
JUBITO: An interoperable platform for wellness

Yiannis Ambeliotis

Independent Software Developer

Athens, Greece

john.ambeliotis@gmail.com

Kostas Giokas (kgiokas), Dimitris Koutsouris

(dkoutsou)

Biomedical Engineering Laboratory

ICCS, NTUA

Athens, Greece

@biomed.ntua.gr

Abstract—Jubito is a web server for connecting software and

hardware components based on the open source jaNET

framework [1]. Jubito provides you with an intuitive platform

that enables you to interconnect hardware and software

components, as well as publish your projects online. In this paper

we will give the reader some examples of Jubito use with the the

Arduino platform.

Keywords-component; open source; interconnected software

and hardware; wellness; rfid

I. INTRODUCTION (HEADING 1)

Assistive domotics is a field where home automation allows
the elderly and disabled to stay comfortable at home but can
also offer possibilities such as increased safety (access control,
intrusion detection), robotics, etc. jaNET offers multiple
functions and API commands that Jubito can use in order to
interact with multiple vendor hardware (especially open source,
e.g. Arduino, RaspberryPi, etc.). Using Jubito one can take
control of jaNET via a mobile phone (our application is
currently supported by Android KitKat or newer). The use of
Jubito is to provide an intuitive user interface for the advance
user to control sensors via jaNET. The advantage of our tools
lies in their ease of use and the usability that is offered by the
Android operating system so that any user with some
programming skills can very quickly set up his controlled
environment.

II. EXAMPLES OF USE AND IMPORTANT TOOLS

In this section we will describe some of the most useful

examples of use for Jubito and jaNET that can very easily be

integrated and used in a smart home environment. Also our

most importa

A. Arduino temperature and humidity using DHT11/DHT22

modules

Below there is a tutorial on how to measure temperature
and humidity of a particular room in the house. The hardware
requirements for this example is an Arduino, a DHT11 or
DHT22 module (temperature and humidity sensor module).
The DHT library is also a requirement. We should use the
following command to choose the type of sensor

#define DHTTYPE DHT11 or (1)

#define DHTTYPE DHT22 (2)

We should then launch the command to get the temperature
(dhttemp) and we do that by adding a new launcher specifying
an action.

Should we need to test the new launchers we can do so via
the mobile app using the commands below:

Figure 1. Connecting Arduino via seriar port UI

We can now add the launchers to our dashboard after filling
in some mandatory and some optional fields. By editing html
files we can enable notifications in the Dashboard’s home
screen.

The code we need to add contains the getData function and
is as below:

$.get('_.html?cmd=judo serial send dhttemp', function
(data) {
 $('div#tempc').html(data.replace('<br /\>', '') + '°C');
}, html');

$.get('_.html?cmd=judo sleep 1500; judo serial send hum',
function (data) {
 $('div#humid').html(data.replace('<br /\>', '') + '%');
}, 'html');

MOBIHEALTH 2014, November 03-05, Athens, Greece
Copyright © 2014 ICST
DOI 10.4108/icst.mobihealth.2014.258062

mailto:john.ambeliotis@gmail.com
mailto:kgiokas@biomed.ntua.gr

Figure 2. Add Launcher command

Figure 3. The Dashboard with notifications

Figure 4. Testing the launchers via mobile app

B. Posting actions via QRCode

jaNET supports RESTful [2] commands. By using web
services we can post a command to our webserver either over
the web or use a common QR Code maker. By typing our web

server‘s hostname together with the REST style command we
can execute a corresponding action.

Figure 5. RESTful commands via QRCode

C. The Scheduler

One very important tool of Jubito is the scheduler. The

scheduler can take the form of a simple notification, a

hierarchy of tasks or even a daemon. The scheduler has

several parameters such Name (a schedule handler), Date

(when a recurring action should stop and be removed from the

schedule when completed), Periodicity (actions that can take

place daily, on weekends, on working days at a specific hour,

etc.) and Action (can be a single sentence or an instruction set

call)

Figure 6. The scheduler

The scheduler can fulfil a number of scenarios like, wakeup

call (ask me to wake up work days at 7am, tell me the weather

conditions, turn on the room light), automation control (turn

off garden lights daily at 11pm) or check-out after 10am when

I'm living for work etc.

III. EVALUATION FUNCTION AND ITS USE

Almost all Jubito/jaNET functions can be extended by using

the evaluation function. When we need to apply logic we use

Identify applicable sponsor/s here. (sponsors)

the evalBool statement. The evalBool function returns one or

two states, depending on the evaluation of an expression. The

parameters we can use are: Expression (required, Boolean, it is

the expression we want to evaluate), True Part (Instruction

Set, it is called when Expression evaluates to True), False Part

(Instruction Set, it is called when Expression evaluates to

False. Below is an example of the syntax:
{ evalBool (expression); <true part>; <false part>; } (3)

Below is a list of relational and conditional operators:

equal to: ==
 i.e. (x == y)
 i.e. ("x" == "y")
 * String comparison require quotes
not equal to: !=
 i.e. (x != y)
 i.e. ("x" != "y")
 * String comparison require quotes
greater than: >
 i.e. (x > y)
less than: <
 i.e. (x < y)
greater than or equal to: >=
 i.e. (x >= y)
less than or equal to: <=
 i.e. (x <= y)

conditional AND: &&
 i.e. (x > 10 && x < 20)
conditional OR: ||
 i.e. (x == 10 || x == 20)

contains (Supported on ver. 0.2.1 of libJanet. To check your
version, go to terminal tab and type %about%)
 i.e. (this is a test ~> is a)
 i.e. (%todayconditions% ~> Sunny)

An example would be:

{ evalBool(*getTemp > 30); foo1; foo2; }

Which translates as:

“If temperature is greater than 30 degrees then turn on a fun
(foo1) else turn it off (foo2)”

Figure 7. Evaluation function for the checkrain instruction

IV. CONCLUSIONS

Looking at the above examples we can understand the power

and simplicity of the jaNET framework for manipulating and

integrating software and hardware sources and components.

Jubito is an intuitive user interface that can be used with or

without a microcontroller (such as Arduino) and both can be

used to link different projects and technologies and manage

them from a central point (mobile device).

Moreover we offer these tools free of charge to the

developer’s community. We have set up a Google group as

well as a code contribution channel [3] for developers

++++

REFERENCES

[1] Project jaNET – An open source framework for devices control,
https://sites.google.com/site/projectjanet

[2] Richardson, L., & Ruby, S. (2008). RESTful web services. " O'Reilly
Media, Inc.".

[3] Google Code group https://code.google.com/p/project-janet/

https://sites.google.com/site/projectjanet
https://code.google.com/p/project-janet/

