
An Enhanced Density-based Clustering Algorithm for

the Autonomous Indoor Localization
Yaqian Xu, Rico Kusber, and Klaus David

Chair for Communication Technology, University of Kassel

Wilhelmshöher Allee 73, Kassel 34119, Germany

Email: comtec@uni-kassel.de

Abstract—Indoor localization applications are expected to

become increasingly popular on smart phones. Meanwhile, the

development of such applications on smart phones has brought in

a new set of potential issues (e.g., high time complexity) while

processing large datasets. The study in this paper provides an

enhanced density-based cluster learning algorithm for the

autonomous indoor localization algorithm DCCLA (Density-

based Clustering Combined Localization Algorithm). In the

enhanced algorithm, the density-based clustering process is

optimized by “skipping unnecessary density checks” and

“grouping similar points”. We conducted a theoretical analysis of

the time complexity of the original and enhanced algorithm.

More specifically, the run times of the original algorithm and the

enhanced algorithm are compared on a PC (personal computer)

and a smart phone, identifying the more efficient density-based

clustering algorithm that allows the system to enable autonomous

Wi-Fi fingerprint learning from large Wi-Fi datasets. The results

show significant improvements of run time on both a PC and a

smart phone.

Keywords- Time complexity of algorithms; Run time of

algorithms; Density-based clustering algorithm; Fingerprinting-

based indoor localization.

I. INTRODUCTION

A user’s location is a powerful context for many emerging
location-based applications. Locating users by utilizing smart
phones has become an essential function. Among the diverse
approaches of indoor localization, detecting a user’s location
from the Wi-Fi radio environment is regarded as a promising
option, one interesting approach being called Wi-Fi
fingerprinting-based technique. The basic idea is to discover
the Wi-Fi signal characteristics in certain locations to form the
“fingerprints (FPs)” of these locations. The location is then
recognized when the real-time measurement matches a
particular fingerprint. In recent years, various fingerprinting-
based indoor localization approaches, such as UnLoc [1],
ARIEL [2], have been developed to make use of the smart
phones to localize themselves.

Particularly, one of the potential indoor localization
approaches on smart phones is called DCCLA (Density-based
Clustering Combined Localization Algorithm) [3], which is
proposed by ComTec, Kassel University. It is an autonomous
indoor localization system on smart phones to learn
fingerprints from Wi-Fi received signal strength indicators
(RSSIs) from surrounding access points (APs) in an
unsupervised manner.

The algorithm automatically discovers clusters and
generates fingerprints from the raw Wi-Fi datasets directly
without explicit pre-deployment effect of data annotation or a

prior assumption about the number of clusters. For the building
of a Wi-Fi fingerprint database, DCCLA performs density-
based clustering, namely, DCCLA cluster learning algorithm
[3] [4], to discover the “high-density” clusters. It works based
on the assumption that the periodically collected Wi-Fi data are
similar in a significant place (e.g., home, office), presenting a
“high-density” distribution. Unlike the above-mentioned
approaches [1] [2], DCCLA enables generating a complete Wi-
Fi fingerprint database on a smart phone without
communication to a server or a PC, with the consideration of
privacy that people are not willing to share their locations,
especially in their private lives.

DCCLA discovers Wi-Fi fingerprints based on density-
based clustering. However, the density-based clustering
algorithms typically have a fundamental limitation: high time
complexity while dealing with large-scale data [5]. This
limitation raises an efficiency problem of building fingerprints
for DCCLA, because the size of a database containing the raw
Wi-Fi datasets is likely to be large. The run time of the
algorithm increases as the input dataset size increases. Thus, it
is necessary to check time complexity and provide an efficient
density-based clustering algorithm for indoor localization,
especially when it is running on a smart phone.

In this paper, we propose an enhanced density-based cluster
learning algorithm for DCCLA with improvements of the
algorithm efficiency to build the fingerprint database. In the
enhanced algorithm, the process of density-based clustering is
optimized by “skipping unnecessary checks” and “grouping
similar points”.

We define evaluation terms and conduct a theoretical
analysis of algorithm efficiency in terms of time complexity.
To test our analysis results, we design experiments, which
compare the algorithm run time on a PC (personal computer)
and a smart phone. Datasets collected in a real-world scenario
with multiple APs are used. As a result, we identify the more
efficient density-based cluster learning algorithm that allows
DCCLA to enable autonomous Wi-Fi fingerprint learning from
large numbers of Wi-Fi datasets.

This paper is organized as follows. Section II introduces the
core idea of DCCLA and the original DCCLA cluster learning
algorithm. Section III elaborates possible improvements for the
enhanced density-based cluster learning algorithm, as well as
the time complexity of the original and the enhanced algorithm.
In Section IV, the experimental comparisons and evaluations
are given. Finally, the conclusion is presented in Section V.

MOBILWARE 2013, November 11-12, Bologna, Italy
Copyright © 2014 EAI
DOI 10.4108/icst.mobilware.2013.254284

II. INTRODUCTION OF THE ORIGINAL ALGORITHM

A. DCCLA

Often, a person spends most of his time in a few specific
places, such as “home”, “office”, “meeting room”, “café” and
so on, which are mostly significant for him. It is observed the
RSSIs from a Wi-Fi AP are generally similar in a place. If a
person stays in a place for a while, his smart phone scans the
surrounding APs to record the RSSIs periodically. Thus, the
RSSIs from an AP present a high “density” distribution. The
high “density” characteristic offers us the opportunity to
discover the fingerprints in an unsupervised manner by an
autonomic system.

The autonomous indoor localization algorithm DCCLA is
developed based on the “density” observation. It automatically
learns the fingerprints of places where a person goes to, and
recognizes them when he returns to these places. It has turned
out DCCLA to be a promising option for indoor localization
[6].

B. DCCLA Cluster Learning Algorithm [3]

The key of automatically learning fingerprints in DCCLA

is the cluster learning algorithm, which is a modified version

of the density-based clustering algorithm DBSCAN [7] to suit

the collected RSSI data type. It is used to discover the high-

density RSSI range as clusters from collected RSSIs. To make

this paper here self-contained, we present parts of the original

cluster learning algorithm [3] necessary to understand the

improvements.

Definition 1: (RSSI point) An RSSI point (Pik) is a record

when the smart phone scans the surrounding APs. It includes

the timestamp (tk), the MAC (Medium Access Control)

address (MACi) of the Wi-Fi AP (APi) and the corresponding

RSSI value (RSSIik).

Definition 2: (neighborhood of Pik) A collection of RSSI

points with the same MAC address as Pik within a

neighborhood range (NR) is the neighborhood of Pik, denoted

by N (Pik). Here, we define Pik itself belongs to N (Pik) as well.

�	����� = 	��
 ∈ �|	0 ≤ �����
 − ������ ≤ ���	��, �,�	

∈ ℕ∗�

The neighborhood range (NR) is one parameter, used to

delimit the range of the neighborhood starting from the RSSI

point (Pik). The unit of NR is dB.

Definition 3: (neighborhood density) Neighborhood

density of Pik is the number of RSSI points belonging to the

neighborhood of Pik, indicated by ������.

Two parameters are introduced to determine the criterion

of high density. One is the neighborhood range (NR) as

introduced. Another is the minimum number of RSSI points

(MinPts). It is a natural number which is introduced to

determine if ������ is high enough to create a cluster. For an

RSSI point (Pik), the neighborhood density is high enough to

create a cluster if the following criterion is satisfied:

 ������ ≥ !�"�#$	��, � ∈ ℕ
∗� (1)

Definition 4: (cluster) A cluster (%&
') is a collection of

RSSI points within a range of high density, associated with

()%&, which can be indicated by:

*�
+ = 	!,*� , �����- , �����.�	�/, �, 0, 1 ∈ ℕ

∗�

RSSIib represents the beginning and RSSIie represents the

end RSSI value of the high-density range (e.g. *�
+ =

	00: 33: 00: 62: 66: 00, −5689,−6289�).

The range of a cluster is not delimited by the NR of the

RSSI point, which is used to create the cluster. After a cluster

is created, the algorithm checks if the cluster can be extended

by checking if the criterion of cluster-extension is satisfied.

Definition 5: (cluster-extension) A cluster (%&
') can be

extended if the two conditions are met:

• ��
 ∈ *�
+

• ����
� ≥ !�"�#$

The neighborhood of Pim is merged into the cluster (*�
+).

This cluster (*�
+) is extended.

The basic idea to generate a cluster is as follows [3]. For

each RSSI point Pik, the algorithm calculates ������. If ������
is lower than MinPts, the algorithm continues to check the

next unchecked RSSI point. Otherwise, N (Pik) is either used

to create a new cluster if Pik does not belong to any existing

cluster, or merged to an existing cluster if Pik belongs to the

existing cluster. The set of RSSI points not belonging to any

cluster is defined as noise. The pseudo code of the DCCLA

cluster learning algorithm is shown in Figure 1.

Figure 1 the cluster learning algorithm pseudo code [3]

Input: collected RSSI points.

Output: a set of all learned clusters {*�
+, …, *:

;
}.

1) Separate the collected RSSI points into datasets, each dataset

with a unique MAC address !,*�.

2) Order each dataset to form a list <� with increasing RSSI
values.

3) Label each RSSI point (���) on each <� as unchecked

4) for each ordered <�, do

1) while there exist an unchecked ���, do

1) Calculate the neighborhood density of ��� (������)

2) if ������ is smaller than MinPts , then

1) Label ��� as checked.
2) continue the while loop

3) else if ��� belongs to an existing cluster *�
+, then

1) Merge neighborhood of ��� to *�
+.

4) else

1) Create a new cluster *�
=
.

5) end if

6) Label ��� as checked.

2) end while

5) end for

III. ENHANCED ALGORITHM DESCRIPTION AND ANALYSIS

OF ALGORITHMS

A. Evaluation Terms

Before presenting the possible improvements, we introduce

related evaluation terms referring to the algorithm efficiency.

Time complexity: The time complexity of an algorithm

quantifies the amount of time to perform an algorithm. It is

determined in terms of its growth-rate that indicates how fast

the algorithm’s time requirement grows as the size of input

grows [8]. Real world problems need to be solved as fast as

possible and then output the desired results. A convention

called O-notation (or “big-O-notation”) is utilized to represent

different time complexity classes that indicated how the time

increases with the size of an input dataset (n).

Run time: The run time of an algorithm is the time needed

to execute the algorithm. In the following experimental

evaluation, we use t(n) to represent the run time of an

algorithm, where n is the size of the input dataset.
In order to emphasize the differences between the original

and the enhanced algorithms, the input datasets used in the
following algorithms are under the assumption of being
processed by step 1), 2) and 3) in the DCCLA cluster learning
algorithm pseudo code in Figure 1, containing lists of
“unchecked” RSSI points with increasing RSSI values,
separated by MAC addresses. The lists of “unchecked” RSSI
points are regarded as the input datasets in the following time
complexity analysis, while the outputs datasets are the learned
clusters.

B. Time Complexity of DCCLA Cluster Learning Algorithm

Given a dataset with n RSSI points, the DCCLA cluster

learning algorithm starts with the first point in the dataset and

checks its neighborhood density. The density check is done for

every RSSI point, starting from the beginning to the end until

all clusters are found out. In this paper, the term DCCLA

specially indicates the original DCCLA cluster learning

algorithm.

The time complexity of the DCCLA is:

>	�? ∗ 	@�	�?,@ ∈ ℕ∗,@ ≤ ?�

n is the size of the input dataset and m is the average size of
the neighborhood for all RSSI points. The growth-rate of the
clustering algorithm is (n*m) that the run time of the algorithm
increases as a function of the size of the input dataset. For the
worst case, the time complexity is O(n

2
) as the value of m

equals to the value of n.

C. Possible Improvement - Skipping Unnecessary Density

Checks

To improve the algorithm efficiency, one possible solution

is to reduce the amount of RSSI points to be checked. In other

words, it reduces the frequency of density checks. In the

original DCCLA, for points belonging to an existing cluster,

the algorithm performs density checks on them to determine if

the cluster can be extended. However, not all points are

necessary to be checked. Among these points, there should be

some critical points, which can be used to maximally extend

the cluster. If the algorithm figures out critical points, only

critical points are checked to maximally extend the cluster.

Density checks for other points do not change the cluster

extension result. Therefore, the unnecessary density checks

can be skipped.

An efficient method to find the critical points in an

existing cluster is to perform the density check in a reverse

sequence, starting from the last point of an existing cluster.

The algorithm with the improvement of “skipping

unnecessary density checks” is denoted by DCCLA1. The

flowchart of DCCLA1 is depicted in Figure 2. We consider a

list Li with increasing RSSI values as an example input. The

background blue color identifies the point being checked or

skipped. P_c is used to mark the next check point, which is

dynamically revised in the cluster learning process. The

algorithm performs density checks starting from the last point.

If the neighborhood density of P_c is higher than MinPts, it is

the critical point to maximally extend the cluster. All previous

points in the cluster are skipped. Otherwise, DCCLA1

performs the density check in a reverse sequence, until either

the cluster is extended, or the previous point is already

checked.

The time complexity of DCCLA1 is:

>	�A ∗ 	@�	�A,@ ∈ ℕ∗,@, A ≤ ?�

In the equation, o is the number of checked RSSI points in
the dataset. The time complexity of DCCLA1 is o/n times of
that of the original DCCLA, where n is the number of all RSSI
points. From the equation we can see, the run time of DCCLA1
depends on the number of checked RSSI points m, not on the
number of input RSSI points n. The worst case efficiency of
DCCLA1 is equal to that of the original DCCLA when all RSSI
points are actually checked (o/n=1). In most cases of our
empirical study, m is smaller than n. For the average case in
our experimental evaluation, the value of m is in the range
�0.5 ∗ " ≥ � ≥ 0.1 ∗ "�.

Figure 2 the flowchart of the algorithm DCCLA1

D. Possible Improvement – Grouping Similar Points

If a user stays in a place for a while, the collected RSSI

points from one AP are quite similar to each other. Figure 3

depicts the RSSI points distribution from a given AP (with

MACi: 00:12:7f:ce:8f:a0) collected in 30 minutes in an office.

354 RSSI points are collected with RSSI values in the range of

[-79dB, -66dB]. Thus, we pro-process input data by grouping

similar points. The RSSI points with the same RSSI value are

grouped as an RSSI group.

Definition 6: (RSSI group) An RSSI group (Gik) is a

collection of RSSI points, which have the same MAC address

(MACi) and RSSI value (RSSIik). The duplication degree of an

RSSI group is the number of RSSI points in the RSSI group.

For example, for Gik with RSSIik=-76dB in Figure 3, the

duplication degree is 92.

Definition 7: (neighborhood density of an RSSI group)

The neighborhood density of Gik is the number of RSSI points

in its neighbor groups, associated with the same MAC address

and the neighborhood range.

It is not hard to figure out that the neighborhood density of

an RSSI group is the same as the neighborhood density of any

RSSI point in the RSSI group. The calculation is more

efficient by using the duplication degree. The algorithm with

the improvement of “grouping similar points” is denoted by

DCCLA2.

The basic idea of DCCLA2 is to group the RSSI points and

calculate the duplication degree. For each RSSI group Gik,

DCCLA2 calculates the neighborhood density of Gik. The

criteria of creating or extending a cluster are the same as we

introduced in Section II.

The run time complexity is:

>	�
?

D
∗
@

D
E ?�	�@, ? ∈ ℕ∗,@ ≤ ?, D ≥ F�

p is the average duplication degree. At the example above,

354 RSSI points are distributed in 13 RSSI groups. The

average duplication degree p is 354/13=27.23. The frequency

and time of density checks both reduce to 1/p of DCCLA.

However the calculation of the duplication degree increases

the time complex as an additional summand n, since each

RSSI point needs to be grouped. In most cases, the run time of

DCCLA2 is much smaller than that of DCCLA.

The growth-rate of DCCLA2 does not only depend on the
size of the input dataset, but also on the number of the RSSI

groups. As we studied, the range of RSSI values from the
Cisco APs used in our experiments is [-100dB, -45dB]. Though
a user stays in a place longer, the increase of dataset size does
not lead to a linear increase of time complexity for DCCLA2,
since the duplication degree p may increase simultaneously.

E. Enhanced Clustering Algorithm with Two Improvement

Two possible improvements – skipping unnecessary

density checks and grouping similar points – can be combined

to further improve the algorithm efficiency. The algorithm

with two improvements is denoted by DCCLA3. The time

complexity of DCCLA3 is:

>	�G ∗
@

D
E ?�	�G,@, ? ∈ ℕ∗, A,@ ≤ ?,D ≥ F�

q is the number of checked RSSI groups. Compared to the
improvement of DCCLA2, the number of checked RSSI group
(q) is smaller than or equal to the number of complete RSSI
groups (n/p), which are checked in DCCLA2. For the worst
case, the time complexity of DCCLA3 is equal to that of
DCCLA2 when every RSSI group is checked.

Both two possible improvements aim to improve the
algorithm efficiency by reducing the frequency or time of
density checks, but maintaining the clustering results. In other
words, the improvements do not affect the localization
accuracy.

IV. EXPERIMENTAL EVALUATION

In order to verify the algorithm efficiency improvement

with respect to the run time, comparison experiments have

been carried out.

We selected two domains, a PC with windows 7 platform

and a smart phone Galaxy S3 with Android (version 4.1.2)

platform for the intended investigations. We run the

algorithms by using real-world datasets, which are the same as

used in the previous experimental evaluation [3] for the

original algorithm DCCLA. The RSSI points from available

APs in the surrounding are measured at an interval of 5

seconds.

The algorithms are coded in Java. Java version “1.7.0_07”

with the allocation of Heap Size (Xmx: maximum java heap

size = 512M) for JVM (Java Virtual Machine) is used on the

PC. For tests on the smart phone Galaxy S3, 456MB free

RAM (random access memory) can be used.

A. Influence of the Dataset Size

In this evaluation, we explore the run time of the original

and enhanced algorithms by using datasets with increasing

size. Based on the results in [3], NR=3 is used as one

parameter. Another parameter MinPts is dynamically adjusted

according to the collection time – one-third of the total scans.

The data collection takes place at the office area of our

department, which is located on the second floor of a three-

story office building. The RSSI points from available APs in

the surrounding are collected at a collection interval of 5

seconds. The data collection times in the experimental

evaluation are decided based on our empirical study when we

test our algorithm in practice. For test on a PC, the collection

Figure 3 RSSI points distribution from one AP in an office

times of datasets increase from 10 minutes to 10 hours (under

the assumption that a user does not stay in a place longer than

10 hours). The dataset size increases from around 0.1*10
4
 to

7*10
4
. Figure 4 presents the run time (t(n): y-axis) on a PC for

different dataset size (n: x-axis). The unit of the run time is

microsecond (10
-6

 second). Different colors represent different

trial results respectively using DCCLA, DCCLA1, DCCLA2,

and DCCLA3. The tests are repeated on a smart phone by

increasing the collection time from 10 minutes to 1 hour,

which are the optimal collection times to obtain high

localization accuracy by smart phones in our empirical study.

The size of the datasets increases from 1000 to 7000. The

results are shown in Figure 5.

The increase of dataset size results in an increasing run

time for all four trials using DCCLA, DCCLA1, DCCLA2, and

DCCLA3. The results on a smart phone do not stably increase,

due to the relative limited processing capability with respect to

a smart phone processor and potential interference caused by

other running applications or the smart phone system.

For the same datasets, the run times of trials using

DCCLA2 and DCCLA3 on a PC have a significant decrease.

The trial using DCCLA1 also shows slightly improvement on

the time complexity. On a smart phone, the run times of trials

using DCCLA1, DCCLA2 and DCCLA3, even not stable, also

show improved performances.

In the trials using DCCLA2 and DCCLA3, the run times,

due to the grouping pre-process, typically grow more slowly

than that of trials using DCCLA and DCCLA1, especially

when the size of the input dataset becomes large. It indicates

that the growth-rate of DCCLA2 and DCCLA3 does not

depend on the size of the input dataset, but on the number of

the RSSI groups. Consequently, the grouping pre-process is a

necessary step for applying density-based clustering algorithm

to learn places from Wi-Fi data.

Comparing the performance on the PC between the trials

using DCCLA2 and DCCLA3, the run time of DCCLA3 is

slightly less than that of DCCLA2 when size of the input

dataset is smaller than 3*10
4
. However, the decrease does not

continue when the size of the input dataset becomes large.

That is caused by the “if-else” statement when the algorithms

determine the new check group. In DCCLA2 and DCCLA,

they always perform density check on the next group or point.

In DCCLA3 and DCCLA1, the set of the next check group or

point depends on if the critical group or point is figured out,

being judged by an “if-else” statement. The “if-else” statement

Figure 4 the run time on a PC for different dataset size

10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Dataset size n

R
u
n
 t

im
e
 t

(n
)

(u
n
it
:

m
ic

ro
s
e
c

o
n
d
)

Run time t(n) on a PC for different Dataset size n

parameters (NR=3, dynamic MinPts)

0 1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

6x10
4

7x10
4

DCCLA

DCCLA
1

DCCLA
2

DCCLA
3

Figure 5 the run time on a smart phone for different dataset size

0 1000 2000 3000 4000 5000 6000 7000
10

3

10
4

10
5

10
6

10
7

10
8

Dataset size n

R
u
n
 t

im
e
 t

(n
)

(u
n
it
:

m
ic

ro
s
e
c
o
n
d
)

Run time t(n) on a smart phone for different Dataset size n

parameters (NR=3, dynamic MinPts)

DCCLA

DCCLA
1

DCCLA
2

DCCLA
3

Figure 7 the run time on a PC for different parameters

0

2

4

6

8

10

0

50

100

150

200

250

10
2

10
3

10
4

10
5

10
6

NR

Run time t(n) on a PC for different NR and MinPts

fixed Dataset size (n=3149)

MinPts

R
u
n
 t

im
e

 t
(n

)
(u

n
it
:

m
ic

ro
s
e
c
o
n
d
)

DCCLA

DCCLA
1

DCCLA
2

DCCLA
3

Figure 6 the run time on a smart phone for different parameters

0

2

4

6

8

10

0

50

100

150

200

250

10
4

10
5

10
6

10
7

NR

Run time t(n) on a smart phone for different NR and MinPts

fixed Dataset size (n=3149)

MinPts

R
u
n
 t

im
e
 t

(n
)

(u
n
it
:

m
ic

ro
s
e
c
o

n
d
)

DCCLA

DCCLA
1

DCCLA
2

DCCLA
3

in a recursive cluster learning loop does not affect the time

complexity, but slightly affects the actual run time.

B. Influence of the Parameters

In the experiments above, the tests are performed with a

combination of parameters (NR=3, Dynamic MinPts) for the

cluster learning process. We investigated the influence of the

parameters when a fixed dataset size (n=3149) is used. The

parameters to be investigated are: neighborhood range (NR)

and the minimum number of RSSI points (MinPts). In this

evaluation, the values of NR and MinPts are changed in each

repetition of the cluster learning process. Selected NR values

are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10 dB]. Selected MinPts values

range from 10 to 240 with an increment of 10.
By changing the parameters of the cluster learning

algorithm, the run times, shown in Figure 7 and Figure 6, are
not affected, except for some unreasonable combination of two
parameters (e.g., extremely small MinPts and large NR). The
unreasonable combination of two parameters would not be
considered in the real-world scenarios. As we studied, the
density-based clustering results are usually sensitive to the
choice of two parameters. However, the evaluation turns out
that the run time is not sensitive to the alternation of two
parameters when the density-based clustering is applied in the
place learning system.

C. Discussion

Observed from above evaluations, DCCLA1, DCCLA2 and
DCCLA3 are able to provide a decrease of the run time on both
a PC and a smart phone. DCCLA2 and DCCLA3 are seen to
show a significant improvement on algorithm efficiency as
maintaining the clustering results. On a PC, the run time of
trials using DCCLA2 and DCCLA3 is at least 2 to 4 orders of
magnitude faster than that of the original DCCLA when the
collection time of an input dataset is between 10 minutes to 10
hours. The decrease of run time becomes more obvious as the
size of an input dataset becomes larger. On a smart phone, the
run time of trials using DCCLA2 and DCCLA3 is about 2
orders of magnitude faster than that of the original algorithm
DCCLA when the collection time of an input dataset is
between 10 minutes to 1 hour. For example, when the
collection time is half an hour (n=3149), the run time reduces
from 0.1 second to 10

-4
 second by using DCCLA3 instead of

DCCLA. Similarly, on a smart phone, the run time reduces
from around 10 seconds to 10

-2
 second. When the collection

time is 10 hours, DCCLA3 can excute the clustering process on
a PC in about 10 seconds.

As we introduced in the theoretical analysis, the algorithm
with two possible improvements presents the same localization
accuracy as the original one. The accuracy in this experimental
scenario was investigated in the previous works [6] [3]. When
the input datasets were collected in half an hour in every room,
and the collection interval was 5 seconds, adjacent rooms can
be correctly learned and localized with accuracy between 97%
and 100% when at least 3 APs are available.

Based on the theoretical analysis of the time complexity
and the experimental evaluation of the run time, we identify the
algorithm DCCLA3 with two improvements as the enhanced
density-based clustering algorithm for the autonomous indoor
localization.

V. CONCLUSION

In this paper, we have presented an enhanced density-based
clustering algorithm for the indoor localization algorithm
DCCLA (Density-based Clustering Combined Localization
Algorithm). In the enhanced algorithm, the cluster learning
process is optimized by doing a pre-process of grouping and
skipping unnecessary density checks. On a PC, the run time of
the enhanced algorithm is 2 to 4 orders of magnitude faster
than that of the original algorithm in our experimental
evaluation. On a smart phone, the run time is about 2 orders of
magnitude faster than that of the original algorithm. As a result,
the enhanced density-based clustering algorithm is an optimal
clustering algorithm as it presents significantly improved
efficiency performance on both PC and smart phone platforms.

ACKNOWLEDGMENT

This paper is funded by the German “Bundesministerium für
Wirtschaft und Technologie” by funding the project “pinta –
Pervasive Energie durch internetbasierte
Telekommunikationsdienste”, reference number 01ME11027.
The authors are responsible for the content of this publication
and would like to acknowledge the contributions of their
colleagues.

REFERENCES

[1] H. Wang, S. Sen, A. Elgohary, M. Farid and M. C. R. R. Youssef, "No
need to war-drive: unsupervised indoor localization," in MobiSys '12,

2012.

[2] Y. Jiang, X. Pan, K. Li, Q. Lv, R. P. Dick, M. Hannigan and L. Shang,
"ARIEL: Automatic Wi-Fi based Room Fingerprinting for Indoor

Localization," in UbiComp ’12, 2012.

[3] Y. Xu, S. L. Lau, R. Kusber and K. David, "DCCLA: Autonomous Indoor
Localization Using Unsupervised Wi-Fi Fingerprinting," in

CONTEXT'13, Annecy, France, 2013.

[4] S. L. Lau, Y. Xu and K. David, "Novel indoor localisation using an
unsupervised Wi-Fi signal clustering method," in Future Network &

Mobile Summit, 2011.

[5] Y. Wu, J. Guo and X. Zhang, "A linear DBSCAN algorithm based on
LSH," in Machine Learning and Cybernetics, 2007 International

Conference on, 2007.

[6] Y. Xu, S. L. Lau, R. Kusber and K. David, "An Experimental
Investigation of Indoor Localization by Unsupervised Wi-Fi Signal

Clustering," in Future Network and Mobile Summit, 2012.

[7] E. Ester, H. Kriegel, J. Sander and X. Xu, "A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise," in 2nd

International Conference on Knowledge Discovery and Data Mining,

1996.

[8] C. A. Shaffer, Data Structures and Algorithm, 3.2 (Java Version) ed.,

Dover Publications, 2012.

