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Abstract—Spasticity is a common disorder of the skeletal
muscle with a high incidence in industrialised countries, occurring
for example after multiple sclerosis or stroke and is associated
with brain or spinal cord damage. A quantitative measure of
spasticity using body-worn sensors is desirable in order to assess
rehabilitative motor training and prevent damage, induced by
the externally applied forces or torques from the movement
support system. In this contribution we present a new approach
to spasticity detection using the Integrated Posture and Activity
NEtwork by Medit Aachen (IPANEMA) body sensor network
(BSN). Towards this goal, a new electromyography (EMG)-sensor
node is developed and employed in human locomotion. Following
an analysis of clinical walking data of hemiplegic patients, a novel
algorithm is developed based on the idea to detect co-activation
of antagonistic muscle groups as observed in the exaggerated
stretch reflex with associated limb or joint rigidity. The algorithm
is subsequently employed in real walking tests conducted with
the IPANEMA BSN showing good detection performance. We
furthermore introduce a measure for the spasticity severity based
on energy considerations of the recorded EMG signals.

Keywords—EMG, neurological diagnostics, spasticity, signal
processing

I. INTRODUCTION

Electromyography (EMG) has gained importance in a num-
ber of areas over the last decades. Besides applications such as
neurologic diagnostics and movement analysis, EMG is also
increasingly used in training or rehabilitation scenarios in order
to provide for example visual or audio feedback. The combina-
tion of EMG sensors with inertial measurement devices (IMU)
in body sensor networks (BSN) leads to promising solutions
towards a wearable evaluation for the human posture control
system (PCS) with numerous application areas [1]. However,
such systems, although increasingly applied to quantitative
assessment of the PCS and associated disorders, are often
limited to a research environment [2]. The rationale is the
increased complexity of these methods, leading to an increase
in instrumentation and personnel costs. Thus small and cheap,
yet quality sensitive devices with minimal instrumentation
effort are needed to reduce troublesome preparation times for
patients and clinicians. Furthermore, such a wearable system is
needed to contribute to a clinical diagnostic method remaining
easy and practical. Currently developed platforms, presented
for example in [3], [4], [5], are promising approaches to such
wearable solutions.
A current challenge in the management and the assessment of
medical therapy and rehabilitation training is the quantitative
evaluation of spasticity, associated with the upper motor neuron
syndrome (UMNS). Spasticity was defined by Lance [6] as a
motor disorder characterised by a velocity-dependent increase
in tonic stretch reflexes (“muscle tonus”) with exaggerated
tendon jerk, resulting in hyper excitability of the neuron
syndrome. Spasticity may occur after spinal cord or brain

damage with a high incidence in multiple sclerosis (85 % of
subjects) and stroke (35 % of subjects) [7]. Thus improving
the quality of life of the affected subjects by a reduction
of spasticity should be the goal of rehabilitation therapy and
can be achieved by for example robot-mediated sensorimotor
training [8]. A body-worn measurement technique is thereby
suggested to enhance the rehabilitation process of UMNS
patients suffering from spasticity by providing a quantification
of therapy improvement on the one hand and an additional
online available spasticity information and associated joint
rigidity on the other hand.
Besides qualitative measures of spasticity, like the Ashworth
Scale or the Modified Ashworth Scale (MAS) [9], a number
of quantitative measures have been introduced by different
authors. Among the available techniques are electrophysiolog-
ical measures, involving EMG and electrical or biomechanical
stimulation. Tests based on EMG data recording and electrical
stimulation are for example the Hoffman reflex and F-Wave
[10] or the tendon reflex and stretch reflex for biomechanical
stimulation [11]. In the case of biomechanical measures, con-
tinuous EMG recordings are combined with external applied
devices or measurement systems to measure forces, positions
and velocities [12].
In contrast to these approaches, we propose a method for
the online detection of spasticity during normal walking.
Our approach is based on the analysis of hemiplegic patient
gait data recordings, including EMG-signals from the lower
extremities. Our findings show a strong indication of antago-
nistic muscle co-activation during pathological gait; a pattern
occurring at certain gait instances that is typically not observed
in normal horizontal walking [13]. Based on these findings, our
developed algorithm uses a cross correlation function (CCF)
on the filtered and pre-processed EMG-data of antagonistically
working muscle groups. The detection algorithm is extended
by a weighting of successful detection events with the energy
of the corresponding moving window.
This contribution is organised as follows. Section II introduces
two new hardware design approaches for the new “Integrated
Posture and Activity NEtwork by Medit Aachen” (IPANEMA)
BSN EMG sensor node and provides the analysis of hemi-
plegic gait data. Section III describes the new algorithm, which
is then first validated on clinical data followed by a test with
experimental data of the IPANEMA BSN EMG node in section
IV. Finally, section V ends with a discussion and conclusion.

II. MATERIALS AND METHODS

A. IPANEMA BSN

The “Integrated Posture and Activity NEtwork by Medit
Aachen” (IPANEMA) is a modular structure BSN, consisting
of a master and multiple slave nodes and allows for easy
integration of sensor modules. Figure 1 shows an overview of
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the IPANEMA BSN hardware. Communication between BSN
nodes is realised via the 433 MHz industrial, scientific and
medical (ISM) band (CC1101 Texas Instruments Inc, USA).
Although achieving a lower data rate, IPANEMA is thus less
prone to electromagnetic shadowing effects of the human body
[5]. The maximum data rate of the BSN is 250 kbps which is
sufficient for the typical activity and physiological parameter
measurements, but limits the application to a number of
EMG-channels. Communications over the star-shaped network
architecture is realised by Time Division Multiple Access
(TDMA). IPANEMA hardware and software are designed in a
modular way to guarantee communication of various extension
boards, like for example the Hardware Abstraction Layers
(HAL) and the Medium Access Control (MAC), respectively.
The IPANEMA slave nodes can be easily attached to different
segments of the human body to provide EMG measurements.
Besides the wireless transceiver, shown in Fig. 1, the BSN
is equipped with a microcontroller (MSP430F1611, Texas
Instruments Inc., USA), two extension ports (CLP160-02-X-D,
Samtec USA) and the power management (LTC3558, Linear
Technology, USA). The current IPANEMA BSN, which was
used for the measurements, is in generation 2.5.

B. EMG extension board

Two different EMG-sensor nodes (SN) were developed and
compared to each other. The first board uses an integrated
frond-end with eight separate 24 bit AD-converters (ADS1298,
Texas Instruments Inc., USA). The device is specifically de-
signed for electrocardiography (ECG) devices and thus satisfies
typical requirements, necessary for biopotential measurements.
Besides differential measurement inputs, low noise and a
high common mode rejection ratio, the ADS1298 is equipped
with ECG specific functionality, like for example pace detec-
tion, which were not used in this work. Components, which
increase the EMG signal quality, like the right leg drive
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Fig. 1: Design of the IPANEMA main board.

(RLD), are used for this work. Another advantage of the
ADS1298 are the programmable gain amplifiers, which can
be adjusted by software to a gain ranging from 1 to 12. In
addition to the ADS1298, a second EMG extension board
was built from discrete elements. Table I shows the properties
of EMG ADS1298 and EMG discrete extension board. The
main component of the EMG discrete board is thereby the an
analogue front end (MSP430AFE253, Texas Instruments Inc.,
USA) with integrated microcontroller and three separate 24 bit
Σ∆-AD-converters. An instrumentation amplifier (INA128,

TABLE I: Comparison of the developed EMG ADS1298 with
the EMG discrete extension board.

Property EMG ADS1298 EMG discrete
ADC resolution 24 bit 24 bit

dimensions 33 mm x 36.5 mm 35 mm x 36.5 mm
channels / board 2 1

channel density / area 0.16/cm2 0.078/cm2

max. # of channels 8 3
max. channels / area1 0.664/cm2 0.235/cm2

current drain of the SN 0.46 mA 1,7 mA
input CMRR2 98-115 dB 95-105 dB

Texas Instruments Inc., USA) and two second order filter
stages, which limit the signal to 20-450 Hz form the input
stage of this module. Furthermore, an additional operational
amplifier is used (OPA2131, Texas Instruments Inc., USA) as
a right leg drive. The communication with the IPANEMA main
board (Fig. 1) is established via the SPI-bus (for both, EMG-
ADS1298 and EMG-discrete boards).
Validation of the two boards using EMG biopotential mea-
surements shows the superior data quality of the ADS1298
extension board. In addition, the absolute value of energy
consumption is given by 0.75 mW/channel and thus the range
the energy consumption of the MSP430F16xx. The discrete
extension board needs a much higher supply current. A further
advantage of the ADS1298 is the online adaption of gain
ratios for each channel, which can be used, for example
to adapt the EMG measurement according to a range of
conditions. A higher flexibility could for example be obtained
by adjusting the gain for a difficult measurement involving
obesity. As the result, the decision was made for the ADS1298
extension board, which is able to provide two EMG-channels
per extension board each of which sampled at a rate of 1 kHz.
The signal processing of the EMG ADS1298 extension board
is shown in Fig. 2. Here, the left hand side of the figure
shows the analogue-digital converter (ADC), including a dif-
ferential low-pass filter (LPdi f f ), a programmable gain array
and a digital decimiser LPDD. The digital signal processing
implemented on the computer system, limits the EMG-signal
to main spectral components ranging from 20-450 Hz [14].
This additional computer system receives the EMG-node data
from the BSN master via Bluetooth. Thus, two finite impulse
response (FIR) filters were employed, as a low pass and
a high pass filter with cut-off frequency of fc,HP = 18 Hz
and fc,LP = 450 Hz, respectively. Furthermore, the signal
processing chain is extended by a notch filter to reduce the
influence of 50 Hz commercial power frequency.

1Assuming unaltered dimensions.
2Extraction from data sheets.
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Fig. 2: EMG digital signal processing with LP: low-pass filter, HP: high-pass filter, NF: notch filter, LPdi f f : differential low-pass
filter, LPDD: digitial decimiser, PGA: programmable gain array and fmod : modulation frequency of the ADC (ADS1298/BSN
denotes processing on the BSN, where computer system denotes offline data processing on a laptop).

C. Analysis of hemiplegic gait data

In order to identify features for the classification of spas-
ticity during normal horizontal ground walking, we analysed
EMG data of a patients with dexter spastic hemiparesis. Since
spasticity is characterised by an increased velocity-dependent
tonic stretch reflex, motion is hindered by a likewise increased
velocity dependent stretch resistance of the corresponding
muscles. Thus, flexor and stretcher, working as agonist and
antagonist in different phases of the gait cycle, stiffen the
affected joint. This effect is due to the passive motion of the
corresponding muscle in the non-activated cycle of the gait.
In case of the lower extremities, spastic hemiparesis usually
establishes an outer rotation of the leg in addition to a lifting
of the pelvis at the hemiparetic side. An increased stretch
of the hip and knee, an inversion of the foot and plantar
flexion of the toes can also be observed, whereupon the latter
features are usually collectively combined as club foot. Typical
characteristics, like the stiffening of the lower extremity and
the club foot, could be identified via combined EMG and video
analysis of patient data. Using the fact of an involuntarily
increase of muscle activity while passively stretched, we con-
sidered the activity cycle of antagonistically working muscles
for stance. As described in [15], the increase in muscle tonus
caused by excitation or strain can also be observed in a healthy
person. However, usually this increase decays at a much faster
rate. Furthermore the multiple repetition of a single movement
pattern does not lead to such a disproportionate increase in
muscle tonus like in the spastic hemiparesis case.
A basic consideration for the online detection of spasticity
in normal ground level walking was derived from muscle
sequence analysis during stance [13]. Fig. 3 shows the typical
muscle activation cycle of the lower leg muscle Tibialis Ante-
rior (TA, front tibia) and of the Gastrocnemius Lateralis (GL,
inner calf). It can be clearly seen that there is no co-activation

Fig. 3: Muscle activation (y-axis) sequence over a gait cycle
(x-axis) during normal horizontal walking for Anterior Tibialis
(green) and Gastrocnemius (magenta) (modified from [13]).

of these muscles, which was used the data analysis. For that,
the recorded EMG-data were rectified and smoothed with a
root mean square (RMS) function, working on a 250 ms time-
window. A detailed data analysis of different muscles showed
noticeable changes in the hemiparetic leg, if compared to the
healthy leg. Changes are especially noticable when comparing
the TA and GL EMG-recorded and filtered data. Figure 4
shows a result of the analysis with filtered data of the TA
and GL plotted over a number of gait cycles. It can be clearly
seen that a co-activation of the antagonistically working TA
and GL muscles occurs in the spastic hemiparetic leg, while in
the healthy leg the activation occurs according to the sequence
in Fig. 3. Furthermore, the maximum activation of TA and
GL takes place at the same time. Based on these findings we
develop the algorithm for the online detection of spasticity.

III. SPASTICITY DETECTION ALGORITHM

The main limitation of the algorithm is the later imple-
mentation in a low-power application. The spasticity detec-
tion and quantification algorithm should hence be developed
to provide minimal calculation cost, yet offering a quality
sensitive solution to the given problem. Towards this goal,
two valid assumptions about the recorded EMG-signals were
made. On the one hand, the EMG-signal can be seen as
a stationary random process, if we choose a time-window
that is small enough. On the other hand, it is assumed that
the statistical characteristics of two stationary EMG-random
processes are independent, yet time-delays occur mutually
for both processes. Therefore, we are able to introduce the
first function for peak detection (PD) with the assumption of
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Fig. 4: EMG activity recordings of hemiplegic gait data; patho-
logic right leg (upper) and healthy left leg (lower) comparing
data of the muscles Tibialis Anterior (TA) and Gastrocnemius
Lateralis (GA).



stationary processes. Consider two windows of length N for
data vectors sTA(n) and sGL(n) at time-step k for which the
cross-correlation function (CCF) RTA,GL(m) is defined as

RTA,GL(m) =


N−m−1

∑
n=0

sTA(n+m)sGL(n), m≥ 0

RTA,GL(−m), m < 0,
(1)

with positive integers n, m is the continuous index and c(m)
denotes the cross-correlation vector of length 2N−1 given by

c(m) = RTA,GL(m−N). (2)

Based on the middle of the CCF cN , the nearest maximum in a
neighborhood ∆n is determined. If the nearest neighbourhood
maximum is the global maximum over the time window, a co-
activation is assumed to be detected and might be due to spastic
co-contraction. The function thus gives a binary information
over the gait cycle KCA ∈ {0,1}. Fig. 5 shows the CCF the
healthy (left) and the spastic hemiparetic lower limb EMG
signals of sTA and sGL over two windows of length N = 500.
Normalised CCF varies strongly for the two different legs, as
can be clearly seen from the lower part of Fig. 5. Thereby
the lower right subplot indicates an occurrence of antagonist
muscle co-contraction and whereas the lower left subplot does
not.
In addition to the detection of antagonistic muscle co-
contraction due to spasticity, the case of muscular inactivity
of both muscles must be excluded from a possible detection.
For that, the binary detection value of the current time-window
was weighted by the signal energy equivalent, given by the
square of the 2-norm

Ei = ‖si‖2
2 = 〈si,si〉, i ∈ {TA,GL}. (3)

In addition to that, the algorithm is continuously updated
with the maximum of the signal energy which is then used
to normalise newly calculated energy content. Thus changing

Fig. 5: Rectified, average mean EMG signal of TA and
GL for 500 values (upper part, different y-axis ranges) and
resulting CCF (lower part) of healthy (left column) and spastic
hemiparetic limb (right).
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Fig. 6: Input EMG-signals and algorithm output for pathologic
gait pattern (negative counts result from signed integers).

measurement conditions or muscle fatigue are managed, avoid-
ing a normalisation of the EMG-signal at the beginning of a
measurement. The spasticity index is given by weighting of
the decision variable KCA

ICA = KCAETAEGL, (4)

with the energy equivalent of the corresponding muscles. In
a heuristic procedure, parameters size of time-window N,
maximum distance to mid-CCF ∆n and relative increment for
the new time-window srel were tuned. N and srel are critical for
fast execution of the algorithm, however too small values of N
and srel result in a smaller distance to mid-CCF and a time-lag
of subsequent detections, respectively. Thus parameters were
set to N = 200 and srel = 0.25. The maximum distance to mid-
CCF was set to ∆n= 0.1 following experimental results, which
allows for a relative deflection of 10 %. Fig. 6 shows the result
of the algorithm for spastic hemiparetic side of the patient. The
algorithm strongly indicates co-contraction of antagonistically
working muscles due to spasticity. In the case of the healthy
leg (not shown), detection values ICA are below 5%, except for
an initial phase, where walking is started and values of about
50% could be observed.

IV. EXPERIMENTAL VALIDATION

After validation of the algorithm with clinical data, the al-
gorithm was experimentally validated with the new IPANEMA
BSN EMG node. Walking tests were conducted with surface
EMG (sEMG) Ag/AgCl electrodes (2228, 3M, St. Paul, USA)
following standard procedures for skin preparation. Two sEMG
electrodes were applied to the TA and GL and the RLD
reference electrode was placed at the ankle. EMG tests were
conducted on horizontal ground walking, in which a healthy
subject was instructed to mimic the movement pattern of
spastic hemiparetic gait following a detailed video analysis of
the clinical data. Since the club foot was evidently manifested
in the recorded clinical data, it was adopted as one of the
main characteristics for walking. However, it has to be noted
that measurement results cannot be used to extend physi-
ological understanding of spastic hemiparesis and walking
tests were conducted to test the algorithm in connection with
the IPANEMA BSN EMG real-time recorded signals. The
data was recorded to measure and compare the quality of



the IPANEMA BSN recordings and the spasticity detection
algorithm. At the beginning of an experiment the muscles
were co-contracted to about 70% to get an initial value for the
normalisation of the signal. The result of the club foot simu-
lated gait is shown in Fig. 7. Co-activation of muscles during
gait was successfully detected and subsequently weighted by
agonist and antagonist energy. In case of normal horizontal
ground walking (not shown), besides an initial co-activation
(for initial normalisation) the algorithm did not detect any co-
activation of TA and GL and ICA remained below 5%. Peak
values of ECA during the mimicked club foot walking, apart
from the initial co-activation phase, showed values of up to
65% (where in the initial co-activation phase an ICA of about
70% was achieved).

V. CONCLUSION AND DISCUSSSION

In this contribution, we described the development of two
IPANEMA BSN - EMG extension boards, whose intended
use was online spasticity detection in hemiparetic walking,
but are not limited to this application. The advantage was
given to the ADS1298 board because of the low power
consumption and the higher number of available channels.
The new IPANEMA BSN extension board is able to support
two EMG-data channels with a rate of 1 kHz each, which
is enough for the typical EMG application. In a detailed
frequency analysis of clinical hemiparetic walking EMG data,
we were not able to identify significant characteristics which
could be used to distinguish between spastic hemiparetic and
healthy walking. We thus developed a novel algorithm for
spasticity detection, based on the idea to detect co-activation
of antagonistically working muscles and extended the index
by an energy weighting of the corresponding muscles. Initial
evaluation using clinically recorded data of spastic hemiparetic
walking revealed good performance with high incidence of
pathological gait patterns, compared to a low incidence of the
healthy leg of the patient. However, the available data basis is
not sufficient to conclude the proposed index ICA as a general
classifier for spasticity in other manifestations. Thus, future
work will be concerned with the extension of the EMG-data
basis to include test subjects of varying degree of spasticity
in different manifestations. Furthermore, the assessment of the
identified features by a supervised learning classifier, like for

−5,000

0

5,000

M
us

cl
e

ac
tiv

ity
of

G
L

[c
ou

nt
s]

−5,000

0

5,000

M
us

cl
e

ac
tiv

ity
of

TA
[c

ou
nt

s]

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

0.5

1

Time [s]

I C
A

Fig. 7: Input EMG-signals and algorithm output for IPANEMA
BSN EMG mimicked hemiparetic walking.

example a support vector machine is another option for future
work. However, one has to bear in mind the limited amount
of calculation power. Finally, we conclude that the index ICA
based on the co-activation of the Tibialis Anterior and the
Gastrocnemius Lateralis can be used to specify spasticity in
hemiparetic walking. A cross correlation function, extended by
sEMG signal energy weightings enables the computation of an
online spasticity quantification index, which shows promising
results for clinical as well as IPANEMA BSN EMG data.
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