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Abstract—Mobile and wearable sensing technology stands to 

provide a wealth of information to healthcare providers, and 

allows them to envision systems with reduced costs, automated 

monitoring and evaluation, and overall improved healthcare 

services. However, the volume of data produced by such mobile 

and sensing technologies needs to be managed efficiently and 

continuously so as to realize its full potential in providing cutting-

edge services. In this paper, we propose a mHealth data 

management system with the aim to provide near real-time 

operational an analytical services, while supporting long-term 

and offline processes and deep analytics. The components of the 

system will be discussed, and the potential workflows will be 

outlined. 
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I.  INTRODUCTION 

Mobile Health (or the more popular abbreviation, mHealth) 
refers to the use of mobile devices to support health services, 
such as self-monitoring [1] and activity recognition [2]. This 
involves collecting health data, delivering diagnostic and 
medical information to patients and healthcare providers, and 
providing remote patient monitoring. The accelerated market 
penetration of smartphones and tablets, as well as the evolution 
of more and more sophisticated and portable medical devices 
and sensors with integrated communication capabilities, is 
projected to trigger the generation of massive, diverse, and 
constantly streaming data volumes. The management of this 
data so as to provide the best possible health services becomes 
of paramount importance, due to the life-critical and inherently 
urgent nature of such services. 

Data management refers to the architectures and procedures 
that are needed to properly manage the data lifecycle needs of a 
certain system. In the context of mHealth, data management 
should act as a layer between the medical devices and sensors 
generating health data and the applications and services 
accessing this data for operational as well as analytical 
purposes. Traditional data management systems handle the 
storage, retrieval, and update of elementary data items, records 
and files. In the context of mHealth, data management systems 

must summarize data online while providing storage, logging, 
and auditing facilities for offline analysis. This expands the 
concept of data management from offline storage, query 
processing, and transaction management operations into online-
offline communication/storage dual operations. 

mHealth, unlike traditional health information systems, has 
distinctive characteristics when it comes to the generated data 
that make traditional relational-based database management an 
inefficient solution. A massive volume of heterogeneous, 
streaming and geographically-dispersed real-time data will be 
created by millions of medical devices and sensors periodically 
sending observations about patients’ vital signs or reporting the 
occurrence of potentially urgent medical events [3]. 

The lifecycle of data within an mHealth system proceeds 
from data production to aggregation, transfer, optional filtering 
and preprocessing, and finally to storage and archiving. 
Querying and analysis are the end points that initiate (request) 
and consume data, but data production can be set to be 
“pushed” or published to the mHealth consuming services [4]. 
Production, collection, aggregation, filtering, and some basic 
querying and preliminary processing functionalities are 
considered online, communication-intensive operations. 
Intensive preprocessing, long-term storage and archival, and in-
depth processing/analysis are considered offline storage-
intensive operations. 

In this paper, we propose a mHealth data management 
system that provides near real-time operational an analytical 
services, while supporting long-term, offline processes and 
deep analytics. The proposed system is currently being 
implemented, with operational results and design 
challenges/lessons to be reported in future publications. 

The remainder of the paper is organized as follows: in 
Section II, we discuss the characteristics of mHealth data and 
how they affect the design of the proposed system, and then the 
system itself is detailed. Section III illustrates example 
workflows of the proposed system, and Section IV concludes 
the paper. 
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II. MHEALTH DATA MANAGEMENT SYSTEM 

In a previous work [5], we proposed a number of design 
primitives that should be considered when developing a data 
management solution for IoT, and proceeded to propose a data 
management framework that takes these design primitives into 
consideration. In this work, we adapt the aforementioned data 
management framework for the needs of mHealth system, since 
mHealth systems can be considered one form of IoT. 

In the following sections, we briefly discuss the 
characteristics of mHealth data and how they affect our design, 
and then proceed to illustrate the design of the proposed 
mHealth data management system. 

A. Characteristics of mHealth Data 

Health data is immutable; old values are not updated (i.e. 

replaced) with new ones. Rather, data is time-stamped and 

appended to the system, thereby creating a data stream. This 

data stream continuously captures the state of the entity 

generating the data, and acts as a recorded “history”. Our 

system is built to incorporate this streaming nature of data, 

while still catering for offline, in-depth operations. 

Data may be generated on the move. Patient movement is 

either restricted (e.g. inside a house) or extended beyond 

limited spaces. This dictates that we geo-tag the data, which is 

helpful for patient monitoring (as would be needed for 

Alzheimer’s patients) and will also enable queries which are 

defined by geographical areas (e.g. for disease spread control). 

Health data often needs to be aggregated/transformed in 

order to control its volume and filter any false or abnormal 

sensor readings. Only abnormal events of interest to healthcare 

providers are of essence. Therefore, data indicating normal 

conditions can be summarized with little effect on the accuracy 

of subsequent analysis, and therefore the real-time part of the 

system can be optimized. This “normal majority” also makes it 

relatively easy for the processing modules to pinpoint 

abnormalities and correct any outliers that are not statistically 

significant. 

Health data can capture urgent and sudden onsets of health 

conditions as well as prolonged developments of health 

conditions. Therefore, two modes of operation need to be 

supported: offline to capture chronically developing conditions 

and patterns, and real-time to capture urgent incidents. 

B. Functional Details 

The proposed system relies on three main modules: an 
offline, batch processing module; an online, near real-time 
module; and a publish-subscribe module for data streams 
discovery and brokering. The components of the proposed 
system are illustrated in Fig. 1 and discussed below. 

1) Smart and Wearable Medical Devices: Wearable 

sensors that can generate health monitoring data about vital 

signs, such as EEG, ECG, glucose levels, blood pressure. They 

can also generate data related to human activities, such as 

vision, hearing, positioning, and motor function. Smart 

implants can also provide valuable data about the health status 

of internal organs. Smart devices that are not necessarily 

wearable but still provide health-related data include health 

monitoring devices, smartphones, weight scales, and 

surveilence cameras. In our implementation, we start with 

ECG and activity monitoring, and will incorporate input from 

more sensors and devices as the system becomes operational.  

2) Communication: Wearable devices will communicate 

their readings to gateways, such as smartphones or WiFi 

access points, via bluetooth or Zigbee technology. Gateways 

will then transmit medical readings to the primary care 

providers associated with patients/individuals, either via 

broadband or cellular 3G/4G connectivity. In our 

implementation of the system, the smartphone is the gateway 

of choice, due to its widespread penetration and ease of use. In 

addition, it is easily programmed to include applications that 

can manage other smart devices and sensors and support basic 

in-house analytics near the patient’s physical perimeter. 

3) Streams Publish-subscribe: The readings generated by 

wearable and smart devices will form streams of data. Each 

stream will be identified by its source device. At the same 

time, different sensory readings for the same patient at each 

time instance are kept as a record. This creates a patient stream 

that is composed of serialized records and the streams for 

different patients are uniquely identified by the patients’ IDs 

and their permanent geographic locations (home address for 

example). The use of geographic locations as identifiers can be 

dynamic by refining their granularity to the level of individual 

patient records, which will reflect the real-time mobility of 

patients at the time the readings are generated. As patients 

acquire/install new sensors and smart devices, the system will 

publish the details of those devices to the Data Streams 

Publisher, which will add them to the Streams Repository. The 

system enables health applications and services to dynamically 

subscribe to the streams of specific sensors/devices across all 

patients, streams of specific patients, or streams generated at 

specific geographic areas, via the Data Streams Broker. 

4) Storage: Each patient’s data is serialized and stored as a 

separate stream. Data is identified by the timestamp, the 

device type generating the data, and the geographic location 

where the data is generated. Two types of data can be 

supported by the system: routine and periodic readings that are 

used for constant monitoring; and events signaling medical 

emergencies. We will support the storage of periodic sensor 

readings in the current implementation, and proceed to support 

medical events at a later stage, together with complex event 

processing capabilities. Data will be stored in a stream 

database, which will provide support for two modes of 

operation: an online, near real-time mode; and an offline, 

batch mode. In the online mode, data streams will be 

processed once as they are received by the system managed at 

the healthcare providers end. A queuing system will be used to 

manage the data window to be processed, and results are 

partial and dynamically updated as new data becomes 

available. In the offline mode, data will be processed as a 

whole, and results are computed once per query.  



5) Offline Processing Module: Within this module, the 

system can perform unlimited computations on the whole 

dataset in batches. This comes at the expense of high latency in 

producing meaningful results. Therefore, this module supports 

applications and services that execute sophisticated operational 

functions and perform deep analysis tasks that rely on complex 

algorithms such as the prediction of a chronic medical 

condition at its earliest stages or the estimation of the 

correlation between different vital signs based on the analysis 

of their corresponding streams. In order to support offline 

processing over the massive volume of medical data, we opt to 

use the following tools:  

a) Hadoop Batch Processing: The Hadoop
1

 system 

enables the distribution of processing tasks within a Hadoop 

cluster. The dataset is divided into subsets (e.g. groups of 

patient streams), and then a Map phase is performed, where an 

operational function is executed over all data subsets in 

parallel. This operational function can be as simple as finding 

the average reading for a specific sensor over all patients 

within the subset, but can extend to more complex processes 

as required by the applications and services. After the 

processing of the different subsets is complete, a Reduce phase 

is performed, in which the results from the different subsets 
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are then combined into a single aggregated result. The Hadoop 

system can be used to efficiently perform preprocessing tasks 

that can be challenging to perform over big data, such as 

filtering abnormal or false readings, handling missing values, 

and performing data transformation tasks such as 

normalization or discretization. 

b) Static View Database: The results of offline 

processing (e.g. summaries, filtered data, etc.) need to be 

stored in a read-only static view database, such as 

ElephantDB
2

 or Cassandra
3

. Whenever batch processing 

workflows are rerun, the read-only views are not updated, but 

rather regenerated from scratch. 

c) Deep Analytics: Operational processes do not provide 

enough insights into long-term health conditions; how they 

evolve and spread, and what may cause them. Therefore, 

sophisticated analysis algorithms need to be applied to the data 

in order to extract interesting correlations and previously 

unknown knowledge. Hadoop has been bolstered recently to 

support analytics via the Radoop
4
 platform, which provides 

predictive machine learning and data mining processes in a 

Hadoop environment. 
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3
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Figure 1. mHealth data management system. 



6) Stream Processing Module: Stream processing involves 

continuous computations over the constantly generated data. 

For this purpose, only a limited window of data is stored and 

only for the duration of computation, which means that the 

real-time system should tolerate results produced from 

partitioned data. A queuing system such as Kafka
5
 will be used 

to regulate the flow of data to the processes to be performed 

over the data, which does not guarantee a true real-time 

operation, but rather a near real-time one. To support stream 

processing, the following tools will be used in our system: 

a) Storm Real-time Processing: Storm
6
 is a real-time, 

stream processing system in Hadoop. Storm can efficiently 

handle multiple streams, or Spouts, and process those input 

streams in what is called Bolts, in order to produce output 

streams. These processes range from running functions to 

aggregation and filtering. System users define how to process 

the data through topologies (networks of spouts and bolts). 

The processing results can then be passed to Hadoop. 

b) Dynamic View Database: The results of stream 

processing need to be stored in a read/write database that 

accepts new results as new data becomes available. Examples 

are Hbase
7
 and Cassandra. We opt to use Cassandra, due to its 

support for both read-only and read-write modes. 

c) Near real-time analytics: Analytics that are to be 

performed on data streams will not be as complex as deep 

analytics, and will involve basic aggregation, summarization, 

and filtering functionality. Incremental analytics, such as 

incremental clustering an association mining, can be performed 

in near real-time. Storm will provide good support for this level 

of functionality, and therefore will be the tool of choice. 

However, we are exploring the potential of building our own 

in-house online analytics solution with advanced functionality 

that can be merged with the results of deep analytics. 

III. EXAMPLE SYSTEM WORKFLOW 

The wearable, implanted, or standalone health monitoring 
sensors and devices on the patient (who is considered an 
abstracted network of sensors), report on the patient’s vital 
signs and possibly track her/his whereabouts as her location 
changes, either indoors or outdoors (e.g. while driving). These 
sensors are connected wirelessly to the patient’s smartphone, 
which is considered a concentration point that captures and 
collects the data. Information analysts at the hospital use 
applications, services, and queries to run processes and analyze 
data for individual patients or collective patients’ data. System 
users can set default stream subscriptions to work with in the 
near real-time mode, and change those subscriptions as needed.  

Once subscriptions are set up by the Data Stream Broker, 
the smartphone proceeds to collect readings from the patient’s 
sensors and medical devices. Vital readings that are collected 
periodically by the smartphone are reported wirelessly to the 
respective caregiver’s network via a backbone network such as 
3G/4G, and stored in the stream data store. Near real-time 
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processing or analytics are then invoked to perform functions 
such as routine follow-up tasks or the discovery of interesting 
patterns related to possibly developing or spreading health 
conditions, such as post-op infection incidents related to 
operations performed at that given hospital. The outcomes and 
results of these processes are displayed on the caregivers’ UI, 
and updated constantly as new data becomes available, or 
whenever the respective caregivers change the settings of the 
online system to include more/less data streams. 

The offline module is used on demand, and only invoked 
whenever the system users need to run large-scale processes on 
the data. The results of these processes are stored in the static 
view, which is then used as input to complex analysis 
algorithms in the deep analytics component. Since the results of 
such analysis are not as volatile as is the case with online 
processing, they can be stored for long-term use, and the 
processes that generated them can be tweaked to provide more 
meaningful analysis. 

IV. CONCLUSION 

In this paper, we proposed a data management system for 
mHealth, and discussed its functional components and 
workflows. The proposed system supports offline and near 
real-time operations, as well as long-term analytics. The system 
is currently being implemented; with operational results to be 
reported in future publications. We plan to design a federated 
data management system that spans multiple, diverse, and 
geographically dispersed medical data stores. The purpose of 
this federated system will be to provide a more globalized view 
of medical data that will enable the detection of interesting 
city-wide, state-wide, country-wide, or even world-wide health 
patterns and conditions. This can serve to identify the existence 
of epidemics or seasonal symptoms, as well as visualize their 
spread rate, severity levels, and locale. This globalized 
analytics view will provide better support for disease 
surveillance, epidemic outbreak tracking, and the prompt 
containment of life-threatening conditions. 
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