
Handoff between Proxies in the Proxy-based
Mobile Computing System

Azade Khalaj
Department of Computer Science

Western University
London, Ontario, Canada

Email: akhalaj@csd.uwo.ca

Hanan Lutfiyya
Department of Computer Science

Western University
London, Ontario, Canada
Email: hanan@csd.uwo.ca

Abstract—Research activities in the mobile computing field aim
to find solutions for achieving the smoother access to remote
online resources, such as cloud services, from client application
found on mobile devices. The limited capabilities of mobile
devices and also the unreliable condition of wireless environment
are sources of challenges in achieving the mentioned goal. We
have proposed a proxy-based mobile computing system that
offloads compute-intensive tasks from mobile devices to proxies.
Additionally, to handle the variation in connection quality, the
proxies are chosen and changed dynamically to provide a better
service quality for the client application. The result of our
experiments shows the effectiveness of our approach in choosing
the appropriate proxy and switching to a new proxy when it is
needed.

I. INTRODUCTION

The use of mobile devices (e.g., smartphones, and tablet
PCs) has tremendously increased. Applications targeted at
mobile devices have become abundant with applications in
various categories e.g., entertainment, health, games, business,
social networks.

Many smartphone applications are implemented by commu-
nicating with a remote service. The remote service provides a
well-defined API that can be used by smartphone applications
e.g., weather applications can use of several remote services
that collect weather data make this data available through a
well-defined API. This works well for applications with rela-
tively little data to be transferred. This model of mobile device
development is not suitable for applications that require larger
amounts of data to be transferred and/or have a high level
of interactiveness with the user. This includes mobile video
communications (e.g., Skype, Face-Time, Google-Hangout),
gaming applications that require sophisticated rendering and
cloud media analytics that can be used to offer more person-
alized services. Challenges with these types of applications
include potentially high latency incurred by the wired network
and packet loss of the wireless network. Other limitations
include the limited processing power and energy constrains
which makes it difficult to support applications with high
computing needs e.g., natural language processing.

One approach is to offload tasks from mobile devices to a
proxy. A proxy is a powerful machine on the wired network
that is responsible for executing specific tasks on behalf of
mobile devices. The proxies can also be used to offload tasks

and data from the cloud to the proxy. Examples of work that
use proxies to offload compute-intensive tasks from mobile
devices to a computational infrastructure is introduced in [1].
There are proxy-based approaches used to handle the mobility
of mobile devices [2], [3]. An example of augmented reality
applications that use proxies in the communication between
mobile device and remote resource is presented in [4]. In [5]
proxies are used to reduce network latency in video streaming
application.

We introduced a proxy-based architecture for mobile com-
puting [6], [7] that proposes to have a set of proxies in distinct
locations. The proxies in our proposed system are designed
as a dynamic library of generic services that can be used by
a broad range of services and client applications. A proxy
discovery mechanism is introduced and evaluated in [7]. The
evaluation shows the effectiveness of the use of proxies and
the proxy discovery mechanism. The brief description of the
proposed proxy-based architecture and the proxy discovery
mechanism, introduced in [6] and [7], is provided in the
section II of this paper.

Multiple mobile devices may use a proxy. The resource
demands on a proxy incurred by a mobile device may vary and
thus at some point result in an overload. In our earlier work
we did not consider that a proxy might become overloaded.
To deal with overload, we introduce the handoff mechanism to
mitigate overload. The handoff operation refers to the process
of transferring the responsibility of servicing a client to another
proxy. This paper introduces a handoff mechanism that is
transparent to the client application. The purpose of this paper
is not to compare the performance of our proxy-based system
with other proxy-based proposals. This paper aims to show the
effectiveness of our proposed handoff mechanism in providing
favorable operation condition for mobile application, in ever-
changing mobile wireless environment.

In the section II, a description of our mobile computing
system is provided. The description includes the functionality
of components of the system. The handoff mechanism is
presented in section III. The description of the example client
application and proxy services that are used by this application
are presented in section IV. Experiments to evaluate the
effectiveness of the handoff and obtained results are presented
in the section V. In section VI the related work is presented.

MOBILWARE 2013, November 11-12, Bologna, Italy
Copyright © 2014 EAI
DOI 10.4108/icst.mobilware.2013.254207

Finally, the conclusion and future work is provided in the
section VII.

II. PROXY-BASED MOBILE COMPUTING SYSTEM

There are multiple proxies that are used to offload compu-
tation from mobile devices and to provide services, referred to
as proxy services, to facilitate communication between remote
services, including cloud services, and client applications
found on the mobile device. Section II-A describes proxies
and proxy services in more detail.

The address and other information about proxies are main-
tained by Proxy Finder Servers (PFSs). A PFS is used to
support proxy discovery and handoff. The process of finding
a proxy is described in the section II-B.

Our proposed proxy-based mobile computing is made of
multiple proxies that are used to offload computation from
mobile devices and to provide services, referred to as proxy
services, to facilitate communication between remote services
and client applications found on the mobile device. Section
II-A describes proxies and proxy services in more detail.

The application on the mobile device needs to know the
address of a proxy offering its required proxy services. The
address and other information about proxies are kept in servers
called Proxy Finder Servers(PFSs). The client application
should have the address of at least one PFS and it is the
responsibility of the PFS to find the appropriate proxy for
a client application. PFSs are also responsible for cooperating
with the proxy to execute handoff operation, for handling
issues related to the mobility of mobile devices and changing
conditions of the network connections. The process of finding
a proxy is described in section II-B.

A. Proxy and Proxy Services

Proxies provide proxy services that enable the client applica-
tion on mobile devices to access cloud services and resources
smoothly. To achieve this goal, proxy services are used to
handle challenges existing in the mobile and wireless envi-
ronment. For example, to deal with frequent disconnections
a proxy service can keep track of how much of the data has
been transmitted so far. Proxy services can be used to offload
tasks from the client application or request that a task from the
cloud service be placed on the proxy. The latter is to decrease
communication delay between the client application and the
cloud service. Proxy services should be independent from the
remote services and client applications. This independence
increases the reusability so that each proxy service can be
used by various client applications to access various remote
services.

B. Proxy Discovery

PFSs are used to find a proxy upon the request of a client
application. It is possible to have multiple PFSs that keep the
information about available proxies. By having multiple PFSs
the load on the PFSs is distributed among all of them and the
system will maintain the scalability needed in the case of an
increase in the number of proxies and mobile applications that

intend to use proxies. Having multiple PFSs also improves the
reliability of the system; if a PFS fails, because of any reason,
there are other PFSs that can provide services for the client
applications.

To be accessible by client applications, when a proxy first
comes on-line, it registers itself with one or more PFSs. Client
applications need to query a PFS to discover proxies. There
are multiple mechanisms that can be used to provide client
applications with PFS addresses. For example, PFS addresses
could come from an ISP provider or a telecom company.

The proxy registers at several PFSs by providing the infor-
mation about itself. The information provided by the proxy at
registration should include all the information that is needed
by the PFS to find the best proxy for a client application. The
information includes, for example, the list of proxy services
available on the proxy, the access information of the available
proxy services, i.e. their URIs, the information that can be used
by the PFS to determine the trustability of the proxy, the usage
cost model that the proxy uses to charge its clients, etc. The
information about proxies saved at PFSs can be updated later
by proxies or by the PFS. For example, if the list of available
proxy services at a proxy changes, the proxy informs the PFSs
at which it is registered.

The process of proxy discovery is depicted in figure 1.
The client application starts the operation of proxy finding
by sending a request to a PFS (step 1). It is possible for the
client application to send the request to multiple PFSs to speed
up the proxy finding operation, by accepting the first proxy
found by one of the PFSs. The request sent to the PFS should
include the information that a PFS needs to find a proxy.
The information might include the IP address of the mobile
device, which is needed to find the network latency between
the mobile device and the proxy or the remote service, the
list of proxy services that are needed for the functionality of
the client application, the information of any cloud services
that will be accessed by the client application, such as the
download URI of the cloud service, the cost model of the
proxy, trustability information of the proxy, etc.

In its request to the PFS, the client application provides a
set of factors and a weight (weights sum to one) for each
factor indicating the importance for the factor choosing a
proxy. Factors to be used in proxy selection include network
delay, trustworthiness, etc; The weights are specific to a client
application.

Upon receiving the request for a client application, the PFS
chooses the best proxies with the information included in the
request (step 2). The algorithm used by the PFS to choose a
list of best proxies is presented in the section II-B1.

The PFS sends the client application request to all the
proxies in the list, in this case, proxy 1 and proxy 2 (step
3). The proxy that receives the request from the PFS, decides
whether to accept or reject the request (step 4). The proxy
makes the decision based on its available resources. If the
proxy does not have enough computing resources to service
the new client application, it might reject the request. In the
example shown in the figure 1, proxy 1 has decided to reject

the request, while proxy 2 has accepted the request (step 5).
An alternative approach is to have proxies send resource usage
information to the PFSs that they are registered with. This
allows a PFS to select a proxy without contacting the proxy.
The problem with this approach is that there may be a large
number of proxies registered with a PFS that would require
the PFS to handle many periodic messages from proxies. This
load could increase the response time of the PFS.

Upon receiving the first acceptance from a contacted proxy,
the PFS informs the mobile application about the information
of the accepting proxy, including the IP address of proxy, URIs
of the proxy services on the proxy that mobile application
intends to call, etc. (step 6). The acceptance message sent by
the chosen proxy also contains a client ID, issued by the proxy
for the mobile application. The issued client ID is unique
throughout the system and is used by the proxy and proxy
services to handle the state information related to this mobile
client application.

Fig. 1. Finding a Proxy

The client application, after receiving the information of
chosen proxy, contacts the proxy by sending a Hello Proxy
message that includes the client ID issued by the proxy (step
7). The proxy, upon receiving the Hello Proxy message from
a client application, uses the client ID included in the message
to retrieve the request of the client application. After retrieving
the request, the proxy starts to prepare the required proxy
services (step 8). The preparation includes the download of
missing proxy services from an online repository of proxy
services or copying them from a local repository and deploying
all required proxy services. After successful deployment of
all proxy services, the proxy sends an acknowledgment in
response of the Hello Proxy message, to the client application.
After receiving the acknowledgment from the proxy, the client
application knows that the proxy services on the proxy are
ready to use and the client application can start to access proxy

services when needed.
1) How the PFS Chooses Best Proxies: A set of factors are

used by the PFS to find the best proxies for a client application.
The PFS, upon receiving a proxy discovery request, finds a
list of best proxies based on these factors. The factors can be
either related to the information that is included in the proxy
registration request, for example the list of available proxy
services, or can be taken from other resources. We categorize
factors into two categories. The first category includes factors
that their values are, more or less static, and change less
often. The second category contains factors that their values
dynamically change. Examples of factors in the first category,
that are rather static, include the list of available proxy services
on the proxy, the usage cost model of the proxy, the trustability
information of the proxy, etc. Examples of factors in the
second category, are the network latency and the processing
load on the proxy. The network latency is dependent on the
network condition and changes frequently. Likewise, the load
on the proxy depends on the applications running on the proxy
and might be changing over time.

These two categories of factors are treated differently by the
PFS at the phase of choosing the best proxies. The values of
the first category, can be gathered at the registration phase
of the proxy at the PFS. The values of those factors can
either be provided by the proxy, or be queried from relevant
resources. For example, the usage cost model of the proxy can
be included in the registration request sent by the proxy, while
the trustability information about the proxy should be provided
by a third party. Although, the values of these rather static
factors might change during the time. As a result, the PFS
should provide facilities that allow updating of these values. It
implies that, for example, if the list of available proxy services
on a proxy changes, the proxy is able to contact the PFS
and update this information. It is also probable that the PFS
contacts other resources periodically, to get the updated values
for some factors. For example, the PFS can contact the third
party periodically, to receive the updated information about
the trustability of proxies.

Because values of factors in the second category change
more often, the PFS needs to inquire about relevant resources
and get the up-to-date values every time, before choosing the
best proxies. For example, the PFS needs to contact proxies
to find the spontaneous network latency or the processing load
on the proxies.

As mentioned previously, in the section II-B, the PFS
also considers the preferences of the client application. The
client application indicates the importance of each factor by
assigning a weight to each factor. The factors that are of the
interest of the client application can be a subset of the factors
that their values are kept by the PFS.

Two factors are taken into account in the prototype imple-
mentation of our system: i- available proxy services on the
proxy, ii- the proximity of the proxy to the mobile device
and to the cloud service, that is to be used by the mobile
application. If the client application functionality does not
involve any call to a cloud service, only the proximity between

the mobile device and the proxy will be measured.
The proximity between components over a network can be

evaluated by the geographical distance between components,
or can be measured using the Round Trip Time (RTT) between
components or the hop count between them. In our prototype
implementation we use the RTT. The RTT is defined as the
time required for a signal to travel from the source node
to the destination node and back. Smaller RTT between two
components means less communication delay between those
components. The RTT between two nodes changes over time
because of the change in the load over the route between
nodes. As a result, the RTT can be an indicator of the
spontaneous condition of the route between components and
gives a more accurate information about the route. Unlikely,
a large or small values for the hop count or the geographical
distance does not necessarily indicates a decline or improve in
the condition of route between components. To find the RTT
to the mobile device and the cloud service, the proxy uses
ping calls.

Every proxy has a local repository of proxy services’ archive
files. A proxy is said to have a proxy service, if the archive file
of that proxy service exists in the local repository of proxy. It
is also possible for the proxy to download and deploy a proxy
service from an online repository, provided that the proxy
believes to have enough resources.

An appropriate proxy is a proxy that has a higher number of
required proxy services and has a smaller RTT to the mobile
device and the cloud service. The more proxy services a proxy
has, the better since this saves time in downloading from else-
where. The smaller RTT will result in lower communication
delay between entities in the system. The tasks done by the
PFS to find best proxies are shown in the algorithm 1.

Data: ProxiesList
Result: SortedProxiesList

1 for each Proxy in ProxiesList do
2 Proxy.FindRTT();
3 end
4 RTTScaledProxiesList = ScaleRTTs(ProxiesList);
5 PSsPercentageList = CalcPSsPercentage(ProxiesList);
6 SortedProxiesList = SortProxies(PSsPercentageList,

RTTScaledProxiesList, ClientPreference);
Algorithm 1: PFS Chooses the Best Proxies

At the beginning, the PFS contacts all proxies that are
registered with the PFS and asks them to find the RTT values
(lines 1-3). After receiving the response from all proxies, the
PFS calculates two values for each proxy: i- scaled RTT, from
0 to 100, based on RTT values reported by the proxies (line
4), ii- percentages of required proxy services that are available
on the proxies (line 5). As mentioned earlier, the PFS already
knows which proxy services are available on which proxy. This
information is provided by the proxy during the registration
phase at the PFS.

The details of scaling the RTT by the ScaleRTTs function
is shown in the algorithm 2. The worst RTT, which means the

highest, and the best RTT, which means the lowest, are found
at the beginning (lines 1 and 2). Assuming that the best RTT
is equivalent to 100 and the worst RTT is equivalent to 0, the
scaled RTT for other proxies is calculated by the equation in
the line 4.

Data: ProxiesList
Result: RTTScaledProxiesList

1 worstRTT = FindWorstRTT(ProxiesList);
2 bestRTT = FindBestRTT(ProxiesList);
3 for each Proxy in ProxiesList do
4 Proxy.ScaledRTT = 100 * (worstRTT - Proxy.RTT) /

(worstRTT - bestRTT);
5 RTTScaledProxiesList.add(Proxy);
6 end

Algorithm 2: Scale RTT values

By having these two sorted lists, scaled RTTs and percent-
ages of available proxy services, the PFS finds a number of
best proxies based on the preference of the client application
(algorithm 1, line 6). The preference of the client application
has been included in the request sent by the client applica-
tion to the PFS. The preference of the client application is
represented by assigning a weight to each factor. The client
application assigns a higher weight to the factor that has more
importance for the application. For example, it might be more
important for a client application to have a small network delay
to the proxy but the client application is willing to wait a
longer time at the start for the preparation of a proxy that
does not have all the required proxy services available and
needs to download and install them before starting to serve
the client. In this case, the client might assign a weight of 80
to the RTT factor and a weight of 20 to the available proxy
services on the proxy.

Details and results of experiments that show the effective-
ness of our mobile computing system in achieving low delay
in communication between mobile clients and services by
choosing the most appropriate proxy can be found in [7].

III. HANDOFF

The handoff operation is used to change the associated
proxy of a mobile client application. There are multiple
events that can trigger the handoff operation. An event is
characterized by a condition on one or more factors that
characterize some aspect of application/system behavior. The
factors can include those used by the PFS to find a proxy.

The thresholds, that define the acceptable values for the
factors, can be defined either by the client application or by
the proxy. For example, the client would declare a specific
threshold for the RTT and require the PFS to always associate
it with a proxy that has an RTT smaller than the threshold.
On the other hand, the proxy might have as its objective that
its processing load is always smaller than a specific threshold
and if its load exceeds that threshold, the handoff process is
triggered. If the threshold value for a factor is defined by the
client application, it should be included in the clients request,

during the proxy discovery process. In this way the proxy will
be aware of the favorable thresholds of factors for the client
application.

The values of factors used in the conditions characterizing
events, that are used to trigger the handoff process, are mon-
itored. The monitoring can be done by the proxy itself, or by
the client application. In the development of the prototype of
our system, we decided to assign the monitoring responsibility
to the proxy. In this way, the burden on the mobile device is
reduced and the battery power consumption on the mobile
device is reduced

The diagram showing the interaction between components
of the system, during a handoff operation is depicted in figure
2. When a handoff triggering event is detected by a proxy,
the proxy contacts the PFS to find a new proxy (step 1).
The process of finding a new proxy during the handoff is
the same as the process presented in the section II-B, with
the exception that the request is sent by a proxy to the PFS,
rather than by a client application. The proxy retrieves the
initial request of client application that includes the list of
required proxy services, information about the remote service
and clients preferences, etc. The proxy sends the retrieved
request to the PFS. After finding a new proxy, the PFS informs
the requesting proxy on the address of the new proxy (step 2).

Fig. 2. Handoff Operation

After receiving the address of a new proxy, the current
proxy is responsible for saving the state information of proxy
services used by the client application and transferring the
state information to the new proxy. Each proxy service is
designed in a way to have a method, saveState, in its API, that
saves the state information needed to create a new instance of
the proxy service on the new proxy. The implementation of
saveState is specific to every proxy service. The continuation
of a proxy service on the new proxy should be provided in
a way that the client application does not require to redo an
already performed action.

To illustrate an example of state information, we consider
a proxy service whose functionality includes transferring files

from the mobile device to the proxy and handling disconnec-
tions. Whenever a disconnection happens, the client applica-
tion queries for the number of already transmitted bytes from
the proxy, and resumes the file transmission. The state in this
case includes the number of already transmitted bytes from the
mobile device to the proxy. The client application inquires the
proxy service on the new proxy about the number of already
transferred bytes. Since this number is transferred to the new
proxy, as a part of the state information, the proxy service can
reply accurately to the clients inquiry.

Besides the state of the proxy services, it might be necessary
to transfer other data that is needed for the continuation of the
proxy service from the old proxy to the new proxy. This other
data may include databases or files, such as dictionaries or
maps. For the example proxy service, introduced in the previ-
ous paragraph, the other data includes the already transferred
part of the file on the old proxy.

After transferring the state information and other required
data, the needed proxy services on the new proxy load their
corresponding state files. The state loading might involve
inserting data to databases, creating/copying required files, etc.
The activity done during state loading phase, depends on the
functionality of a proxy service. For example, for the above
mentioned example proxy service, i.e. the proxy service that
is responsible for handling disconnections, the state loading
involves informing the newly created instance of the proxy
service, about the location of the transmitted file and the
number of already transmitted bytes.

The tasks of collecting the state information, transferring
it to the new proxy and loading the state information on the
new proxy, that are shown as steps 3-5 in the figure 2, are
common activities that should be performed during a handoff
process by any proxy for each of its proxy services, regardless
of the functionality of the proxy service. In our prototype, an
interface is defined that includes a method for each of these
common tasks, named saveState, transferState and loadState.
All proxy services should implement methods of this interface.
The design and implementation of the interface methods is on
the proxy service provider and it depends on the functionality
of the proxy service. It is possible to have a stateless proxy
service. In this case, the interface implementation is left empty.

After finishing the state loading on the new proxy, the new
proxy is available to serve the client. The client application
is to be transparently notified about the change of proxy.
This requires that client applications have a component that
we refer to as the bridge. The bridge component is always
aware of the address of current proxy. In the case of an
occurrence of a handoff operation, the old proxy notifies the
bridge component. All other parts of the client application,
before calling any methods of any proxy services, inquire the
bridge to find the up-to-date proxy address.

Immediately after starting a handoff operation, the proxy
stops serving the client application by terminating all instances
of proxy services that are serving the clients request. A
handoff seems like a disconnection to the client application and
subsequently the client might try to re-call the proxy services.

Proxy services reject all calls from the client application when
the handoff process is ongoing. Since the client application
includes its clientID to every call to proxy services, it is
possible to realize the calls from a client application migrating
to the new proxy, and drop those calls.

After finishing the setup of the new proxy with the state
of required proxy services, the old proxy contacts the bridge
component of client application and provides it with the
address of the new proxy (step 6). Hereafter, any call to proxy
services from client application is directed to the new proxy
by the bridge component.

In the last step of the handoff operation, the old proxy frees
all resources that were assigned to the client, such as databases
or files (step 7).

IV. EXPERIMENTAL SETUP

To examine the effectiveness of our proposed handoff
mechanism, several experiments are carried out. As previously
described in the section III, various factors, depending on the
preferences of the mobile application, can be used to ignite a
handoff process. The factor used in our experiments to start
a handoff process, is the RTT between the mobile device and
the proxy.

The example application used for our experiments behaves
like an augmented reality application. In augmented reality
applications the information about the environment is gathered
and processed and augmented with extra data and the result
is delivered to the users. Examples of augmented reality
applications for mobile devices include the translator [8],
tourist assistance [9], [10], [11], and mobile learning [12]
applications. For example in tourist assistance, the application
can be used to capture image or video from a view, process the
images or video, retrieve additional information about the view
from a database and provide user with the extra information.

Augmented reality applications often require image or audio
processing tasks that need computational power not typically
found on mobile devices. One approach is to have a client
application on the mobile device responsible for gathering
the input data, e.g. image, video, or voice, and to offload the
processing to a remote server rather than executing it locally
on the mobile device, especially if the Wi-Fi connectivity is
available [13]. After finishing the processing, the remote server
sends the result in an appropriate format, such as image, video,
voice or text to the client application which is responsible for
showing the result to the user.

A. Example Client Application

An augmented reality-like client application is implemented
for our experiments that uses our proxy-based system for
experiencing a better performance. Our system tries to find
a proxy with smallest RTT to the mobile device. The client
application on the mobile device captures images of an object
and transfers these images to the augmented reality service
hosted on the proxy.

B. Proxy Services Used

The first proxy service that can be used by our example
client application is the CodeExec proxy service. The Code-
Exec proxy service is responsible for downloading and starting
a service on a proxy in response to client requests. The client
request may include a URI where the service software may be
downloaded from. Afterwards, the client is able to communi-
cate with the service available on the proxy machine. The other
proxy service used by the client application is the FileStreamer
proxy service. The FileStreamer is used to transfer a stream of
files from the client application to the proxy. The FileSteamer
proxy service provides support for disconnection handling,
i.e. the FileStreamer proxy service is aware of the possible
disconnections and is able to reconnect and continue the
communication between the client application and the service
without the intervention of the client application or the service.
The combination of these two proxy services, the CodeExec
and the FileStreamer, enables programmers to create mobile
client applications for augmented reality services that need the
transmission of extensive amount of input data in the form of a
stream of images, or of other formats, from the client and also
requires extensive amount of processing on the input data. In
the experiments done for this work, the client application uses
the FileStreamer proxy service to transfer a stream of images
from the mobile device to the proxy. Transferred images can
be used by an augmented reality service, downloaded by the
CodeExec proxy service and executed on the proxy. By having
this example client application, we evaluate the effectiveness
of the handoff mechanism in our system to provide lower
network latency when the network latency between the mobile
device and the proxy changes.

C. Testbed of Experiments

The mobile device used for our experiments is an Acer
Iconia Tab A500 with the Android version 3.2. Two Linux
machines are used as proxies. The proxy and proxy services
functionalities are implemented as Web Services. The Apache
Tomcat 7.0 is installed on two machines hosting proxies and
proxy services as the web server. The Apache Axis2 1.6 is
used as the web service engine.

V. HANDOFF EXPERIMENTS AND RESULTS

To examine the effectiveness of the handoff process we
simulate the changes in the RTT between the mobile device
and the proxy by having the client application sleep before
each write to the connection for the length of simulated RTT.
The reason for simulating the RTT is that the mobile device
and the machines hosting proxies are connected to the same
LAN and the real RTT between them is negligible (usually
less than 4 milliseconds).

In the real world implementation of the system, the proxy
can monitor the RTT by periodically sending ping messages
to the mobile device. In our experiments, the simulated RTT
values are generated at the mobile application and are sent
to the proxy. When the simulated RTT exceeds a predefined
threshold, the proxy starts the process of handoff.

The factor that is used to measure the performance of our
experiments is the number of images transferred from the
mobile device to the proxy in 30 seconds. It is assumed that
more images received by the cloud services will generate better
results.

To evaluate the effectiveness of handoff, two scenarios were
designed. In the first scenario, no handoff happens even if the
RTT passes the threshold and client continues to transfer files
to the same proxy. In the second scenario, the handoff occurs
when the RTT exceeds the threshold. In the second scenario
we assume the RTT between the new proxy and the mobile
device is constant and is equal to the handoff threshold. It is
the worst case. In the other cases the RTT between the mobile
device and the new proxy would be less than the threshold
value.

For the first scenario, the RTT increases linearly according
to the equation 1. The variable t represents the time from the
beginning of the experiment in seconds which will be between
0 and 30. The variable rtt is the RTT value in milliseconds
which is calculated based on the value of t. Equation 1 is
made based on the assumption that the RTT increases linearly
from 10 millisecond to 100 millisecond during 30 seconds.
For the second scenario, the RTT is calculated using the same
equation until the rtt value exceeds the handoff threshold and
a handoff process is triggered. From that point until the end
of experiments (t = 30) the rtt will be equal to the threshold
value. To find the influence of the threshold value we examined
multiple values for the the threshold which include 14.5, 19,
28, 37, 46 and 64 millisecond. In addition to understand the
effect of file size on the effectiveness of handoff, various file
sizes were used in the experiments which are 100 KB, 250
KB, 500 KB, 750 KB, 1 MB and 1.5 MB.

rtt = 3t+ 10 (1)

The result of our experiments for the linear increase of
RTT is depicted in the figure 3. The experiments for each
file size and each threshold value are replicated three times.
The chart shows the improvement of handoff cases over no
handoff cases. The improvement is calculated as 100 * number
of images transferred in with-handoff scenario / number of
images transferred in no-handoff scenario. The confidence
intervals for the confidence level of 95% are shown in table
I. As shown in the chart, the improvements for the biggest
file (1.5 MB) are negative for all threshold values in contrast
with the results for other smaller files. This result suggests that
the handoff is not beneficial when the file is too large. The
other observation is that the improvement values are negative
for the largest handoff threshold (64 millisecond). It shows
that it is better to start handoff on smaller values for the
threshold. There is no significant difference between the result
obtained for the file sizes of 100 KB, 250 KB, 500 KB and
750 KB for all thresholds but 64 millisecond. Almost all of
them have a positive value between 0 and 20 percent. To find
if the performance of the handoff mechanism for smaller file
sizes, i.e. smaller than 750 KB, further experiments are needed.

Additionally, some values achieved in experiments, such as
the value for the file size of 500 KB and handoff threshold
of 14.5 ms do not fit in the overall trend for smaller files.
More experiments will be done as future work to understand
the reason of this observation.

Fig. 3. Improvement of With-Handoff Scenario over No-Handoff Scenario in
Case of Linear Increase of RTT

In our experiments we noticed that sometimes the real RTT
in the wireless environment increases for a short period of time
and then returns to its previous level. This spike increase may
cause the start of a handoff process. To understand the effect
of handoff, started because of such a spike increase in the
RTT, we designed and examined another set of experiments
including two scenarios. In this set of experiments, the RTT is
equal to the constant value of 10 milliseconds but, to simulate
a spike increase, it increases from 10 to 60 milliseconds for
a period of 2 seconds in the middle of the experiments, i.e.
from 14th second to the 16th second, then returns to 10
millisecond. In the first scenario, i.e. no-handoff scenario, no
handoff occurs during the experiment time, while in the second
scenario, i.e. with-handoff, when the simulated RTT exceeds
the threshold, the handoff process is started. Three threshold
values are examined for the second scenario that are 19, 28,
and 46 millisecond. Same as the previous set of experiments,
the experiments for each file size and each threshold value are
replicated three times and the improvement is calculated as
100 * number of images transferred in with-handoff scenario
/ number of images transferred in no-handoff scenario. The
confidence intervals for the confidence level of 95% are shown
in table II.

The result of experiments for these scenarios, i.e with spike
increase in the RTT, is shown in the figure 4. As can be seen
in the chart, almost all of improvement percentages for files
larger than 250 KB are negative. This means that it was not
effective to do a handoff when a spike increase in delay occurs.
This result suggests that it is necessary to have a mechanism
in the system to realize the transient increases in the RTT and
to avoid starting the handoff process in those cases.

TABLE I
LINEAR INCREASE OF RTT - CONFIDENCE INTERVALS

Handoff Thresholds (MSec)
File Size (MB) 14.5 19 23.5 28 37 46 64

100 5.6 ± 0.04 4.14 ± 0.03 9.5 ± 0.06 8.64 ± 0.09 -1.92 ± 0.05 12.29 ± 0.07 -4.66 ± 0.16
250 8.62 ± 0.03 8.96 ± 0.08 -2.48 ± 0.12 7.95 ± 0.05 14.85 ± 0.10 14.96 ± 0.12 -7.43 ± 0.09
500 29.28 ± 0.24 2.88 ± 0.03 2.40 ± 0.04 3.78 ± 0.05 6.49 ± 0.03 10.07 ± 0.18 -9.65 ± 0.12
750 7.59 ± 0.04 7.60 ± 0.08 4.02 ± 0.06 11.10 ± 0.19 -0.08 ± 0.09 1.35 ± 0.06 -14.58 ± 0.17
1000 -6.60 ± 0.11 16.02 ± 0.17 8.58 ± 0.04 -9.06 ± 0.04 3.19 ± 0.20 -17.41 ± 0.07 -24.96 ± 0.12
1500 -11.61 ± 0.26 -18.21 ± 0.36 -8.92 ± 0.30 -44.73 ± 0.19 -8.55 ± 0.61 -60.72 ± 0.15 -36.52 ± 0.11

Fig. 4. Improvement of With-Handoff Scenario over No-Handoff Scenario in
Case of Spike Increase of RTT

TABLE II
SPIKE INCREASE OF RTT - CONFIDENCE INTERVALS

Handoff Thresholds (MSec)
File Size (MB) 19 28 46

100 -0.23 ± 0.01 6.61 ± 0.09 0.34 ± 0.09
250 -2.59 ± 0.03 -2.26 ± 0.10 -1.23 ± 0.04
500 -8.52 ± 0.01 6.42 ± 0.16 -11.30 ± 0.09
750 -7.18 ± 0.04 -2.45 ± 0.14 -19.03 ± 0.15
1000 -12.58 ± 0.02 -8.16 ± 0.15 -21.56 ± 0.15
1500 -30.81 ± 0.10 -36.21 ± 0.03 -32.64 ± 0.05

VI. RELATED WORK

There is considerable literature related to offloading re-
source intensive tasks from the mobile device to a powerful
proxy [1], [3], [10], [14], [15], [16], [17], [18], [19], [20].
Offloading tasks to a remote server adds network latency to
the interaction between the client application and the service
that is often not acceptable for delay sensitive applications.
To mitigate the negative impact of this added delay, several
papers have proposed the use of a proxy machine which is
closer to the location of the mobile device [21], [15], [5],
[1]. The advantage of our proposed infrastructure is that we
consider the preferences of the client application to find the
best proxy to offload tasks. In the other work, there is no
explanation about choosing the host that tasks are offloaded
to, from mobile device. In the other work, it is assumed that
the proxy, is always the same and its address is hard-coded
into the client application.

Additionally, some research has proposed to move the
service and proxy along with the mobile movement to keep
the communication delay low [2]. In this work the location
of the remote service changes adaptively, based on the com-
munication delay between client application and the remote
service. Our work considers changes in the communication
delay, as well as other factors, such as load on the proxy,
usage cost model of the proxy, trust of the proxy, changes in
the preferences of the client application, etc.

The handoff ability has been introduced in other commu-
nication and networking areas, such as cellular networks and
Mobile Ad-hoc Networks (MANETs). The concept of handoff
in our work is similar to the concept of handoff in cellular
networks. The quality of connection to the access point to
the network is monitored. If the quality deteriorates, a new
access point with a better connection quality is chosen and the
mobile device is handed off to the new access point. However,
the cellular network research targets the telecommunication
technologies, such as GSM, GPRS, etc. [22], and cannot be
used for the accessing the application services.

The use of handoff is also found in MANETs and vehic-
ular networks and several handoff techniques are proposed
and implemented [23]. The handoff techniques proposed for
MANNETs and vehicular networks mostly are implemented
for lower networking layers, e.g. data link, network and
transport layers. As a result, to deploy those techniques the
alteration of underlying technologies are needed. Our approach
is implemented at the application layer with no modification
required for the current Internet architecture.

VII. CONCLUSION

The changing in the environment in mobile computing
systems leads to the changes in the quality of the connection
and the service perceived by the client application. In this
paper we presented our proxy-based mobile infrastructure that
is able to collect the preferences of the client application,
monitor the condition of the environment and apply changes
to the service provided for the client application, based on its
preferences. The mechanism that is carried on, in response of
changes in the conditions, is the handoff of client application
between proxies.

The result of our experiments shows that the handoff
mechanism provided in our proxy-based system is successful
in keeping the favorable condition for the client application.
In this case a favorable condition for the client application

is keeping the communication delay below a threshold. Other
factors that impact the functionality of the client application
and the performance of whole system, such as the trustability
of proxy and the load on the proxy, can be used in the process
of finding proxy and triggering a handoff operation.

The results shows that since client applications are typically
time-sensitive or interactive, and as a result highly sensitive
to the condition of the environment that they are operating
in, it is necessary to dynamically adapt the services provided
by the mobile computing infrastructure based on the changes
in the condition to provide a better experience at the client
application when using the mobile computing facilities.

REFERENCES

[1] B. Chun, S. Ihm, P. Maniatis, and et al., “Clonecloud: elastic execution
between mobile device and cloud,” in Proceedings of the sixth confer-
ence on Computer systems, ser. EuroSys ’11, 2011, pp. 301–314.

[2] F. Samimi and P. McKinley, “Dynamis: Dynamic overlay service com-
position for distributed stream processing.” in SEKE. Citeseer, 2008,
pp. 881–886.

[3] P. Bellavista, A. Corradi, and C. Giannelli, “Mobility-aware management
of internet connectivity in always best served wireless scenarios,” Mob.
Netw. Appl., vol. 14, no. 1, pp. 18–34, feb 2009.

[4] P. Selonen, P. Belimpasakis, Y. You, and et al., “Mixed reality web
service platform,” Multimedia Systems, vol. 18, no. 3, pp. 215–230,
2012.

[5] C. Taylor and J. Pasquale, “Improving video performance in vnc under
latency conditions,” in Proceedings of the International Symposium on
Collaborative Technologies and Systems (CTS), Chicago, May 2010.

[6] A. Khalaj, H. Lutfiyya, and M. Perry, “The proxy-based mobile grid,”
in The Third International ICST Conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications, June-July 2010.

[7] ——, “A proxy-based mobile computing infrastructure,” in Mobile,
Ubiquitous, and Intelligent Computing (MUSIC), 2012 Third FTRA
International Conference on, June 2012, pp. 21 –28.

[8] V. Fragoso, S. Gauglitz, S. Zamora, and et al., “Translatar: A mobile aug-
mented reality translator,” in Applications of Computer Vision (WACV),
2011 IEEE Workshop on, 2011, pp. 497–502.

[9] P. Belimpasakis, P. Selonen, and Y. You, “Bringing user-generated
content from internet services to mobile augmented reality clients,” in
Virtual Reality Workshop (CMCVR), 2010 Cloud-Mobile Convergence
for, 2010, pp. 14 –17.

[10] S. Gammeter, A. Gassmann, L. Bossard, and et al., “Server-side object
recognition and client-side object tracking for mobile augmented reality,”
in IEEE International Workshop on Mobile Vision (CVPR 2010), June
2010.

[11] C. Shin, H. Kim, C. Kang, and et al., “Unified context-aware augmented
reality application framework for user-driven tour guides,” in Ubiquitous
Virtual Reality (ISUVR), 2010 International Symposium on, july 2010,
pp. 52 –55.

[12] M. Specht, S. Ternier, and W. Greller, “Mobile augmented reality for
learning: A case study,” Journal of the Research Center for Educational
Technology, vol. 7, no. 1, 2011.

[13] B. Girod, V. Chandrasekhar, D. M. Chen, and et al., “Mobile visual
search,” IEEE Signal Processing Magazine, Special Issue on Mobile
Media Search, 2010.

[14] E. Cuervo, A. Balasubramanian, D. Cho, and et al., “Maui: making
smartphones last longer with code offload,” in MobiSys’10, 2010, pp.
49–62.

[15] C. Taylor and J. Pasquale, “Towards a proximal resource-based architec-
ture to support augmented reality applications,” in Workshop on Cloud-
Mobile Convergence for Virtual Reality, Waltham, MA, USA, March
2010.

[16] J. Lee, R. Doerner, J. Luderschmidt, and et al., “Collaboration between
tabletop and mobile device.” in ISUVR. IEEE, 2011, pp. 29–32.

[17] P. Angin, B. Bhargava, and S. Helal, “A mobile-cloud collaborative
traffic lights detector for blind navigation,” in Proceedings of the 2010
Eleventh International Conference on Mobile Data Management, ser.
MDM ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
396–401.

[18] M. Kjaergaard, S. Bhattacharya, H. Blunck, and et al., “Energy-efficient
trajectory tracking for mobile devices,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services,
ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 307–320.

[19] K. Kumar, Y. Nimmagadda, and Y. Lu, “Energy conservation for image
retrieval on mobile systems,” ACM Trans. Embed. Comput. Syst., vol. 11,
no. 3, pp. 66:1–66:22, sep 2012.

[20] I. Giurgiu, O. Riva, and G. Alonso, “Dynamic software deployment from
clouds to mobile devices,” in Middleware 2012, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, vol. 7662, pp.
394–414.

[21] M. Satyanarayanan, P. Bahl, R. Caceres, and et al., “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, pp. 14–23, 2009.

[22] S. Fernandes and A. Karmouch, “Vertical mobility management ar-
chitectures in wireless networks: A comprehensive survey and future
directions,” Communications Surveys Tutorials, IEEE, vol. 14, no. 1,
pp. 45–63, 2012.

[23] K. Zhu, D. Niyato, P. Wang, and et al., “Mobility and handoff manage-
ment in vehicular networks: a survey,” Wireless Communications and
Mobile Computing, vol. 11, no. 4, pp. 459–476, 2011.

