingerprints 
for DCCLA, because the size of a database containing the raw 
Wi-Fi datasets is likely to be large. The run time of the 
algorithm increases as the input dataset size increases. Thus, it 
is necessary to check time complexity and provide an efficient 
density-based clustering algorithm for indoor localization, 
especially when it is running on a smart phone. 

In this paper, we propose an enhanced density-based cluster 
learning algorithm for DCCLA with improvements of the 
algorithm efficiency to build the fingerprint database. In the 
enhanced algorithm, the process of density-based clustering is 
optimized by “skipping unnecessary checks” and “grouping 
similar points”. 

We define evaluation terms and conduct a theoretical 
analysis of algorithm efficiency in terms of time complexity. 
To test our analysis results, we design experiments, which 
compare the algorithm run time on a PC (personal computer) 
and a smart phone. Datasets collected in a real-world scenario 
with multiple APs are used. As a result, we identify the more 
efficient density-based cluster learning algorithm that allows 
DCCLA to enable autonomous Wi-Fi fingerprint learning from 
large numbers of Wi-Fi datasets. 

This paper is organized as follows. Section II introduces the 
core idea of DCCLA and the original DCCLA cluster learning 
algorithm. Section III elaborates possible improvements for the 
enhanced density-based cluster learning algorithm, as well as 
the time complexity of the original and the enhanced algorithm. 
In Section IV, the experimental comparisons and evaluations 
are given. Finally, the conclusion is presented in Section V. 
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II. INTRODUCTION OF THE ORIGINAL ALGORITHM 

A. DCCLA 

Often, a person spends most of his time in a few specific 
places, such as “home”, “office”, “meeting room”, “café” and 
so on, which are mostly significant for him. It is observed the 
RSSIs from a Wi-Fi AP are generally similar in a place. If a 
person stays in a place for a while, his smart phone scans the 
surrounding APs to record the RSSIs periodically. Thus, the 
RSSIs from an AP present a high “density” distribution. The 
high “density” characteristic offers us the opportunity to 
discover the fingerprints in an unsupervised manner by an 
autonomic system. 

The autonomous indoor localization algorithm DCCLA is 
developed based on the “density” observation. It automatically 
learns the fingerprints of places where a person goes to, and 
recognizes them when he returns to these places. It has turned 
out DCCLA to be a promising option for indoor localization 
[6]. 

B. DCCLA Cluster Learning Algorithm [3] 

The key of automatically learning fingerprints in DCCLA 

is the cluster learning algorithm, which is a modified version 

of the density-based clustering algorithm DBSCAN [7] to suit 

the collected RSSI data type. It is used to discover the high-

density RSSI range as clusters from collected RSSIs. To make 

this paper here self-contained, we present parts of the original 

cluster learning algorithm [3] necessary to understand the 

improvements.  

Definition 1: (RSSI point) An RSSI point (Pik) is a record 

when the smart phone scans the surrounding APs. It includes 

the timestamp (tk), the MAC (Medium Access Control) 

address (MACi) of the Wi-Fi AP (APi) and the corresponding 

RSSI value (RSSIik).  

Definition 2: (neighborhood of Pik) A collection of RSSI 

points with the same MAC address as Pik within a 

neighborhood range (NR) is the neighborhood of Pik, denoted 

by N (Pik). Here, we define Pik itself belongs to N (Pik) as well. 

�	����� = 	��
 ∈ �|	0 ≤ �����
 − ������ ≤ ���	��, �,�	

∈ ℕ∗� 

The neighborhood range (NR) is one parameter, used to 

delimit the range of the neighborhood starting from the RSSI 

point (Pik). The unit of NR is dB. 

Definition 3: (neighborhood density) Neighborhood 

density of Pik is the number of RSSI points belonging to the 

neighborhood of Pik, indicated by ������. 

Two parameters are introduced to determine the criterion 

of high density. One is the neighborhood range (NR) as 

introduced. Another is the minimum number of RSSI points 

(MinPts). It is a natural number which is introduced to 

determine if ������ is high enough to create a cluster. For an 

RSSI point (Pik), the neighborhood density is high enough to 

create a cluster if the following criterion is satisfied: 

 ������ ≥ !�"�#$	��, � ∈ ℕ
∗� (1) 

Definition 4: (cluster) A cluster (%&
') is a collection of 

RSSI points within a range of high density, associated with 

()%&, which can be indicated by: 

*�
+ = 	!,*� , �����- , �����.�	�/, �, 0, 1 ∈ ℕ

∗� 

RSSIib represents the beginning and RSSIie represents the 

end RSSI value of the high-density range (e.g. *�
+ =

	00: 33: 00: 62: 66: 00, −5689,−6289�). 

The range of a cluster is not delimited by the NR of the 

RSSI point, which is used to create the cluster. After a cluster 

is created, the algorithm checks if the cluster can be extended 

by checking if the criterion of cluster-extension is satisfied. 

Definition 5: (cluster-extension) A cluster (%&
' ) can be 

extended if the two conditions are met: 

• ��
 ∈ *�
+ 

• ����
� ≥ !�"�#$ 

The neighborhood of Pim is merged into the cluster (*�
+). 

This cluster (*�
+) is extended. 

The basic idea to generate a cluster is as follows [3]. For 

each RSSI point Pik, the algorithm calculates ������. If ������ 
is lower than MinPts, the algorithm continues to check the 

next unchecked RSSI point. Otherwise, N (Pik) is either used 

to create a new cluster if Pik does not belong to any existing 

cluster, or merged to an existing cluster if Pik belongs to the 

existing cluster. The set of RSSI points not belonging to any 

cluster is defined as noise. The pseudo code of the DCCLA 

cluster learning algorithm is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 the cluster learning algorithm pseudo code [3] 

 

Input: collected RSSI points. 

Output: a set of all learned clusters {*�
+, …, *:

;
}. 

 

1) Separate the collected RSSI points into datasets, each dataset 

with a unique MAC address !,*�. 

2) Order each dataset to form a list <� with increasing RSSI 
values. 

3) Label each RSSI point (���) on each <� as unchecked 

4) for each ordered <�, do 

1) while there exist an unchecked ���, do 

1) Calculate the neighborhood density of ��� (������) 

2) if ������ is smaller than MinPts , then 

1) Label ��� as checked. 
2) continue the while loop 

3) else if ��� belongs to an existing cluster *�
+, then 

1) Merge neighborhood of ��� to *�
+. 

4) else 

1) Create a new cluster *�
=
. 

5) end if 

6) Label ��� as checked. 

2) end while 

5) end for 



III. ENHANCED ALGORITHM DESCRIPTION AND ANALYSIS 

OF ALGORITHMS 

A. Evaluation Terms 

Before presenting the possible improvements, we introduce 

related evaluation terms referring to the algorithm efficiency. 

Time complexity: The time complexity of an algorithm 

quantifies the amount of time to perform an algorithm. It is 

determined in terms of its growth-rate that indicates how fast 

the algorithm’s time requirement grows as the size of input 

grows [8]. Real world problems need to be solved as fast as 

possible and then output the desired results. A convention 

called O-notation (or “big-O-notation”) is utilized to represent 

different time complexity classes that indicated how the time 

increases with the size of an input dataset (n).  

Run time: The run time of an algorithm is the time needed 

to execute the algorithm. In the following experimental 

evaluation, we use t(n) to represent the run time of an 

algorithm, where n is the size of the input dataset. 
In order to emphasize the differences between the original 

and the enhanced algorithms, the input datasets used in the 
following algorithms are under the assumption of being 
processed by step 1), 2) and 3) in the DCCLA cluster learning 
algorithm pseudo code in Figure 1, containing lists of 
“unchecked” RSSI points with increasing RSSI values, 
separated by MAC addresses. The lists of “unchecked” RSSI 
points are regarded as the input datasets in the following time 
complexity analysis, while the outputs datasets are the learned 
clusters.  

B. Time Complexity of DCCLA Cluster Learning Algorithm 

Given a dataset with n RSSI points, the DCCLA cluster 

learning algorithm starts with the first point in the dataset and 

checks its neighborhood density. The density check is done for 

every RSSI point, starting from the beginning to the end until 

all clusters are found out. In this paper, the term DCCLA 

specially indicates the original DCCLA cluster learning 

algorithm. 

The time complexity of the DCCLA is: 

>	�? ∗ 	@�	�?,@ ∈ ℕ∗,@ ≤ ?� 

n is the size of the input dataset and m is the average size of 
the neighborhood for all RSSI points. The growth-rate of the 
clustering algorithm is (n*m) that the run time of the algorithm 
increases as a function of the size of the input dataset. For the 
worst case, the time complexity is O(n

2
) as the value of m 

equals to the value of n. 

C. Possible Improvement - Skipping Unnecessary Density 

Checks  

To improve the algorithm efficiency, one possible solution 

is to reduce the amount of RSSI points to be checked. In other 

words, it reduces the frequency of density checks. In the 

original DCCLA, for points belonging to an existing cluster, 

the algorithm performs density checks on them to determine if 

the cluster can be extended. However, not all points are 

necessary to be checked. Among these points, there should be 

some critical points, which can be used to maximally extend 

the cluster. If the algorithm figures out critical points, only 

critical points are checked to maximally extend the cluster. 

Density checks for other points do not change the cluster 

extension result. Therefore, the unnecessary density checks 

can be skipped. 

An efficient method to find the critical points in an 

existing cluster is to perform the density check in a reverse 

sequence, starting from the last point of an existing cluster.  

The algorithm with the improvement of “skipping 

unnecessary density checks” is denoted by DCCLA1. The 

flowchart of DCCLA1 is depicted in Figure 2. We consider a 

list Li with increasing RSSI values as an example input. The 

background blue color identifies the point being checked or 

skipped. P_c is used to mark the next check point, which is 

dynamically revised in the cluster learning process. The 

algorithm performs density checks starting from the last point. 

If the neighborhood density of P_c is higher than MinPts, it is 

the critical point to maximally extend the cluster. All previous 

points in the cluster are skipped. Otherwise, DCCLA1 

performs the density check in a reverse sequence, until either 

the cluster is extended, or the previous point is already 

checked. 

The time complexity of DCCLA1 is: 

>	�A ∗ 	@�	�A,@ ∈ ℕ∗,@, A ≤ ?� 

In the equation, o is the number of checked RSSI points in 
the dataset. The time complexity of DCCLA1 is o/n times of 
that of the original DCCLA, where n is the number of all RSSI 
points. From the equation we can see, the run time of DCCLA1 
depends on the number of checked RSSI points m, not on the 
number of input RSSI points n. The worst case efficiency of 
DCCLA1 is equal to that of the original DCCLA when all RSSI 
points are actually checked (o/n=1). In most cases of our 
empirical study, m is smaller than n. For the average case in 
our experimental evaluation, the value of m is in the range 
�0.5 ∗ " ≥ � ≥ 0.1 ∗ "�. 

 

Figure 2 the flowchart of the algorithm DCCLA1 



D. Possible Improvement – Grouping Similar Points 

If a user stays in a place for a while, the collected RSSI 

points from one AP are quite similar to each other.  Figure 3 

depicts the RSSI points distribution from a given AP (with 

MACi: 00:12:7f:ce:8f:a0) collected in 30 minutes in an office. 

354 RSSI points are collected with RSSI values in the range of 

[-79dB, -66dB]. Thus, we pro-process input data by grouping 

similar points. The RSSI points with the same RSSI value are 

grouped as an RSSI group. 

Definition 6: (RSSI group) An RSSI group (Gik) is a 

collection of RSSI points, which have the same MAC address 

(MACi) and RSSI value (RSSIik). The duplication degree of an 

RSSI group is the number of RSSI points in the RSSI group. 

For example, for Gik with RSSIik=-76dB in Figure 3, the 

duplication degree is 92. 

Definition 7: (neighborhood density of an RSSI group) 

The neighborhood density of Gik is the number of RSSI points 

in its neighbor groups, associated with the same MAC address 

and the neighborhood range. 

It is not hard to figure out that the neighborhood density of 

an RSSI group is the same as the neighborhood density of any 

RSSI point in the RSSI group. The calculation is more 

efficient by using the duplication degree. The algorithm with 

the improvement of “grouping similar points” is denoted by 

DCCLA2. 

The basic idea of DCCLA2 is to group the RSSI points and 

calculate the duplication degree. For each RSSI group Gik, 

DCCLA2 calculates the neighborhood density of Gik. The 

criteria of creating or extending a cluster are the same as we 

introduced in Section II. 

The run time complexity is: 

>	�
?

D
∗
@

D
E ?�	�@, ? ∈ ℕ∗,@ ≤ ?, D ≥ F� 

p is the average duplication degree. At the example above, 

354 RSSI points are distributed in 13 RSSI groups. The 

average duplication degree p is 354/13=27.23.  The frequency 

and time of density checks both reduce to 1/p of DCCLA. 

However the calculation of the duplication degree increases 

the time complex as an additional summand n, since each 

RSSI point needs to be grouped. In most cases, the run time of 

DCCLA2 is much smaller than that of DCCLA. 

The growth-rate of DCCLA2 does not only depend on the 
size of the input dataset, but also on the number of the RSSI 

groups. As we studied, the range of RSSI values from the 
Cisco APs used in our experiments is [-100dB, -45dB]. Though 
a user stays in a place longer, the increase of dataset size does 
not lead to a linear increase of time complexity for DCCLA2, 
since the duplication degree p may increase simultaneously. 

E. Enhanced Clustering Algorithm with Two Improvement 

Two possible improvements – skipping unnecessary 

density checks and grouping similar points – can be combined 

to further improve the algorithm efficiency. The algorithm 

with two improvements is denoted by DCCLA3. The time 

complexity of DCCLA3 is: 

>	�G ∗
@

D
E ?�	�G,@, ? ∈ ℕ∗, A,@ ≤ ?,D ≥ F� 

q is the number of checked RSSI groups.  Compared to the 
improvement of DCCLA2, the number of checked RSSI group 
(q) is smaller than or equal to the number of complete RSSI 
groups (n/p), which are checked in DCCLA2. For the worst 
case, the time complexity of DCCLA3 is equal to that of 
DCCLA2 when every RSSI group is checked. 

Both two possible improvements aim to improve the 
algorithm efficiency by reducing the frequency or time of 
density checks, but maintaining the clustering results. In other 
words, the improvements do not affect the localization 
accuracy.  

IV. EXPERIMENTAL EVALUATION 

In order to verify the algorithm efficiency improvement 

with respect to the run time, comparison experiments have 

been carried out. 

We selected two domains, a PC with windows 7 platform 

and a smart phone Galaxy S3 with Android (version 4.1.2) 

platform for the intended investigations. We run the 

algorithms by using real-world datasets, which are the same as 

used in the previous experimental evaluation [3] for the 

original algorithm DCCLA. The RSSI points from available 

APs in the surrounding are measured at an interval of 5 

seconds. 

The algorithms are coded in Java. Java version “1.7.0_07” 

with the allocation of Heap Size (Xmx: maximum java heap 

size = 512M) for JVM (Java Virtual Machine) is used on the 

PC. For tests on the smart phone Galaxy S3, 456MB free 

RAM (random access memory) can be used. 

A. Influence of the Dataset Size 

In this evaluation, we explore the run time of the original 

and enhanced algorithms by using datasets with increasing 

size. Based on the results in [3], NR=3 is used as one 

parameter. Another parameter MinPts is dynamically adjusted 

according to the collection time – one-third of the total scans. 

The data collection takes place at the office area of our 

department, which is located on the second floor of a three-

story office building. The RSSI points from available APs in 

the surrounding are collected at a collection interval of 5 

seconds. The data collection times in the experimental 

evaluation are decided based on our empirical study when we 

test our algorithm in practice. For test on a PC, the collection 

 

 

 

 

 

 

 

Figure 3 RSSI points distribution from one AP in an office 



times of datasets increase from 10 minutes to 10 hours (under 

the assumption that a user does not stay in a place longer than 

10 hours). The dataset size increases from around 0.1*10
4
 to 

7*10
4
. Figure 4 presents the run time (t(n): y-axis) on a PC for 

different dataset size (n: x-axis). The unit of the run time is 

microsecond (10
-6

 second). Different colors represent different 

trial results respectively using DCCLA, DCCLA1, DCCLA2, 

and DCCLA3. The tests are repeated on a smart phone by 

increasing the collection time from 10 minutes to 1 hour, 

which are the optimal collection times to obtain high 

localization accuracy by smart phones in our empirical study. 

The size of the datasets increases from 1000 to 7000. The 

results are shown in Figure 5.  

The increase of dataset size results in an increasing run 

time for all four trials using DCCLA, DCCLA1, DCCLA2, and 

DCCLA3. The results on a smart phone do not stably increase, 

due to the relative limited processing capability with respect to 

a smart phone processor and potential interference caused by 

other running applications or the smart phone system. 

For the same datasets, the run times of trials using 

DCCLA2 and DCCLA3 on a PC have a significant decrease. 

The trial using DCCLA1 also shows slightly improvement on 

the time complexity. On a smart phone, the run times of trials 

using DCCLA1, DCCLA2 and DCCLA3, even not stable, also 

show improved performances.  

In the trials using DCCLA2 and DCCLA3, the run times, 

due to the grouping pre-process, typically grow more slowly 

than that of trials using DCCLA and DCCLA1, especially 

when the size of the input dataset becomes large. It indicates 

that the growth-rate of DCCLA2 and DCCLA3 does not 

depend on the size of the input dataset, but on the number of 

the RSSI groups. Consequently, the grouping pre-process is a 

necessary step for applying density-based clustering algorithm 

to learn places from Wi-Fi data.  

Comparing the performance on the PC between the trials 

using DCCLA2 and DCCLA3, the run time of DCCLA3 is 

slightly less than that of DCCLA2 when size of the input 

dataset is smaller than 3*10
4
. However, the decrease does not 

continue when the size of the input dataset becomes large. 

That is caused by the “if-else” statement when the algorithms 

determine the new check group. In DCCLA2 and DCCLA, 

they always perform density check on the next group or point. 

In DCCLA3 and DCCLA1, the set of the next check group or 

point depends on if the critical group or point is figured out, 

being judged by an “if-else” statement. The “if-else” statement 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 the run time on a PC for different dataset size 
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Figure 5 the run time on a smart phone for different dataset size 
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Figure 7 the run time on a PC for different parameters 
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Figure 6 the run time on a smart phone for different parameters 
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in a recursive cluster learning loop does not affect the time 

complexity, but slightly affects the actual run time. 

B. Influence of the Parameters 

In the experiments above, the tests are performed with a 

combination of parameters (NR=3, Dynamic MinPts) for the 

cluster learning process. We investigated the influence of the 

parameters when a fixed dataset size (n=3149) is used. The 

parameters to be investigated are: neighborhood range (NR) 

and the minimum number of RSSI points (MinPts). In this 

evaluation, the values of NR and MinPts are changed in each 

repetition of the cluster learning process. Selected NR values 

are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10 dB]. Selected MinPts values 

range from 10 to 240 with an increment of 10.  
By changing the parameters of the cluster learning 

algorithm, the run times, shown in Figure 7 and Figure 6, are 
not affected, except for some unreasonable combination of two 
parameters (e.g., extremely small MinPts and large NR). The 
unreasonable combination of two parameters would not be 
considered in the real-world scenarios. As we studied, the 
density-based clustering results are usually sensitive to the 
choice of two parameters. However, the evaluation turns out 
that the run time is not sensitive to the alternation of two 
parameters when the density-based clustering is applied in the 
place learning system. 

C. Discussion 

Observed from above evaluations, DCCLA1, DCCLA2 and 
DCCLA3 are able to provide a decrease of the run time on both 
a PC and a smart phone. DCCLA2 and DCCLA3 are seen to 
show a significant improvement on algorithm efficiency as 
maintaining the clustering results. On a PC, the run time of 
trials using DCCLA2 and DCCLA3 is at least 2 to 4 orders of 
magnitude faster than that of the original DCCLA when the 
collection time of an input dataset is between 10 minutes to 10 
hours. The decrease of run time becomes more obvious as the 
size of an input dataset becomes larger. On a smart phone, the 
run time of trials using DCCLA2 and DCCLA3 is about 2 
orders of magnitude faster than that of the original algorithm 
DCCLA when the collection time of an input dataset is 
between 10 minutes to 1 hour. For example, when the 
collection time is half an hour (n=3149), the run time reduces 
from 0.1 second to 10

-4
 second by using DCCLA3 instead of 

DCCLA. Similarly, on a smart phone, the run time reduces 
from around 10 seconds to 10

-2
 second. When the collection 

time is 10 hours, DCCLA3 can excute the clustering process on 
a PC in about 10 seconds. 

As we introduced in the theoretical analysis, the algorithm 
with two possible improvements presents the same localization 
accuracy as the original one. The accuracy in this experimental 
scenario was investigated in the previous works [6] [3]. When 
the input datasets were collected in half an hour in every room, 
and the collection interval was 5 seconds, adjacent rooms can 
be correctly learned and localized with accuracy between 97% 
and 100% when at least 3 APs are available. 

Based on the theoretical analysis of the time complexity 
and the experimental evaluation of the run time, we identify the 
algorithm DCCLA3 with two improvements as the enhanced 
density-based clustering algorithm for the autonomous indoor 
localization. 

V. CONCLUSION 

In this paper, we have presented an enhanced density-based 
clustering algorithm for the indoor localization algorithm 
DCCLA (Density-based Clustering Combined Localization 
Algorithm). In the enhanced algorithm, the cluster learning 
process is optimized by doing a pre-process of grouping and 
skipping unnecessary density checks. On a PC, the run time of 
the enhanced algorithm is 2 to 4 orders of magnitude faster 
than that of the original algorithm in our experimental 
evaluation. On a smart phone, the run time is about 2 orders of 
magnitude faster than that of the original algorithm. As a result, 
the enhanced density-based clustering algorithm is an optimal 
clustering algorithm as it presents significantly improved 
efficiency performance on both PC and smart phone platforms. 
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