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Abstract—This paper focuses on content dissemination in
location-centered communities and provides the first comparative
analysis of two forwarding algorithms on real scenario, namely,
ProfileCast – which has been on purposely designed for this
environment – and InterestCast – which by contrast addresses
more general settings. The paper provides quantitative evaluation
of relevant metrics (i.e. community coverage, delivery delay,
energy/message efficiency) to be considered whenever attempting
to spread contents to the persons that are used to visit the same
location. Moreover, the experiment allows to give an insight on
the problems arising when deploying these protocols on real
settings and an empirical evaluation of two different approaches.
ProfileCast leverages mechanisms to automatically extract the
intrinsic characteristics of the users from their behavior pattern;
a content generated by a node is implicitly addressed to users
with similar behavior as the source. InterestCast matches content
tags against interests explicitly expressed by the users.

I. INTRODUCTION

In the era of mobile and pervasive computing, opportunistic
networks (ONs) leverage human encounters to provide an
intermittently-connected network where the diffusion of delay
tolerant information through the personal devices of indi-
viduals mimics the human communication on the grapevine.
The current growing interest in human social interactions
inspires the creation of novel communication paradigms for
ONs, hastening the shift from unicast interactions of early
ONs to new form of anycast communications. In fact, one-to-
many interactions are considered as more suitable to support
emerging services that exploit the human attitude to orga-
nize in communities where common behavior and interests
are shared. The content dissemination inside a community
advocates a departure from the classical IP-addressing style to
privilege new policies in which the binding content-recipients
is not provided by the sender, but directly executed by specific
recipients with an interest in it. Human encounters drive the
information flow towards potential recipients that extract it
from the stream when content type and personal interest
match.

In line with the described trend, all recent proposals are
addressing the objective of casting contents on different ty-
pologies of communities. ProfileCast [9] considers location-
centered communities pooling individuals sharing the attitude
to visit certain places. SocialCast [3] considers communities
deriving from social ties and assumes that users with social
relationship have the attitude to meet one another more often

than with other users. ContentPlace [2] assumes that users
belong to social communities and that communities are bound
to physical places. InterestCast (ICast [11]) is able to chase
users interests decoupling content tags from locations and
social communities and, thus, should be able to operate on
either types (location, social or other) of communities.

This paper focuses on content dissemination in location-
centered communities and provides the first comparative anal-
ysis of two forwarding algorithms on real scenario, namely,
ProfileCast – which has been on purposely designed for this
environment – and InterestCast – which by contrast addresses
more general settings. The paper provides quantitative eval-
uation of relevant metrics (i.e. community coverage, delivery
delay, energy/message efficiency) to be considered whenever
attempting to spread contents to the persons that are used to
visit the same location.

This analysis gives an insight on the problems arising
when deploying these protocols on real settings and an ex-
perimental evaluation of two different approaches. ProfileCast
interestingly tries to compare human behavior by working
on similarities between two encounters, while InterestCast
requires to explicitly name the target interest. Both have a
wide range of application although the former has a higher
potential to flexibly adapt to a given target behavior enabling,
at the same time, the identification of the variety of behavior
shades around the target one. However, our analysis shows that
the second outperforms the first because, until now, it is still
very difficult to derive the correct parameters to apply when
comparing similarities.

II. SYSTEM ASSUMPTIONS AND PROBLEM DEFINITION

We assume an ad hoc network of N personal devices, or
nodes for short, that communicate through wireless links. A
node is either the personal device of a mobile user or a fixed
station, as in case of a road-side gateway to/from a wired
network. Thus, we are considering a hybrid urban network
infrastructure [7], [15]. Throughout this paper, all nodes, either
fixed or mobile, have the same capabilities; each node may act
as source, recipient and forwarder of messages with specified
interests. A node stores messages in a buffer, and forwards
them according to the forwarding mechanism adopted.

In this paper, we consider the classical one-to-many com-
munication problem to diffuse contents to a group of nodes
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sharing common characteristics or behavior. When applied to
an opportunistic setting, the addressing scheme of the one-to-
many communication paradigm moves apart from the IP-based
addressing scheme because there is no a-priori knowledge
about group identity and cardinality. This advocates the emer-
gence of new policies in which the binding content-recipients
is not provided by the sender, but directly executed by specific
recipients/relays with an interest on it or in forwarding it. We
name this a behavior-driven opportunistic addressing scheme;
it underlies the most relevant one-to-many recent proposals
for ONs in which the general term behavior is alternatively
expressed as social-behavior [3], mobility-behavior [9] or
generic interest [11]. Hereafter we assume that each node nx

has an associated characterizing behavior Bx. When a message
labeled with Bx is generated by the source, the purpose of
the algorithms is to deliver the message to as many nodes
matching the behavior Bx as possible, while at the same time
saving resources in terms of bandwidth and memory overhead.
In this paper, we focus on forwarding policies able to deliver
messages to a group of nodes sharing the attitude of visiting
a (set of) common location(s), i.e., have similar mobility-
behavior.

A. Location-based scenarios

We analyze the behavior of the two algorithms under
mobility settings derived from a real dataset. To this end, the
PMTR trace [6] has been adopted. It involves 44 nodes, named
PMTRs (Pocket Mobility Trace Recorders), on a campus area
of roughly 1000×1000 m. and equipped with wireless channel
having a 10 m. radio range. There are 5 fixed nodes, located
in points of interest of the campus (such as the main entrance
or a cafeteria), while the remaining 39 devices have been dis-
tributed to faculties, Master and P.h.D. students, and technical
staff. We eliminated nights and weekends from the complete
dataset, thus producing a dataset covering 13 working days,
from 8:00AM to 8:00PM (for a total of 156 hours). The PMTR
dataset reproduces a difficult environment: in fact, users spend
long periods in their offices, the environment is sparse, and
contacts are rare [13]. In such a real scenario even the epidemic
diffusion hardly performs and shows long latencies and low
delivery rates [12].

We run the Louvain algorithm [1] to detect communities
on the weighted graph G obtained from the contact trace,
so that an edge exists between two nodes if one of them
is a fixed location, and the other has ever met that location
at least once. The edge weight is the mean duration of the
contacts between the node and the fixed location. This choice
allows to extract location-centered communities. We chose the
Louvain algorithm as it is considered one of the best in the
literature [5], it avoids grouping nodes in a giant community,
and it also achieves greater modularity than other algorithms
in the literature. The Louvain algorithm is supposed to detect
significant communities when the modularity is greater than
0.4. From our runs we obtained a modularity of 0.536 and 5
communities (one for each PMTR in a fixed location), with
minimum community cardinality of 5 nodes, and maximum

Table I
REFERENCE SCENARIOS.

scenario characteristics
scenA 5 nodes in same community
scenB 5 nodes in same community
scenC 10 nodes in same community
scenD 12 nodes in same communities
scenE 12 nodes in same communities

Figure 1. Location-based communities in PMTR with the Louvain method.

cardinality of 12 nodes.
With the obtained communities we have defined 5 different

communication scenarios, where nodes with a similar mobility-
behavior are pooled in a location-based community. In Table I,
we report the characteristics of the analyzed scenarios. In fig.1,
the PMTR graph with communities highlighted is shown, with
edge thickness proportional to the weight.1 The fixed nodes
are represented as black squares. In sec. V-A, an analysis of
the characteristics of the scenarios is supplied, in terms of the
characteristics of importance for the considered algorithms.

III. PROFILECAST

ProfileCast [9] has been proposed for solving the one-to-
many problem in location-based communities.

In ProfileCast, nodes must a priori agree on the set of ref-
erence locations. For a given time slot t, each node n records
the time percentage spent at each location in t, thus generating
an association vector AV t

n with as many entries as locations.
The association matrix AMn is then built, with each column
i composed of AV i

n, with i ≤ number of time slots observed
so far. Hence, the association matrix represents the behavior
of the node along its history. When two nodes encounter,
they compare their behaviors by exchanging their association
matrices. Should their behavior be sufficiently similar and
at least one of the nodes has a message to disseminate, the
message is forwarded to the other node because it is considered
an interested destination. In more details, in order to save both
network and computation resources, the association matrix is
summarized by using Singular Value Decomposition (SVD)
[8]. Through SVD, three matrices U , S and V are determined

1We emphasize that community detection is not performed by nodes, nor
it is needed by the considered algorithms.



such that AM = U D V T . The columns of U are the left
singular vectors, each one representing the relative importance
of the locations in the corresponding attempt of capturing the
node behavior. D is a diagonal matrix of singular values,
in decreasing order. The weight associated to the x-th left
singular vector is computed as the ratio between the x-th
singular value and the sum of all singular values. Weights
aim at capturing the significance of the vectors. Let θW be
a threshold on the weights, such that we consider that the
behavior of the node is adequately described by the first v left
singular vectors such that the sum of weights of those vectors
is

∑v
x=1 weightux

≥ θW . Thus, θW allows to determine a
trade-off between the number of considered vectors and the
accuracy of representation of a node behavior.

Algorithm 1 ProfileCast
1: INIT: AM ← [ ]; AV ← [];
2: when time slot ends do
3: for all x do
4: AV[x] ← AV[x] /

∑
∀y

AV[y];
5: end for
6: add AV as new column to AM;
7: AV ← [];
8: end do
9: when contact with fixed location p terminates do

10: AV[p] ← AV[p] + duration of terminated contact;
11: end do
12: when contact with node p ∧ message m held for diffusion to

similar nodes do
13: {U , D, V } ← SVD(AM);
14: for all x do
15: weightux ← |D[x, x]|/

∑
∀y
|D[y, y]|;

16: end for
17: determine v s.t.

∑v

x=1
weightux ≥ θW ;

18: send my first v left singular vectors to p;
19: receive vp vectors from p;
20: Sme,p ←

∑v

M=1

∑vp

P=1
weightuM weightup

P
|uM · up

P |;
21: if (Sme,p ≥ θPC ) then
22: send m to p;
23: end if
24: receive messages from p and deliver them to the application

layer;
25: end do

When two nodes ni and nj encounter, they exchange their
first vi and vj left singular vectors – as determined by θW –
respectively, and use those vectors to compute their similarity
Sij as follows:

Sij =
vi∑

I=1

vj∑
J=1

weightui
I
weightuj

J
|ui

I · u
j
J |

If, let us say, ni owns a message m to be distributed to similar
nodes, and Sij ≥ θPC for a certain threshold θPC , then the
two nodes are considered similar, and ni forwards m to nj .
Pseudo-code of Algorithm 1 summarizes this procedure.

IV. INTERESTCAST

ICast forwarding algorithm [11] has been designed to
address the one-to-many communication problem for different

definitions of behavior, and can be easily adapted to ensure
content diffusion in location-based communities. In ICast,
each node n maintains the list of local interests I and messages
are tagged to characterize the content. The forwarding policy
selects the good relays for reaching nodes in the set I of the
users sharing the same interest, that is, the relays able to chase
a given interest I. The basic assumption is that nodes beacon
their one-hop neighbors to advertise their interests and, as in
[14], summary vectors are exchanged to prevent forwarding
of duplicate messages. Basically, the addressing is performed
on a per-content basis. The message’s content-tag is matched
against the declared interests of in-range nodes in order to
determine its recipients. Content tags and interests do not
have to match exactly. Folksonomic reasoning might be used
to match nodes interests w.r.t. content tags – for instance,
as described in [10] – and when a matching is verified the
message is delivered to the local recipient, or forwarded to
the appropriate relay. When the use of ICast is constrained to
location-based interests, then the interest I is the identifier of
one of the locations most frequently visited by the destination
nodes.

Having multiple recipients that share a common inter-
est/location I implies that several relays might be involved and
that their selection is influenced by their attitude to encounter
nodes with I as an interest. Miming ranking mechanisms
proposed for unicast communication, we adopt a simple utility
function that is adapted to reach nodes in I , rather than an
addressed destination. To this end, the Greedy [4] approach
has shown to obtain the best performance in several different
mobility scenarios [12]. By taking inspiration from the Greedy
utility, we obtain ICast, whose pseudo-code is provided by
Algorithm 2. In ICast a node p adjusts its utility with respect
to a given interest I every time it encounters a node whose
beacon includes I (lines 3-6). In the following, let us indicate
with U the utility value obtained with this scheme.

A relevant aspect of the algorithm is the message replication
mechanism (lines 13, 18, 20). Whenever a node p, with no
interest in I, forwards a message m to a node with higher
utility (lines 15-16), p delegates the other node to continue
forwarding, and hence removes the copy of m from its own
buffer (line 18). By contrast, if p forwards the message to a
legitimate recipient, then p maintains the message copy (line
13). In fact, its habit of encountering recipients in I might be
useful for delivering m to others. Nodes in I always maintain
the message copy (line 20) and they can forward a copy to
either another recipient (line 12) or a more useful relay which
might be leveraged for delivering m to other recipients.

V. CONFIGURING PROFILECAST’S PARAMETERS

As shown in the previous Sections, ProfileCast has a few
parameters, namely θW and θPC , whose configuration is crit-
ical and may strongly influence performances. In this Section
we determine the best parameter settings according to the
considered scenarios.



Algorithm 2 ICast
1: INIT: counter ← [ ]; buffer ← ∅;
2: when contact with node p do
3: receive (Ip) from p;
4: send (my I) to p;
5: counter[Ip] ← counter[Ip] +1;
6: my U ← {∀ known I’s, counter[I]} ;
7: send (my U) to p;
8: receive (Up) from p;
9:

10: for all messages m in my buffer do
11: //(let Im be the interest to which m is addressed)
12: if (Im == Ip) then
13: send m to p and keep copy;
14: end if
15: if (Up(Im) > my U(Im))) then
16: send m to p;
17: if (I’m not interested in I) then
18: remove copy from buffer;
19: else
20: keep copy;
21: end if
22: end if
23: end for
24: receive messages from p and put them into buffer;
25: deliver to application the messages tagged with my I;
26: end do

Table II
SIMILARITY BETWEEN NODES IN AND OUT OF COMMUNITY

θW = 0.9 scenA scenB scenC scenD scenE
# nodes 5 5 10 12 12
simIN 0.2123 0.0197 0.2715 0.2537 0.2360
simOUT 0.2071 0.1211 0.1519 0.1703 0.1618

A. Analysis of the scenarios

For each scenario, we compute and analyze the similarity
between either nodes belonging to the considered location-
based community (simIN ), or between nodes belonging to
that community and nodes outside of it (simOUT ). The time
slot used to build association vectors is one day (i.e., 12
hours). Results are shown in Table II, where θW = 0.9 is
considered as the significant weight to determine the number
of vectors adopted when computing the similarity. Mind that
θW determines the degree of summarization of the nodes’
behavior. The shown values are averaged over all possible pairs
of nodes and are computed at the end of the experiment, that is,
after 13 association vectors were collected. We also considered
0.7 and 0.8 as values for θW : in all cases, variations are
negligible, in the order of 0.6% on average. As a consequence,
we decided to use θW = 0.9 in the rest of the paper. This setting
allows to exchange at most 4 vectors to compute similarity.

As it can be observed, for all, but one, scenarios the
similarity amongst nodes belonging to the same community
is higher than the similarity with outer nodes, thus correctly
individuating communities of nodes with similar mobility
behavior. These evaluations directly impact on the setting of
the similarity threshold (θPC) and can have heavy influence
of the algorithm performances and efficiency. The setting of

(a)

(b)

Figure 2. (a) simIN along the days. (b) Ratio between simIN and
simOUT along the days.

the threshold θPC will be discussed in the next section.
Interestingly, similarity shows a temporal dependency and

is dynamically changing over time. As shown in fig.2(a) for
simIN , the values of the similarity monotonically decrease
along the experiment days for all scenarios, arguably denoting
that users have not stable daily mobility habits. In fact in
our experiment, both faculties and students may change their
daily routines according to class schedules and meeting, while
technical staff often displaces to offices depending on the
needs. The ratio between simIN and simOUT stays quite
constant (fig.2(b)). Yet, for the two scenarios with ratio equal
or below 1 – namely scenA and scenB – it may reverse.

Lesson learnt: People routines may be unstable over days,
thus making similarity a monotonically decreasing function.
As a consequence, the setting of the value of θPC might
depend on the day we are considering and on the specific
location-based community to be addressed. This makes the
choice of the appropriate setting very tricky because nodes
have no a priory knowledge of the overall system behavior.

B. Sensitivity of ProfileCast to θPC

In this section, we analyze how the choice of θPC impacts
on the performance of ProfileCast. Coherently with the setting



(a)

(b)

Figure 3. Mean coverage for different values of θPC in (a) scenA and (b)
scenB.

proposed in [9] we consider, for the different scenarios,
θPC = 0.5 and we compare the influence of this setting against
a new set of values obtained from the evaluation of simIN
and simOUT , as reported in sec.V-A. In fact, the proper value
for θPC should be simIN > θPC > simOUT , in order to
try to maximize coverage for the considered target community,
while avoiding bothering uninterested nodes. The incorrect
delivery of a message to an uninterested node is cause of a
waste of node’s resources, e.g. memory, processing, energy
and radio channel. To have an indirect global estimation of
such a lack of efficiency, we estimate the number of nodes
receiving a message although they are not belonging to the
target community and thus uninterested in the message.

In fig.3, the behavior of the coverage is shown for two
different scenarios and different values of θPC . When the ratio
between simIN and simOUT is greater than 1 (fig.3(a))
– denoting that the similarity amongst the mobility behavior
of the nodes belonging to the target community is stronger
than with nodes outside the community – the coverage is
very stable also for values of θPC not perfectly fitting with
the criteria above, that is, either slightly greater than simIN
or lower than simOUT . Nonetheless, with a higher value
(namely θPC = 0.5), the coverage drastically drops. Scenarios
scenC, scenD and scenE behave similarly to scenA. If, by
contrast, similarities are in the reverse relationship (fig.3(b)),

(a)

(b)

Figure 4. Number of uninterested nodes receiving the message, for different
values of θPC in (a) scenA and (b) scenB.

θPC must be low enough to guarantee that the interested nodes
are reached. The effects of this choice affect resource saving:
the number of nodes not belonging to the target community
and receiving the message in spite of this behaves exactly the
same as coverage (fig.4). In scenB, a high coverage (> 80%)
is achieved when no threshold is set, thus resorting to a
broadcast. In this case, 33 out of the 39 uninterested nodes
– the 84% – receive the message.

Lesson learnt: as noticed in [9], θPC determines the trade-
off between coverage and resource utilization. In general, the
proposed value θPC = 0.5 turned out to be unsuitable to
perform adequately under the PMTR scenarios and a viable
policy to adapt its value to unpredictable conditions seems to
be hardly identified. This inability is inevitably paid with high
waste of communication, energy and processing resource.

VI. PERFORMANCE EVALUATION

In this section, we present the performance evaluation
obtained by means of simulations. Simulations recreated a
variety of conditions (see, sec.II-A), where sources belong
to the same location-based community C as the recipients.
Message generation starts on the second day, so as to allow
ProfileCast to collect at least one association vector to compute
similarities. We assume that every hour, each node in the
considered community generates a message labeled with an



Table III
θPC FOR DIFFERENT SCENARIOS

scenA scenB scenC scenD scenE
θPC 0.21 0.01 0.16 0.175 0.165

attribute of a given location-based community, to be mainly
used by ICast. Nodes have infinite buffers, and messages
have a lifetime longer than the time needed to deliver them.
Nodes encounter according to the PMTR trace, whose length
is 156 hours. The performance indexes analyzed are: coverage
(percentage of recipients in C that deliver the message),
mean number of hops to reach a recipient, mean latency to a
recipient, number of nodes involved as relays in the forwarding
of a message. All indexes are averaged over all recipients in C
and all sources. The mean number of hops and the number of
involved forwarders are an indirect measure of the algorithms
efficiency.

Table III shows the value of θPC we adopted for com-
parison between ProfileCast and InterestCast. These values
are chosen in order to maximize coverage while limiting
the useless message exchanges. For all the scenarios with
simIN > simOUT this is coincident with a value equal
to simOUT + ε for small ε.

With this setting, the mean number of hops followed by a
message to reach its recipients – averaged over all destinations
– is comparable for the two approaches, and are nearly 3-4
hops. Yet, performance is different in terms of both coverage
and resource waste (fig.5). For all scenarios, ProfileCast is
unable to reach the same coverage as ICast, while at the same
time it delivers the messages to a number of uninterested nodes
higher than the relays used by ICast. It is worth to notice
that, in the case of ICast, uninterested nodes are involved in
the forwarding process not because the message is erroneously
delivered to them, but because they are useful bridges to reach
the target community.

In fig. 6, we show the latency to reach the maximum
coverage of recipients for the two protocols. The latency
obtained by ICast is apparently higher than that of ProfileCast,
but this is due to the fact that it is evaluated on the reached
destinations, and ICast obtains a higher coverage. In fact, if we
evaluate the ICast latency by truncating the message diffusion
when the same coverage as ProfileCast is reached (fig. 6),
we can observe that ICast takes approximately the same time
to reach the same number of destinations as ProfileCast. We
conjecture that for ProfileCast, the involvement of uninterested
nodes – which become on their behalf message forwarders
to nodes similar to themselves (rather than to the source) –
introduces a factor of “deviation” from the path to the targeted
recipients.

Lesson learnt: this experiment shows that the explicit tagging
of a message, with interest name associated to the content,
combined with an algorithm capable to chase interests has
higher performances and efficient use of resources when dif-
fusing contents to location-based communities. This is due to

(a)

(b)

Figure 5. Comparison between ProfileCast and InterestCast in terms of
(a) obtained coverage, and (b) number of uninterested nodes involved in the
forwarding.

the today’s inability of appropriately capturing human behavior
and of adequately tuning the parameters that automatically
measure the similarity between behaviors.

VII. CONCLUSION

In this work, we present a comparison through simulations
between two mechanisms for the diffusion of messages among
nodes sharing a common behavior. ProfileCast leverages mech-
anisms to automatically extract the intrinsic characteristics of
the users from their behavior pattern; a content generated by a
node is implicitly addressed to users with similar behavior as
the source. InterestCast matches content tags against interests
explicitly expressed by the users. In summary, ProfileCast may
suffer a complex and computing-expensive parameter estima-
tion, which depends on both time and set of target destinations.
This is due to a current unavailability of accurate mechanisms
for capturing and representing the manyfold aspects of user be-
havior. As a consequence, on one hand ProfileCast forwarding
mechanism achieves lower coverage and higher latency than
ICast; on the other hand, it involves a higher number of nodes
not interested in the content, thus wasting resources. ICast,
by contrast, does not require parametrization, it is intrinsically
able to chase destinations across community boundaries, but it
resorts to a rigid identification of the target, unable to identify



Figure 6. Comparison between ProfileCast and InterestCast in terms of
latency.

destinations with affine – yet not coincident – characteristics
as the source (i.e. the target).

The considered research area is very active at the moment.
The main activity we are focusing on is the deployment of
an in-field experiment which will enable the understanding of
existing correlations among contact/sociality/location/interest
of moving people. To the best of our knowledge, this would be
the first dataset publicly available to the research community
and will allow to validate algorithms for Opportunistic Net-
works in a real setting. The availability of those data will pave
the way for the design of mechanisms to accurately represent
users characteristics, which will be useful for inclusion in
the forwarding algorithms. This analysis shall also model the
dynamics of the user’s behavior patterns within the consid-
ered time window. All these activities prepare the planned
deployment of a testbed for one-to-many content diffusion to
behavioral groups.
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