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Abstract—The measurement of respiration rate and tidal 

volume variability are critical to the diagnosis and monitoring of 

a wide range of breath disorders as well as being useful broader 

parameters of a patient’s condition. This paper presents a 

portable real-time platform designed to support a 

computationally efficient human respiratory tracking system for 

medical applications. The proposed system is designed 

particularly for patients with breathing problems (e.g. 

respiratory complications after surgery) or sleep disorders. We 

introduce the use of accelerometer sensor to detect changes in the 

anterior-posterior diameter of the chest; whereas these changes 

provide an accurate measurement of respiration rate as well as 

tidal volume variability. The complete system was comprised of 

wearable calibrated accelerometer sensor, Bluetooth Low Energy 

(BLE) and cloud database. The experiments are conducted with 8 

subjects and the overall error in respiration rate calculation is 

obtained 0.2% considering SPR-BTA spirometer as the 

reference. We also present a method for Tidal Volume variability 

(TVvar) estimation while validated using Pearson correlation. 

The mean value of the correlation coefficient between TVvar 

derived from the accelerometer and spirometer for all subjects 

and three breath patterns is 0.87 which shows a high 

correspondence of two signals. Furthermore, the results indicate 

that the accelerometer driven TVvar achieves the average MSE 

1.6E-03±3.69E-03 compared to the reference. 

Keywords-respiration rate; tidal volume variability; 

accelerometer; Bluetooth Low Energy 

I.  INTRODUCTION  

The measurement of human respiratory signal is crucial in 

cyber biological systems. There are different respiratory 

disorders such as heart failure, cardiac arrhythmias, and 

atherosclerosis which can be the first symptom of different 

physiological, mechanical, or psychological dysfunctions [1]. 

A real-time monitoring of the respiration rhythm as well as 

breath patterns plays an important role in both diagnosis and 

treatment of different disorders. Measurements of interest may 

include respiratory rate, breathing pattern, and changes in tidal 

volume over time. All these parameters can be measured by 

direct methods which require breathing through some devices 

such as spirometer and nasal thermocouples [2]. There are also 

other traditional methods such as impedance plethysmography 

[3], pneumatic respiration transducers, the fiber-optic sensor 

[4], the Doppler radar [5], and electrocardiogram (ECG)-based 

derived respiration measurements [6]-[8]. However, these 

techniques are obtrusive and are not practical to be included in 

a body sensor network for continuous monitoring outside of 

hospital environments.  Moreover, changes in resting 

respiratory rate and tidal volume are recognized as important 

indicators of physical health or the exacerbation of medical 

conditions, such as chronic obstructive pulmonary disorder 

(COPD). The respiratory rate is commonly assessed by visual 

observation in medical centers, which is not practical for 

remote monitoring and is also prone to error [9]. Therefore, 

designing a portable respiratory platform is needed for 

monitoring outside clinical environs. An accurate data 

representative of a subject’s natural behavior over extended 

periods of time (whole day or even a week) would be of 

important utility in this realm. Another potential application of 

such a monitoring system is continuous tracking of patients 

after major surgery. Indeed, the respiratory complications after 

surgery can be severe, and in some cases, even fatal. Opioid-

induced respiratory depression is a risk factor after surgery, for 

which irregularity of breathing and a rise in tidal volume 

variability are good indicators [10]. One recent area of interest 

is applying motion sensors to detect the small movements of 

the body that occur during expansion and contraction of the 

lungs. A validation of respiratory signal derived from 

suprasternal, notch acceleration has been investigated by [12] 

for different body positions. They show that the respiration rate 

from the accelerometer has 1.55% error with respect to the 

spirometer. Their data storage and processing is performed on a 

computer with their custom build LabVIEW Virtual 

Instrument. In [12] the respiratory component is also extracted 

from the accelerometer mounted on the suprasternal notch of 

subjects. The vibrations are recorded with a transducer 

electronic data sheets (TEDS) lightweight piezoelectric 

accelerometer. Their results represent the feasibility of 

implementing an accelerometry based portable device for 

respiration recordings. The data acquisition is done with a 

compact system and a laptop where data were stored to be used 

later. Recently, [13] introduced a fusion algorithm for 

accelerometer and gyroscope signals to calculate the respiration 

rate. They considered two types of exercises, and the 

respiration rate errors are calculated as 4.6% and 9.54% for the 

treadmill and leg press, respectively.   

The main objective of this study is to provide a cloud-based 

tool for accurately monitoring the respiration patterns of the 

patients with an accelerometer sensor. The previous systems 

often require a laptop, memory card or handheld PC to be 

carried by the subject due to the processing, data storage, and 

power requirements of the sensory equipment. However, in our 

system we use cloud database which can offer significant 

advantages over traditional methods, including increased on-

line accessibility, scalability, automatic failover and fast 

automated recovery from failures.  The accelerometer data is 
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transmitted via Bluetooth Low Energy (BLE) to 

PC/Smartphone and then is sent to the cloud to be processed 

and saved, immediately. It is worth mentioning that in case of 

network disconnection, the data is saved on the intermediate 

interface. Therefore, the physicians can track the patients 

wherever they are with devices such as an iPhone, iPad or the 

web regardless of their proximity to the patients.  

Moreover, the accuracy of respiration rate compared to 

previous works [12], [13] has been improved in view of rest 

condition and moderate movements. Since, to the best of our 

knowledge, there is no accurate device to remotely measure the 

tidal volume variability and direction of the changes in 𝑉𝑇, in 

this paper we also propose an efficient technique to achieve 

𝑇𝑉𝑣𝑎𝑟  from outside of medical centers. Fig. 1 briefly described 

the proposed respiration monitoring platform. 

 

Fig. 1.  Overall view of the proposed cloud-based respiration monitoring 

platform 

In section II, a procedure is presented to accurately 

calculate the respiration rate. In section III, Tidal Volume 

Variability (𝑇𝑉𝑣𝑎𝑟) has been investigated from the 

accelerometer respiration signal. Experimental results are 

presented and discussed in Section IV. Finally Section V 

concludes the paper.  

II. RESPIRATION RATE ANALYSIS 

In this section, a procedure is described to estimate the 

respiration rate at rest positions. In order to deliver high 

accuracies for the sensor measurements, we first perform a 

calibration technique using least square method proposed by 

[14]. Calibration, which is defined as the process of mapping 

raw sensor readings into corrected values [15], is critical in 

cyber-biological systems due to inherent deficiency or aging 

problems. 

Generally, different special tools with specialists experience 

are required for sensors calibration; however, a straightforward 

method to calibrate an accelerometer is performed at 6 

stationary positions [14]. We need to collect a few seconds of 

accelerometer raw data at each position. Then the least square 

method is applied to obtain the 12 accelerometer calibration 

parameters. The calibration procedure is simple, and needs to 

be executed once. The calibration procedure can be briefly 

explained as follows: 

[𝑎𝑥′ 𝑎𝑦′ 𝑎𝑧′] = [𝑎𝑥 𝑎𝑦 𝑎𝑧 1 ]. [

𝑎𝑐𝑐11 𝑎𝑐𝑐21 𝑎𝑐𝑐31

𝑎𝑐𝑐12 𝑎𝑐𝑐22 𝑎𝑐𝑐32

𝑎𝑐𝑐13 𝑎𝑐𝑐23 𝑎𝑐𝑐33

𝑎𝑐𝑐10 𝑎𝑐𝑐20 𝑎𝑐𝑐30

] 

𝒚 = 𝒘. 𝑿 

Where: 

 Vector 𝒘 is accelerator sensor raw data collected at 6 

stationary positions 

 Vector 𝒚 is the known normalized Earth gravity 

vector. 

 Matrix 𝑿 is the 12 calibration parameters that is 

determined as below: 

  𝑿 = [𝒘𝑇 . 𝒘]−1. 𝒘𝑇 . 𝒚       

Our analysis is based on the acceleration signals recorded 

with a three-axis accelerometer, mounted on the subject’s 

chest. Due to the location of the sensor, the major direction is 

z-axis which clearly reflects the anterior-posterior motions of 

the chest. To remove the disruption movements, the raw sensor 

data is filtered through a 10th order, Butterworth (IIR) low 

pass filter with cut of frequency 1Hz. Fig. 2(a) depicts a part of 

respiration flow from spirometer for normal breathing pattern 

of a 29 years old man. We apply a numeric integration 

algorithm in which the trapezoidal rule was used to estimate 

the area under the flow curve and obtain the respiratory 

volume drawn in black in Fig. 2(b). As can be seen, even 

though two signals seem similar, there is an unwanted 

cumulative error [13] over time affected on their 

synchronization. Indeed, this type of error on signals is due to 

different sampling frequencies. Although, the sampling rates 

of accelerometer and spirometer are both set to 50Hz, due to 

architecture of the inertial measurement unit (IMU), there 

might be a small difference between the sampling rate and 

measured frequency. Thus, to estimate the respiration rate, it is 

essential to ensure that both signals have identical frequencies. 

For this purpose after rational fraction estimation, we resample 

our data by an anti-aliasing low pass FIR filter during the 

resampling process. In our experiments, the sampling rate of 

the accelerometer sensor was set to 50Hz, however; the data 

was logged with about 51 Hz (measured frequency). With 

resampling process explained above, we could compensate the 

time lead about 0.02 per second (Fig. 2).  

Note that the system automatically checks the number of 

samples in each analysis window to find the measured 

frequency of the sensor. To find the best starting point between 

accelerometer and spirometer, the peak of their cross 

correlation is considered. Now, the respiration rate can be 

computed based on the number of local maxima in the breath 

signals per minute. 

III. TIDAL VOLUME VARIABILITY ESTIMATION 

The measurement of tidal volume variability requires 

devices such as spirometer or pneumotachometr connected to 

the patient with a mouthpiece and nose clip or face masks. 

These types of equipments are uncomfortable, and may cause a 

sensation of smothering [16].Therefore, a monitoring method 

with simple setup and good accuracy for remotely estimating 

𝑇𝑉𝑣𝑎𝑟  on a breath-by-breath basis is crucial. [17] shows that 

increased tidal volume variability in children is a better sign of 

opioid-induced respiratory depression than decreased 



 Fig. 2.  (a) The normalized flow of spirometer, (b) The cumulative 
error of accelerometer and spirometer normalized volume signals over 

time before resampling (c) Two signals after resampling procedure. 

 

respiratory rate. It is due to the fact that an increasing in 𝑇𝑉𝑣𝑎𝑟  

is 10 times of a drop in respiratory rate. Besides, rising in 

𝑇𝑉𝑣𝑎𝑟  also correctly predicts respiratory depression twice as 

often as decreased respiratory rate. Therefore, 𝑇𝑉𝑣𝑎𝑟  is more 

sensitive than the respiratory rate and the magnitude of change 

is larger. It is worth noting that tidal volume variability is 

independent of age-related variations unlike respiratory rate 

[17]. Fig. 3 shows the tidal volume variability and respiratory 

rate along with increasing doses of remifentanil in a typical 

patient. [18] demonstrates that an increase in tidal volume 

variability correctly identified that the next dose would cause 

respiratory depression in 41% of patients. The respiratory rate 

less than 10 breaths per minutes correctly identified imminent 

respiratory depression in only 22% of the patients [18].  

Hence, monitoring of tidal volume changes provides early 

identification and timely treatment of exacerbations with 

decreasing the hospital admissions, disease costs and slow 

deterioration. In this paper, we introduce a new method to 

accurately estimate 𝑇𝑉𝑣𝑎𝑟  with a single accelerometer.  The 

accelerometer is attached on the chest to measure the 

inclination changes due to breathing. These changes correlated 

closely with tidal volume variability. The spirometer and 

accelerometer respiration signals are first normalized and then 

the volume of each breath is calculated from Eq. 1.  

                                    𝑉𝑖 = 𝑝𝑖 −
(𝑣𝑖+𝑣𝑖+1)

2
          (1) 

𝑉𝑖 is the volume of the 𝑖𝑡ℎ breath derived from the 

normalized signals, 𝑝𝑖  and 𝑣𝑖 are the 𝑖𝑡ℎ peak and valley, 

respectively. The calculated volumes are linearly fitted with 

different window sizes to obtain the trends of oscillations for 

both spirometer and accelerometer. The window size refers to 

the number of breaths to obtain the tidal volume trend. We 

make use of the linear least-square curve fitting of the first 

degree for obtaining 𝑇𝑉𝑣𝑎𝑟  as follow: 

      𝑇𝑉𝑣𝑎𝑟
𝑖 =

𝑡 ∑ 𝑛𝑖𝑉𝑖−(∑ 𝑛𝑖)(∑ 𝑉𝑖)𝑡
𝑗=1

𝑡
𝑗=1

𝑡
𝑗=1

𝑡 ∑ 𝑛𝑖
2𝑡

𝑗=1 −(∑ 𝑛𝑖
𝑡
𝑗=1 )2

              

Where 𝑛 is the breath number and 𝑇𝑉𝑣𝑎𝑟  is obtained based 

on the slope of the linear fits for window size 𝑡. The window 

size should be chosen wisely based on the required sensitivity 

prescribed by the doctor. The proposed tidal volume estimation 

algorithm is outlined in Fig. 4. It shows about 45 sec of the 

accelerometer and spirometer signals of Biot’s respiration for a 

29 years old female. Per breath tidal volumes are first obtained 

from the normalized signals in Fig. 4(c) and (d) while the 

window size is set to 3 and incremented by 2. Then in Fig.4 (e) 

and (f) the least square fitted lines of each window as well as 

the slopes of them are shown. Finally, 𝑇𝑉𝑣𝑎𝑟  is obtained as Fig. 

4(g) from accelerometer sensor and (h) for SPR-

BTA spirometer. Indeed, it indicates that there are negative and 

positive peaks of tidal volume in the 4th and 7th windows, 

respectively. These changes are due to the rapid respiration 

epochs followed by regular periods of apnea (Fig.4 (a), (b)) in 

Biot’s respiration pattern. 

IV. EXPERIMENTAL RESULTS 

A. Test Setup 

The participants of this study were 4 males and 4 females 

aged 18 to 46. They were instructed how to perform each 

breath exercise before their recording sessions. The 

experimental trials lasted for about 45 minutes per subject. We 

asked the subjects to perform Normal, Bradapnea, Tachypnea, 

and Kussmaul patterns, each for 1 minute, Cheyn-stokes and 

Biot’s each for 2 minutes and finally a pattern with different 

tidal volume lasted for about 3 minutes. We assigned a 3-

minute rest interval after performing each pattern. Based on 

the definitions, for Normal breathing we consider 12 to 20 rpm 

(respiration per minute), in Bradapnea less than 12 rpm and 

for Tachypnea the subjects are asked to breathe more than 20 

respirations per minutes. For simulating apnea in Cheyn-

stokes and Biot’s breathing exercises, we requested the 

participants to pause breathing for at least 20 seconds. 

In our system we used an ultra low-power LIS3DH 3-axis 

accelerometer with 12-bit resolutions. In our tests the 

sampling rate is set to 50HZ. 

 
Fig. 3.  Tidal volume and respiratory rate versus the dose of Remifentanil [17] 

 



 
Fig. 4.  (a), (b) The normalized volume from accelerometer sensor and spirometer 
of Biot’s pattern, (c), (d)  Per breath tidal volume after accelerometer signal and 

spirometer normalization, (e), (f)  The linear fittings of accelerometer and 

spirometer driven per breath tidal volume with t=3, (g), (h) the tidal volume 
variability from accelerometer and spirometer signals respectively 

 

TABLE I. RESPIRATION RATE MEASUREMENTS WITH BOTH ACCELEROMETER AND SPIROMETER FOR DIFFERENT SUBJECTS 

Subject 

ID 

Gender/

Age 

Respiration Rate with Accelerometer (rpm) Respiration Rate with Spirometer (rpm) 

Normal Bradapnea Tachypnea Cheyn-

stokes 

Kussmaul Biot’s Normal Bradapnea Tachypnea Cheyn-

stokes 

Kussmaul Biot’s 

1 F/46 15.22 6.85 65.86 21.65 36.11 27.55 15.30 6.90 65.86 21.66 35.91 27.58 

2 F/30 17.41 9.80 22.14 24.75 50.23 32.40 17.41 9.95 22.26 24.75 50.23 32.36 

3 F/29 13.94 7.46 22.70 20.36 39.10 36.38 13.92 7.39 22.68 20.36 39.11 36.36 

4 M/29 15.55 7.84 23.26 14.08 27.49 36.91 15.56 7.80 23.33 14.09 27.54 36.92 

5 M/28 14.46 7.42 35.63 19.94 40.79 35.42 14.46 7.64 35.55 19.95 40.82 35.46 

6 F/22 12.66 10.37 46.07 25.44 47.90 37.12 12.68 10.49 46.18 25.40 47.93 37.08 

7 M/24 14.44 10.78 54.19 22.22 45.25 37.25 14.42 10.83 54.16 22.25 45.34 37.24 

8 M/18 13.41 8.19 50.42 14.58 45.64 38.41 13.44 8.13 50.25 14.63 45.91 38.44 

 

The sensor was mounted on the subject’s chest in the 

middle of sternum region and secured by a soft and elastic 

strap which is easy to attach and comfortable to wear. In the 

trial session, the subjects were in the lying position; however, 

the rest positions or activities in which rib cage is stationary 

could be considered. 

B. Accelerometer Driven Respiration Rate Validation 

In this section, first the correlation between the spirometer 

and accelerometer signal is calculated on 8 different subjects 

with various ages, each for five types of breathing disorders. 

Next, the respiratory rate which recognized as important 

indicators of physical health or the exacerbation of medical 

conditions is calculated.  In our test, the subjects are asked to 

perform six breathing patterns i.e. Normal, Bradapnea, 

Tachypnea, Cheyn-stokes, Kaussmal, and Biot’s. Bradapnea is 

regular in rhythm but slower than normal in rate. Tachypnea is 

the condition of rapid breathing, with respiration rate higher 

than 20 rpm. Tachypnea may occur due to physiological or 

pathological problems [19]. Cheyn-stokes breathing pattern is 

determined by gradually increasing, then decreasing the lung 

volume with a period of apnea. People suffering from central 

sleep apnea syndrome (CSAS) have the same breathing pattern 

at sleep [20].  

Kussmaul breathing which is defined as a rapid, deep and 

labored breathing type usually occurs in diabetics in diabetic 

ketoacidosis [21]. The Biot’s breathing is characterized by 

periods of rapid respirations followed by regular periods of 

apnea. There are different reasons which causes Biot’s 

breathing, such as damage to the medulla oblongata by stroke 

(CVA) or trauma, or pressure on the medulla due to uncal or 

tenorial herniation and prolonged opioid abuse [21][22]. The 

average correlation of spirometer and accelerometer signals of 

all subjects for each breath pattern is shown in Fig. 5. The 

correlation between accelerometer sensor (A) and spirometer 

(S) with 𝑥 samples is calculated as follows: 

𝑅𝐴,𝑆 =  
𝑥(∑ 𝐴𝑖𝑆𝑖) − (∑ 𝐴𝑖)(∑ 𝑆𝑖)𝑥

𝑖=1
𝑥
𝑖=1

𝑥
𝑖=1

√[𝑥 ∑ 𝐴𝑖
2 − (∑ 𝐴𝑖)𝑥

𝑖=1
2

][𝑥 ∑ 𝑆𝑖
2 − (∑ 𝑆𝑖)𝑥

𝑖=1
2

]𝑥
𝑖=1

𝑥
𝑖=1

 

For instance, in Normal pattern we have 8-minute data for 8 
subjects and the correlation of the accelerometer and 
spirometer signals is achieved 0.91. According to Fig. 5, the 
mean of the obtained correlations of all breathing patterns is 
0.85 which shows a very close correspondence of the sensor 
and spirometer data. The average respiration rate errors on all 
subjects for each breathing patterns has been also calculated by 
using a 10-seconds non-overlapping sliding window. We 
observed that, the errors are always below 0.45% for all 
patterns while the overall error is obtained 0.2% compared to 
SPR-BTA spirometer as the reference. Thus, we could obtain 
better accuracy for respiration rate compared to [12], dual 
strain gauge respirometers [23], and [13] in lying position 
using a single accelerometer. The details of the experiments are 
brought in Table I. 

C. Tidal Volume Variability Estimation 

We consider three types of patterns for tidal volume 

variability evaluation. In Biot’s breathing the patients breathe 

rapidly with high volume continuing with more than 20 

seconds apnea. 



TABLE II. AVERAGE CORRELATION BETWEEN TIDAL VOLUME 

VARIABILITY FROM ACCELEROMETER AND SPIROMETER OF THREE 

DIFFERENT PATTERNS 

Subject 

ID/Window 

size 

t=2 t=3 t=5 t=10 Average 

1 0.83 0.88 0.91 0.92 0.89 

2 0.68 0.76 0.81 0.89 0.79 

3 0.67 0.79 0.84 0.92 0.81 

4 0.83 0.92 0.93 0.96 0.91 

5 0.75 0.83 0.93 0.96 0.87 

6 0.74 0.85 0.91 0.93 0.86 

7 0.76 0.82 0.87 0.91 0.84 

8 0.96 0.97 0.98 0.99 0.98 

Average 0.78 0.85 0.90 0.94 0.87 

 

  
Fig. 6.  (a) Pattern with different tidal volume (P1), (b)Tidal Volume Variability for P1, (c) Biot’s breathing pattern, (d) Tidal Volume Variability for Biot’s pattern, 

(e) Cheyn-stokes breathing pattern, (f) Tidal Volume Variability for Cheyn-stokes breathing pattern 

 

 We expect to have reduction in tidal volume in each apnea 

with no significant changes during breathing cycles. However, 

in Cheyn-stokes pattern the tidal volume increases gradually 

and then decreases to start an apnea epoch. Additionally, we 

analyzed the changes in tidal volume for normal to deep, deep 

to shallow and shallow to normal conditions (P1). Fig. 6 shows 

three respiration patterns for one of the subjects with his tidal 

volume variability obtained from accelerometer signal. There 

are positive changes from normal to deep as well as from 

shallow to normal breathings. As is shown in Fig 6(b) the 

variation from deep respiration to normal is less than changing 

pattern from deep to shallow breathings. We also obtain 

negative changes from deep to normal and deep to shallow 

breathings. The directions of the changes in  𝑇𝑉𝑣𝑎𝑟  are always 

the same as the spirometer in major changes. However, the 

different directions are resulted from the small acceleration 

movement of the body during constant tidal volume. To show 

the impact of size, we have swept 𝑡 from 2 to 10 breaths. 

Indeed, 𝑡 shows the sensitivity of the system. As can be seen, 

there is a tradeoff between 𝑡 and correlation. Larger window 

size resulted in better correlation of accelerometer versus the 

spirometer. This is due to unwanted motions of the rib cage 

during constant tidal volume epochs. Applying larger window 

size removes the trends of constant tidal volume while keeping 

the major changes. It is worth noting that; based on our 

patterns introduced earlier we increase the size of window up 

to 10 breaths, because there are always more than 10 breaths 

per cycle in all of our patterns (Biot’s, Cheyn-stokes and P1). 

Based on the respiration disorder, if the tidal volume of the 

patient changes frequently, the small window size is 

preferable; otherwise larger size accurately show the trend of 

tidal volume over time. Therefore, in our portable platform we 

could manage the appropriate sensitivity value based on 

different breath disorders characteristics.  The correlation of 

 𝑇𝑉𝑣𝑎𝑟   for different sizes between accelerometer and 

spirometer for 8 subjects are provided in Table II.  

The overall correlation is obtained 0.87 whereas it proves 

that  𝑇𝑉𝑣𝑎𝑟  derived from the accelerometer is strongly 

correlated with spirometer. The average Mean Square Errors 

(MSE) of tidal volume variability versus the reference for 

three types of patterns are 3.06E-05, 1.86E-03, 1.07E-03 and 

4.33E-04 with standard deviations 7.27E-03, 4.36E-03, 2.31E-

03 and 8.41E-04 for t=2, 3, 5 and 10, respectively. The errors 

do decrease at the larger window sizes due to less sensitivity 

in the constant tidal volume variability periods.  

The results have shown that the MSE of each subject can 

 
Fig. 5.  Average correlation between spirometer and accelerometer signals and 

the standard deviations for five different patterns 
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be fitted into a normal distribution, depicted in Fig. 7. In this 

figure the fitted normal distributions correspond to the average 

log-likelihood value of 124.8 ± 28.60 on different 𝑡, which 

indicates a good fit. Fig. 7 also shows the impact of the 

window size on MSE distributions. When the window is small 

the standard deviation is larger compared to the case with 

larger window sizes. Therefore, e.g. with t=10, the MSEs have 

less dispersion from the average value of zero.  

 
Fig. 7.  Normal fittings of the mean square errors between Acceleroemter and 

Spirometer for Biot’s breathing of S2 considering different window sizes 
 

As can be seen, a very high correlation between 

accelerometer driven  𝑇𝑉𝑣𝑎𝑟   and spirometer in all conditions 

coupled with significantly low MSE indicates that the proposed 

method is promising to be used in a respiration tracking 

systems specifically for real-time monitoring of breath diseases 

during sleep. 

V. CONCLUSION 

In this paper we have demonstrated for the first time that 

obtaining tidal volume variability from an accelerometer data 

offers a reliable and unobtrusive technique over extended 

periods. Furthermore, we introduced refinements to respiratory 

rate calculation which resulted in a very low average error of 

0.2%. Therefore, the possibility of acquiring both respiration 

rate and  𝑇𝑉𝑣𝑎𝑟  information from one device gives more credits 

to accelerometer based approaches as a simple and cost 

effective solution for remote monitoring applications. Our 

focus in further will be validating the accuracy of the method 

especially in different moderate activities. We will also work 

on breath therapy concept to be added in our portable 

respiration platform. 
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