
Mobile Cloud Application Models Facilitated
by the CPA

Michael J. O’Sullivan, Dan Grigoras

Department of Computer Science
University College Cork, Cork, Ireland

{m.osullivan, grigoras}@cs.ucc.ie

Abstract – This paper describes implementations of two
mobile cloud applications, file synchronisation and
intensive data processing, using the Context Aware Mobile
Cloud Services middleware, and the Cloud Personal
Assistant. Both are part of the same mobile cloud project,
actively developed and currently at the second version. We
describe recent changes to the middleware, along with our
experimental results of the two application models. We
discuss challenges faced during the development of the
middleware and their implications. The paper includes
performance analysis of the CPA support for the two
applications in respect to existing solutions.

Keywords: mobile cloud, applications, services, user
experience

I. INTRODUCTION

Mobile cloud computing is a paradigm that aims to
overcome the limited resources of mobile devices, such
as battery capacity, processing power, and storage. By
moving the responsibility for complex tasks from the
mobile device into the cloud, demanding applications
can be executed there, with the results delivered to the
mobile device. Mobile cloud computing can also be
seen as the use of cloud based applications and services
from mobile devices to the benefit of their owners.
Various cloud services and applications deliver their
functionality to mobile devices either through an app
installed on the device, or through the web browser.
The use of cloud resources from mobile devices has
resulted in new computing models being made available
to mobile users.

Various applications synchronise files across the
various mobile devices of the user so that they can be
accessed from each device. Changes to a file on one
device can be reflected on all the other devices.
Dropbox [1] is one example of this model: cloud
storage is used to store user’s files, and then each
mobile device can retrieve the files from Dropbox using
an installed application. Similar services include
Google Drive [2] and Microsoft SkyDrive [3]. Another
example is Apple iCloud [4], which pushes files
purchased from the iTunes store onto all of the user’s
“iDevices”, or, additionally, the user could play media

files from the cloud, without storing them on the mobile
device at all. Many users also have social networking
accounts such as Facebook [5] and Twitter [6], and
upload media files to these services as a form of cloud
storage. One benefit is that the limited storage space on
the mobile device is saved. However, all of these
services work in isolation. If a user has accounts with
several of these providers, all files must be maintained
separately. The user would have to upload files from the
mobile device to each service individually using
different applications, which costs time, money, and
energy.

The mobile cloud can also be seen as a platform for
demanding computations. Mobile applications with
computations that cannot be performed on a mobile
device due to their resource requirements can be
offloaded into the cloud, executed there, with the results
returned to the mobile device. Examples of this
approach include cloudlets [7], which use virtual
machines running on local infrastructure near the
mobile devices to run user applications, which are then
displayed on the mobile device. Application
partitioning [8] uses a graph model to break a mobile
application up into components, which are then
distributed to nearby computing nodes. Code offload
techniques [9, 10] run application code in the cloud,
with resulting object states (in object oriented
languages) being returned to the mobile device.

Execution of computationally long and intensive
operations, such as large dataset processing and
mathematical calculations, can also run on the cloud,
with appropriate results returned to the mobile device.
In this way, applications would not have to waste the
battery and processing capacity of the mobile device,
nor would it be at risk from interruptions such as being
killed in low-memory scenarios or accidental
shutdowns.

Our active work is on a project known as the Cloud
Personal Assistant (CPA), which we introduced in a
previous work [11]. It forms the backbone of a mobile
cloud middleware we are developing, known as Context
Aware Mobile Cloud Services (CAMCS), also
introduced in a previous work [12]. Each user of
CAMCS is given their own instance of a CPA, which
can perform tasks given to it by the user, by using

MOBILWARE 2013, November 11-12, Bologna, Italy
Copyright © 2014 EAI
DOI 10.4108/icst.mobilware.2013.254197

mobile cloud services. The tasks are described using a
mobile thin client application, before being sent to
CAMCS middleware, which forwards them to the CPA
instance of the user. In our current work in this project,
we have examined how to use the CPA to enhance two
popular mobile cloud applications, synchronisation of
files and data intensive processing.

This paper introduces the implementation of file
synchronisation tasks among service providers using the
CPA, with the aim of overcoming the mentioned
shortcomings of the traditional applications which work
in isolation. We also present our implementation of a
data intensive processing task on an XML dataset
pointing out the role of the CPA. For each, we discuss
the implementation challenges and lessons learned.

The remainder of the paper is structured as follows.
Section two describes the aim of the CAMCS
middleware and the CPA along with its current
development state. Section three describes our
implementation of the file synchronisation and data
processing models with the CPA. Section four details
the challenges in implementing this functionality.
Section five contains the results of our experimental
implementations. Section six includes the related work,
and the conclusions are found in section seven.

II. CAMCS AND THE CPA

The CAMCS middleware is a mobile cloud solution,
and hence, is hosted on cloud servers. Cloud-based
servers provide computing resources for consumers,
which can include hardware resources (CPU time,
memory, storage, networking capacity), developer
resources (application platforms, tools and APIs), and
software resources (user software with graphical user
interfaces, normally accessed through a web browser).
For mobile cloud, we leverage the resources offered in
the cloud so that resources not available on the mobile
device can be used from the cloud servers - in other
words, the cloud resources are delivered to the mobile
device as services. This normally requires the mobile
device to have a continuous, high-quality network
connection to cloud servers.

We now briefly describe CAMCS and the CPA
from our previous works. The CAMCS middleware is
being developed to provide an integrated user
experience for mobile cloud applications. This means
that the difficulties of running mobile cloud solutions,
such as time/energy costs, and network disconnections
to name a few, have lessened significance on the user
experience of mobile cloud applications. In addition,
the use of the software is seamless for the end-user (part
of the general public with no IT experience), and it
intelligently responds to the state of the user and the
mobile device. The thin client, which can be installed
on a mobile device and provides communication
between the user and CAMCS middleware, embraces
this philosophy, whereas other approaches to mobile
cloud, some of which mentioned in the introduction,

have not. The user experience aspect of the CAMCS
middleware is very important for the implementation of
the file synchronisation and data processing models; the
difficulties described of implementing mobile cloud
solutions have a detrimental impact on both.

The CPA is the backbone of CAMCS. It is an active
assistant that performs tasks for the user with mobile
cloud services. It represents the user and their tasks in
the cloud. It contains a discovery service to find cloud
services for performing tasks set by the user. Once a
user uploads a task from the thin client on the mobile
device, discovery takes place to find an appropriate
service. Once found, the CPA contacts the service with
user-provided parameters, and waits for the result from
the service. When the result is produced, it stores it until
the user is ready to receive it on their mobile device. If
the user became disconnected during this time, the
execution and result of the task are safe in the cloud. As
it has been completely offloaded, the mobile device is
free for other work - see Figure 1.

Since the publication of our previous works, the
CAMCS and CPA have undergone further
development. The CPA is now a component of the
CAMCS middleware; in our previous work the CPA
was a standalone middleware [11]. The discovery
service functionality will no longer be the responsibility
of the CPA itself, but will be a component of CAMCS.
The discovery service will take input from the context
processor [12], with the aim of using context to enhance
the quality and functionality of services discovered.

The most significant architectural change from our
first version is the replacement of the MySQL database
for storing information with MongoDB, a NoSQL
database. MongoDB uses a document store for data - all
information is stored in individual documents. This
makes querying for data an easier task. The data itself is
stored in JavaScript Object Notation (JSON) format. To
contrast with the first version of the CPA,

Figure 1: The mobile cloud provides computing services to
mobile clients. Here, mobile devices 1 and 2 have their own
instances of a CPA within the CAMCS middleware, which
work with mobile cloud services, and deliver the results to the
mobile devices.

there were separate MySQL database tables for user
information (name, email address, password), CPA
information (references to current and previous tasks),
and task information (name, WSDL file location,
result). To get this information into our Java-based
middleware, cross-referencing using ID numbers or join
queries would need to take place across multiple tables
to bring related information into the result set.

With MongoDB, all information for each individual
user of the middleware is located in one document. We
simply execute one query to the document store for the
user by their ID or username, and all their information,
including CPA details and task information, are simply
returned together in one document. If necessary,
projection can take place to exclude data that is not
required from being returned.

Aside from fewer queries required by the developer,
other advantages also stand out. We exchange data
between the Android-based mobile thin client and the
CAMCS middleware in the cloud using RESTful web
services, with JSON being the format of the data
exchanged. We could simply insert this raw JSON into
the MongoDB database, without any other overhead
such as object conversions for Object-Relational
mapping (although as it is easier to work with objects,
so far we have not done this in practice). In addition,
one of the central ideas of NoSQL databases is evident
as mentioned above, no join queries are needed. In a
cloud environment, join operations for relational
databases can be difficult to implement and scale due to
the distributed, or shared, nature of the data storage.
When all information is stored in one document in
NoSQL databases, joins are not required.

Our mobile thin client has also been updated with
features to support the newly added functionality of the
middleware, which will be discussed later.

III. FUNCTIONALITY MODELS

We now introduce the two applications described in this
paper, which have been implemented as new features of
the CAMCS middleware and the CPA, along with their
advantages compared with existing solutions.

A. File Storage/Synchronisation

The first of the features added to the CPA allows the
user to send files from their mobile device to different
cloud service providers. Within the mobile thin client
application, the user is given a choice to add their
details for different provider accounts. This involves
selecting from a list and authenticating with the selected
provider, to give the CAMCS middleware access. Once
the user has authenticated on the mobile device, the
authentication keys used to access the accounts on the
users behalf are sent from the mobile thin client to the
CAMCS middleware in the cloud.

A user can upload a file from the mobile device
using the Android share feature. This allows the user to

select which of the provider accounts they have added
would they like to send the files to. The user can always
select file storage providers such as Dropbox or Google
Drive. If at least one of the selected files is an image or
video, it will also provide the option to upload to
Facebook - Facebook only supports upload of image
and video files. After the user has selected the accounts,
the files are sent to the CAMCS middleware in the
cloud, using a RESTful web service. Once the files
have been received at the middleware, they are passed
to the user’s CPA, which will then send the files to the
selected accounts - see Figure 2.

The advantage of such a feature is that if, for
example, the user, possibly a company representative,
wants to upload files such as promotional material to
multiple social networks such as Facebook and
Google+ to reach all possible consumers, they no longer
have to spend resources such as time, money, and
energy on their mobile devices individually uploading
to each provider manually. Previous solutions in this
regard upload files to each provider individually from
the mobile device, using up the described resources
during the upload to each provider. Taking advantage
of this feature offered by CAMCS, they need only
upload the file once to the CPA, which takes care of
sending the files to the different providers. The
resources are only used once for a single upload
operation. If the user has client software for the
providers on their desktop PC’s, laptops, or mobile
devices, the files will be synchronised to them via a
push operation. As a result, the current implementation
does not feature a download synchronisation to the
mobile device as files may be duplicated, wasting more
resources. Evaluation and some of the challenges in
implementing this will be discussed in the next section.

B. Data Processing

One fundamental aspect of the CPA is that it can carry
out work for the user asynchronously. The user can
send it the details of some task to be completed, at
which point the mobile device disconnects from the
CAMCS middleware, and the work continues, with the
results saved for when the user is ready to receive them.

Figure 2: Rather than wasting resources uploading a file
twice to two different services individually (device A), the
user uploads the file once to the CPA (device B), which then
sends the file to each of the user’s service accounts.

One area where this may be particularly useful is
intensive data processing, especially if it is expected to
take a large amount of time. In our previous work [11],
we implemented a solution, where we had the CPA
perform database queries on relational databases
running on Amazon RDS. The CPA would wait for the
query to be executed and save the result set for the user.
While it did work, it was tricky to implement well, due
to the nature of the different types the query could take,
and the simplicity of the form based user interface not
being intuitive for the novice end-user to specify what
they want. This time we decided on another direction;
rather than taking data from relational databases and
setting up the required authentication and connections,
we decided to perform some processing on scientific
data. A scientist could set a task to carry out some data
processing on sets of experimental results, and get the
result later.

In the absence of scientific data formats and
software programs for various fields, we settled on
processing data from XML datasets. We were able to
find some publically available datasets on the website
of the Computer Science and Engineering Department
of the University of Washington [13]. These range from
data on protein sequences, to data from NASA on star
systems. These tended to be large in size, so we decided
on experimenting with one dataset called Mondial,
which contains information on different countries
around the world, compiled from the CIA world
factbook, and is smaller in size. We developed a
RESTful web service, as a separate application
deployment from the CAMCS middleware that could
carry out statistical calculations on this data. To enable
this, the Apache Commons Math library [14] was
included in this service.

The flow of this work is as follows: the thin mobile
client is used to specify the location of the data by URL,
and to specify the type of processing they want to carry
out from a list (in this case statistical). The data is sent
to the CAMCS middleware, which hands them over to
the CPA. It examines the task information, and it can
see the user has requested statistical calculations, so it
contacts our cloud statistical service, passing it the URL
to the XML dataset. At this point in time, the CPA
already knows the services available. The information is
passed to the calculation service. A CAMCS call-back
URL that the service should use to pass the result back
is also passed. The service carries out the processing on
the data (it calculates statistics like the mean and mode
on population data for all cities in the countries part of
the dataset), before calling back to the middleware with
the result data, which the user can fetch when they are
ready. The middleware marks the user’s data processing
task as complete - see Figure 3.

Another feature is that the CPA can provide real-
time status updates on the progress of the data
processing. The mobile thin client contains a record of
the offloaded processing task, and when they open it,
the CPA feeds status updates to the thin client.

Figure 3: The user sends the data processing details,
including the URL of the XML dataset to the CPA. The CPA
then contacts the cloud data processing service with the
details, which begins the processing. The result is sent back to
the CPA. The user can also receive progress updates.

Of note is a difference between how we

implemented our statistics web service compared to the
database service in our previous work. The statistics
service is a RESTful web service. In our previous work,
the RDS service was a SOAP based web service. One
of the difficulties encountered with that approach, was
that for the long running calculation, the Apache CXF
software used at the CPA to contact the web service,
would time out while waiting for the result. Apache
CXF does include an asynchronous call mechanism to
overcome this. However for the REST approach, even
though being easier to develop with, does not feature an
asynchronous web service call. To avoid time outs, we
implemented the call-back feature.

Advantages to this approach include the useful
aspect that the web service will have libraries available
to it that may not be present on the mobile device. As
mentioned previously, we used the Apache Commons
Math [14] library to calculate the statistics. Other
scientific libraries available include JScience [15],
which were also included but were not used. It would
not be as trivial to calculate these statistics if done on
the mobile device without these libraries.

Other advantages include the fact that the user does
not need to sit waiting for a specific piece of client
software to complete the data processing, which may be
prone to interruptions. The user can set the task with the
CPA, and go on to do other work or leave the office for
the night and turn off the local equipment, which may
have otherwise been left on and used for the processing
task. They can then check in with the CPA on the go
with the mobile thin client for progress when required.

There are some difficulties and limitations in this
approach that will be evaluated in the next section.

IV. IMPLEMENTATION CHALLENGES
AND EVALUATION

In implementing the two application models, we
identified several difficulties and drawbacks to the
approaches we discussed, as well as areas for

improvement in the API design for mobile devices. We
will now evaluate the work with respect to these for
each of the two applications.

A. File Synchronisation

1. OAuth Authentication

In order to access the accounts of the different cloud
service providers, the user needs to allow CAMCS
access by first authenticating themselves, and granting
permission for the required operations. For all of the
service providers we worked with for the middleware,
OAuth [16] is the security access scheme employed. At
development time, Facebook and Google used OAuth
version 2, and Twitter and Dropbox used OAuth
version 1 (by the time this paper was written, Twitter
provided OAuth 2 support). In both versions of OAuth,
the application requesting access to the user account
with the service provider is given access credentials in
the form of an access token/key/secret. With OAuth 1, a
second access token/key/secret, sometimes called a
“value”, is also provided. When the application needs to
access the user’s account, they present the access token
(and the value in the case of OAuth 1) with the request,
and if the credentials are valid, the application is
granted access. The main benefit of this approach is that
the application that wishes to use the service provider
on behalf of the user does not need to know/store the
user’s username and password for that service.

The flow of authentication and gaining an access
key for most applications is as follows. The developer
has to register their application with the service
provider, and obtain an application key. The CAMCS
was registered with each of the service providers we
used and we obtained a key. When the user wishes to
allow the application access to the provider, in Android,
they are redirected from the mobile application to the
website of the service provider through a WebView,
presenting the application key. The user logs in with
his/her own username and password. The user is then
given a choice to grant access to the application for
various operations (sometimes called “scopes”). Once
the user has granted access, the mobile application is
called back with the access key (and the value in the
case of OAuth 1). These are then stored on the mobile
device for future use.

The issue here for our middleware system, is that
the mobile device does not need the access credentials
at all. The CPA operating in the cloud is the entity that
will be working with the service providers; therefore the
CPA needs to be given the access credentials.

If this were a web application accessed from the
desktop PC browser, the web application would receive
the call-back and store the credentials. In this case, the
credentials would be sent straight to the CPA. This
however would not be optimal for the user experience.
Asking the user to leave the mobile thin client, and
open a corresponding website with a browser for our

middleware to perform the authentication would defeat
the purpose of it being a mobile thin client application.

To overcome this, we implemented a RESTful web
service on the middleware. When the user has
authenticated with the service provider on the mobile
thin client, the access credentials are sent from the thin
client to the CAMCS to be stored with their account.
The CPA can then access credentials with the user’s
account details stored on the cloud middleware, to carry
out operations with the service providers - see Figure 4.

2. Service Provider APIs

This again relates to authentication with the service
providers. To implement the authentication flow, we are
using the Spring Android project, which uses
components of the Spring Social project. They simplify
the work required for authentication with service
providers. The developers of Spring Social have only
implemented official support for Facebook and Twitter
authentications using OAuth. There are several
community driven projects for other providers, such as
Dropbox and Google. None of these community driven
projects have been ported to the mobile platform, and
their implementation remains solely focused for use
with Spring Social on web applications. These could be
ported to be compatible with the Spring Android
components, but this requires some development effort.

Rather than doing this, we decided to use the
Android APIs available from Dropbox and Google.
This involves downloading JAR files from the different
service providers, packaging the thin client with them,
and using them in the code to carry out the
authentication flows. Ultimately, we ended up having
several JAR files; those for Spring Android, Spring
Social, Spring Social Facebook, Spring Social Twitter,
Dropbox, and Google Play services. The file sizes of
these start to build up quickly. Moreover, all these

Figure 4: To get the access credentials to where they are
needed with the CPA, the user must authenticate for each
service on the mobile device (normally through a WebView).
The keys are then sent to the CPA using a RESTful web
service. The CPA can then access each service on the user’s
behalf.

services transfer data in JSON format, but these JAR
files often contain different versions of JSON parsers,
which all do the same thing, taking up even more space
while doing so. One cannot set each of the APIs to use a
single JSON parser of choice and remove the rest - see
Figure 5. All the service providers authenticate using
OAuth tokens, but each provider seems to implement
the authentication flow differently, rather than using
some standard. Spring Social aims at resolving this, but
as described, only supports Facebook and Twitter,
relying on community projects for other
implementations, which have not been readily ported to
Spring Android.

To authenticate with Google, we use Google Play
services. This contains an AccountManager, which is
supposed to again provide common features for getting
access tokens, but, like Spring, requires community
built authenticator modules for the different providers.
Aside from the expected need for different interfaces
for the different features of the different service
providers, it would be much easier for developers, for
the common task of authentication, if there was a
standard API that would work for all out-of-the-box,
since they all use OAuth authentication. In addition, if
the user of the middleware wanted to add another
provider not already supported that uses OAuth, our
mobile thin client would need to be modified to support
each new provider’s different implementation of the
authentication flow, so extension becomes difficult. If a
standard API existed, they could add new service
provider accounts without the need to modify the
mobile thin client. The different APIs take more time to
learn and implement, and increase the size of the
applications deployed to mobile devices because of the
required JAR files.

3. Synchronisation From Service to Device

As described, the current implementation does not
implement a download mechanism to synchronise files
from the various cloud services to the mobile devices.
Many service providers already implement a push
mechanism; this will automatically send a file uploaded
to the provider, down to all the other devices that use a
native application. On the mobile device, this would be
a waste of resources if files were downloaded more than
once both from the CPA and the native application.

If this were to be implemented, it would require a
means for the CPA to be aware of when the user
uploaded a file to the service from other sources, such
as a web browser. This could be achieved by polling,
but this introduces extra traffic to the service provider,
which would be pointless if no new files or updates
have been added to the service provider since the last
poll. A better solution would be an event notification
API, which could alert interested parties, such as the
CPA, when a new file has been added or of any update
to existing files. This requires the service provider to
implement such an API. As an example, Dropbox
provides the sync API, which allows notifications to be

Figure 5: Screenshot from the Eclipse IDE of all the required
JAR files for the Android thin client for each service provider.
Duplicated functionality can be seen; jackson JAR files are
for JSON parsing, the json-simple JAR is required by another
file but contains the same parsing functionality as Jackson.

sent after events such as new files being added occur.
However, the API currently only exists for native
Android and iOS implementations; the ability needed
here is to inform a third party on the users behalf, in this
case the CPA, so that it is aware of the file state at the
providers.

B. Data Processing

1. Service Extensibility

The main question facing the development of the

data processing is how to expand its operation, and
make it easier to invoke. As it stands, our statistics
service will only work with an XML dataset that shares
the same schema as that of the Mondial XML dataset
we developed it against (or any specific dataset we
specifically develop a service for). The statistical
service we developed for it has to parse the XML
dataset, and expects to find certain tags and attributes
that can be used for calculations. While there may be
other datasets representing similar data (for example,
ethnic population data on European countries) that uses
the same markup, it is still a fragile service.

It may be prudent if a scientist who has data to
process could easily specify their own calculations that
they are interested in to a service, so that the service
could readily work with different XML schemas. They
could be uploaded to the CPA from the mobile device
and be sent on to the processing service. The
calculations would have to specify what data to work
with, and what calculations should be performed on it.
Ideally, the user should be able to express the desired
calculation on the mobile device thin client interface.
This may be achievable with cooperation from those
who develop software specifically for data processing
of large formatted data. If this was not the case, as it is
now, a different service would have to be developed for
each different XML schema, limiting the scale of the
data processing service.

2. Discovery of Data Processing Services

Currently, our data processing service runs in another
web application completely separate to the CAMCS
middleware. This is because different service providers

will provide their own services for processing different
types of data; it is not something that the CPA can do
itself at present. In this situation, services that can
perform different processing on data need to be known
to the CAMCS middleware. The service needs to be
able to describe what exactly it does, what data it
expects, and how it will return the results. In addition,
the CAMCS middleware needs to be able to compare
the dataset and instructions passed by the user with
these external services to find what service will match
the request.

At the moment, locations and types of services are
hardcoded onto the CAMCS middleware, so it knows
where to find a specific set of services that carry out
what calculations on what datasets. Clearly, a discovery
solution would be of use here, which is part of our
future work. In addition to describing common service
attributes such as message formats and endpoints, it
would need to describe how to specify the required data
for the calculations (such as which mathematical
calculations to perform on what specific data in the
XML document).

V. RESULTS

Experiments were carried out to evaluate the timing
performance of both the file synchronisation and the
data processing functionality of the middleware, which
we now present.

A. File Synchronisation

To evaluate the file synchronisation performance, over
5 different runs, the time to upload a PNG image file of
size 112KB was measured - see Table 1.

Specifically, we measured: the time taken to upload
the image to the CPA from the mobile device, and the
time for the CPA to upload the image to Facebook and
Dropbox. The mobile device used was a Samsung
Galaxy S3, connected to the Vodafone Ireland operator.
The mobile – CPA upload took place on a HSDPA+
cellular network connection. The CAMCS middleware
was running with an Apache Tomcat version six servlet
container on the cloud server. The cloud server is
located within University College Cork, Ireland, and
features a 1.7Ghz CPU and 2GB RAM. The timing data
was collected from logging statements placed in the

Table 1: The time in seconds over 5 runs to upload a 112KB
image from the mobile device to the CPA, and subsequently
from the CPA to Facebook and Dropbox.

Run Mobile –
CPA (s)

Facebook
(s)

Dropbox
(s)

Total
(s)

1 2.255 2.749 1.621 6.625
2 4.395 3.25 1.523 9.168
3 1.935 2.011 1.533 5.479
4 2.63 2.094 2.671 7.395
5 1.25 2.106 1.584 4.94

code. The upload of the image file to Dropbox and
Facebook from the CPA took place in sequential order.
If we had utilised threads to do this concurrently, the
total time would have been smaller, the mobile to CPA
communication time plus the maximum of the server
upload times.

To compare this with the performance of uploading
with the individual Android apps, we measured over
five runs the time to upload the same image with the
native Facebook and Dropbox Apps with the HSDPA+
connection. This timing data was obtained with a
stopwatch, from the time the upload (or equivalent)
button was pressed on each app, to the time when the
notification came through that the upload was complete.
The timing is less accurate as a result, but the greater
duration is still clear - see Table 2. Clearly it takes even
more time, energy and money, since the user has to
upload the image twice using two different apps,
whereas with our CPA the user only has to do this once.

In Table 1, the only times to user has to wait on their
mobile device are the times for the Mobile – CPA
communication in column two. So the total time for the
images to reach the service providers from the mobile
device in column 5 is not the total time the user has to
spend waiting for upload on their mobile device.
Contrast this with the total result in Table 2. The user
has to manually upload with the applications for each
individual provider, so the total time in the fourth
column is the total time the user must spend waiting for
uploads to complete.

B. Data Processing

The data processing service was deployed in the same
Apache Tomcat six servlet container and cloud server
as the CAMCS middleware. The XML parser used was
XMLPULL [17]. For a comparison test, we
implemented a small Android application with a
service, which would carry out the same XML parsing
as the server. The Android XML parser is the
aforementioned XMLPULL parser we used on the
server, so the comparison is fair in this regard of
implementation. For the cloud service, we used the
XPP3/MXP1 implementation [18] of the XMLPULL
parser, as we believe this to be the same implementation
found on the Android platform, due to the same
package structure (the other implementations have a
different package structure to the version found on
Android).

Table 2: The time in seconds to upload a 112KB image to
Facebook and Android using the individual native apps.

Run Facebook
App (s)

Dropbox
App (s)

Total
(s)

1 15.0 4.1 20.1
2 5.1 2.6 7.7
3 6.9 3.7 10.6
4 7.0 3.3 10.3
5 6.9 5.2 12.1

Before the tests were run, Tomcat was restarted. We
measured the time with logging statements in the code
to fetch the XML file, the time to parse the XML, and
finally the total time (which included the time for
preparing the XML parser, converting the XML file to a
String for the parser, and the calculation of the
statistics), over 5 runs - see Table 3. The majority of the
time is spent on conversion of the XML to a String. The
parse time decreases with each parse after the first.
Another test was carried out by restarting the server
again, and the same trend of decreasing parse time was
repeated after an initial longer time for the first run. The
larger the dataset in size, the larger the number of XML
nodes that will need to be parsed, which will take up
more of the limited memory if done on the mobile
device. This will also take more time, and more energy
from the battery.

As previously described, we implemented a small
Android application to carry out the same XML parse
as the cloud data processing service for comparison
purposes. This ran a service thread, which executed the
same Java code on the cloud service on the same XML
dataset - see Table 4. The results show that the XML
fetch over the cellular network connection took longer
than the cloud service, as one would expect due to the
poorer quality connection. The XML parse consistently
took around half a second, and did not show the same
decreasing time trend as the cloud service. Interestingly,
this means that the first two runs of the parse on the
cloud server were actually slower than the mobile
device. We believe this to be an implementation detail
of either the Java Virtual Machine running on the cloud
server, or the Tomcat servlet container.

Both implementations use a Java InputStream for
the fetch. The bytes from the stream are then read and
converted into a String for the parser input. However,
when the Android client fetched the XML dataset, it
also brought along formatting characters, specifically,

Table 3: The XML fetch and parse times in seconds for the
data processing cloud service along with the total time.

Run XML
Fetch (s)

Parse (s) Total (s)

1 0.969 1.114 4.585
2 0.387 0.676 3.777
3 0.604 0.43 4.119
4 0.384 0.084 3.37
5 0.359 0.038 2.354

Table 4: The XML fetch and parse times in seconds for the
data processing Android test application along with total time.

Run XML
Fetch (s)

Parse (s) Total (s)

1 0.88 0.505 6.11
2 0.74 0.425 7.6
3 3.53 0.44 12.365
4 2.09 0.43 11.315
5 2.815 0.435 11.735

newline characters (\n) and whitespace. This interfered
with the tokeniser of the XML parser, and they had to
be removed from the String (using a String replace
method) before the XML string was passed to the
parser. This removal operation took around four
seconds each time, and is the biggest contributor to the
total time on the Android device. As a result, the total
time was always longer on the Android test application,
even for the two runs where the parsing operation was
quicker than the cloud service. This removal process
did not need to be performed on the cloud service; no
newline or whitespace characters were fetched in the
InputStream.

Once the work is complete, the call-back is made to
the CAMCS middleware, which forwards the result to
the user’s CPA. The CPA then sends an email
informing the user the result is ready, and then can then
view the result in the thin client application on the
mobile device. Future works here includes a push
notification service from the CPA to the mobile device.

With the cloud service, the mobile user does not
need to upload data from the mobile device over the
network connection once the data URL is specified. No
energy is used up on the mobile device for the parse,
and the parse is unaffected by interruptions on the
device; the device is also free for other work.

VI. RELATED WORK

Few middleware’s exist offering mobile cloud services.
One example is a middleware by Wang and Deters [19]
that aims to optimise the consumption of web services
from mobile devices. This involves the conversion of
requests from RESTful JSON based, to XML SOAP
based for contacting SOAP services. As JSON is more
lightweight it is easier for the mobile client to consume.
The mobile communicates with the middleware using
JSON. XML based SOAP responses are converted to
JSON before being sent to the mobile device. The work
also tries to combine services by a mashup mechanism,
feeding the result of one service as an input to another.
The user must know something about the SOAP/REST
nature of the service beforehand, and know where to
find the WSDL file. Our system will be based on
service discovery so the technicalities of the service are
hidden (service type, WSDL locations).

Another work by Flores et al [20] provides a
middleware which can plug in adapters to make
requests to different web services. The request for a
service is sent to the middleware, which will then
substitute an appropriate adapter to make the service
call. It is not known how the developer of mobile apps
actually calls the middleware and specifies their
request. The approach is limited by the adapter solution,
where different adapters may have to be developed for
each service. As our approach aims to use a discovery
service, we believe our approach to be more scalable,
and we will provide an interface for mobile app
developers to request services from the CAMCS.

In both cases, our middleware aims to provide a
range of services to the user that take advantage of
cloud-based infrastructure and services, rather than just
a middleware for a single purpose. CAMCS will be
extensible so extra functionality can be plugged in.

In terms of file synchronisation, most mobile apps
for this purpose, such as Dropbox [1], Google Drive [2],
and Microsoft SkyDrive [3], all work in isolation, and
do not provide support for uploading to multiple
services. Our approach goes over that limitation, as
CAMCS works with multiple services, and as
mentioned, we are saving time, money, and energy by
uploading files the CPA once, rather than uploading to
each service provider separately.

In regards to data processing, cloud based solutions
to data processing are available, especially in the area of
big data, but we are unaware of other work in this area
from the mobile cloud context.

VII. CONCLUSIONS

In this paper, we presented how the CAMCS
middleware with the CPA can be used to implement
two mobile cloud applications, namely file
synchronisation and data processing. We presented the
current development state of the middleware, along
with some of the changes to support these applications.
We then went on to evaluate and discuss the challenges
in implementing these functionalities. For the file
synchronisation, these include OAuth security
implementation issues and heterogeneous APIs for
different service providers. For data processing, they
include scalability and calculation specifications.

We presented timing results for both applications.
For the file synchronisation, the timing results showed
fast performance over the cellular network. When
contrasted with uploading files individually using native
Android apps, the time-savings were evident.

For the data processing application, the time to fetch
and parse XML datasets on the server was also quick,
with results comparable to or faster than the same
parsing operation on our Android testing application.

We highlighted how effective the middleware can
be as an enabler of these two applications, compared to
existing approaches. For file synchronisation, the CPA
can save resources such as time, energy, and money, by
quickly performing the synchronisation with different
service providers; resources need not be wasted
uploading multiple times to different service providers
from the mobile device. For data processing, heavy
processing work can be offloaded to the CPA, so as not
to use up the hardware resources of the mobile device.
This can relieve the need for dedicated software running
on the mobile or desktop that needs to be left on for
long periods of time, with progress updates available on
the move. Network disconnections or dead batteries will
interrupt neither application after the initial upload to
the CPA. Tasks can progress normally.

In our future work we will continue with
implementation of the CAMCS middleware and the
CPA, which will involve adding context processing,
and subsequently service discovery. We will also be
exploring how CAMCS and the CPA can be used to
facilitate real-time applications that may have low-
latency requirements.

The challenges we highlighted in this paper such as
authentication, API design, and lack of data standards
for processing, will be of crucial importance going
forward as mobile cloud development increases, and
mobile client software adopts the paradigm.

ACKNOWLEDGMENT

The PhD research of Michael J. O’Sullivan is funded by
the Embark Initiative of the Irish Research Council.

REFERENCES

[1] Dropbox. https://www.dropbox.com/
[2] Google Drive. https://drive.google.com/
[3] Microsoft SkyDrive. https://skydrive.live.com/
[4] Apple iCloud. https://www.icloud.com/
[5] Facebook. http://www.facebook.com/
[6] Twitter. https://twitter.com/
[7] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
Case for VM-Based Cloudlets in Mobile Computing”, IEEE
Pervasive Computing, 2009; 8(4), pp. 14-23.
[8] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: Enabling mobile phones as interfaces to cloud
applications”, Middleware 2009, pp. 83-102.
[9] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S.
Saroiu, R. Chandra, et al. “MAUI: making smartphones last longer
with code offload”, Proceedings of the 8th international conference on
Mobile systems, applications, and services, San Francisco, California,
USA. 1814441, ACM, 2010, pp. 49-62.
[10] B-.G. Chun, S. Ihm, P. Maniatis, M. Naik and A. Patti,
“CloneCloud: elastic execution between mobile device and cloud”,
Proceedings of the sixth conference on Computer systems, Salzburg,
Austria, 1966473, ACM, 2011, pp. 301-314.
[11] M. J. O’Sullivan, D. Grigoras. The Cloud Personal Assistant for
Providing Services to Mobile Clients, IEEE MobileCloud, Redwood
City, San Francisco Bay, USA, 2013, pp. 477-484.
[12] M. J. O’Sullivan, D. Grigoras. User Experience of Mobile Cloud
Applications – Current State and Future Directions, Proceedings of
the 12th International Symposium on Parallel and Distributed
Computing, Bucharest, Romania, 27-30 June, 2013, pp. 85-92
[13] XMLData Repository, Department of Computer Science and
Engineering, University of Washington
. http://www.cs.washington.edu/research/xmldatasets
[14] Apache Commons Math Library.
http://commons.apache.org/proper/commons-math/
[15] JScience Library. http://jscience.org/
[16] OAuth. http://oauth.net/
[17] XMLPULL Parser. http://www.xmlpull.org/index.shtml
[18] XPP3/MXP1 XMLPULL Parser Implementation.
http://www.extreme.indiana.edu/xgws/xsoap/xpp/mxp1/
[19] Q. Wang and R. Deters, “SOA's Last Mile-Connecting
Smartphones to the Service Cloud”, Proceedings of the 2009 IEEE
International Conference on Cloud Computing, 1632969, IEEE
Computer Society, 2009, pp. 80-87.
[20] H. Flores, S. N. Srirama and C. Paniagua, “A generic middleware
framework for handling process intensive hybrid cloud services from
mobiles”, Proceedings of the 9th International Conference on
Advances in Mobile Computing and Multimedia, Ho Chi Minh City,
Vietnam, 2095715, ACM, 2011, pp. 87-94.

