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Abstract—We present a mobile decision support system
(mDSS) which helps patients adhere to best clinical practice
by providing pervasive and evidence-based health guidance via
their smartphones. Similar to some existing clinical DSSs, the
mDSS is designed to execute clinical guidelines, but it operates
on streaming data from, e.g., body sensor networks instead of
persistent data from clinical databases. Therefore, we adapt the
typical guideline-based architecture by basing the mDSS design
on existing data stream management systems (DSMSs); during
operation, the mDSS instantiates from the guideline knowledge a
network of concurrent streaming processes, avoiding the resource
implications of traditional database approaches for processing
patient data which may arrive at high frequencies via multiple
channels. However, unlike typical DSMSs, we distinguish four
types of streaming processes to reflect the full disease manage-
ment process: Monitoring, Analysis, Decision and Effectuation.
A prototype of the mDSS has been developed and demonstrated
on an Android smartphone.
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I. INTRODUCTION

Clinical guidelines are widely regarded as offering much
potential to improve the quality of clinical decision making and
thereby patient care [1]. To support their implementation in
daily clinical practice, many approaches have been developed
for formalising and automating clinical guidelines; examples
include DeGeL, GLEE and SAGE [1]. In the MobiGuide (MG)
project, we aim to extend beyond existing guideline-based
decision support systems (DSSs) by developing a pervasive
patient guidance system which provides guideline-based rec-
ommendations to the patient in a free-living setting as well as
to clinicians in a hospital setting [2].

The MG system incorporates, alongside other components,
a mobile clinical decision support system (mDSS) that can
operate autonomously on the patient’s body sensor network
(BSN), specifically on his or her smartphone, and provide
health guidance to the patient anytime and anywhere. The
mDSS receives the guideline knowledge relevant for that
patient from a back-end DSS and applies it to the data arriving
from the BSN, generating recommendations for the patient
when appropriate. Furthermore, the mDSS collaborates with
the back-end DSS by sending its results of analysing patient
data, which in some cases will be processed further to produce
additional guidance for the patient and the clinicians.

Like other conventional knowledge-based systems (KBSs),
guideline-based DSSs generally contain a knowledge base for

storing the clinical guidelines as well as an inference engine to
reason with the stored knowledge; such separation of concerns
enables different knowledge to be plugged into the system,
thus permitting it to be independent of any particular domain
[3]. Furthermore, to provide decision support specific to a
particular patient, guideline-based DSSs have typically been
designed to query a central database, such as an electronic
health record, for the relevant patient data.

However, in pervasive healthcare, data is best modelled as
streams instead of persistent relations as the data items may
be generated continually at high frequencies and via multiple
channels. The BSN of the INTERACTION system for stroke
patients, for example, includes 14 3D inertial measurement
units outputting data at a total rate of 7.66 kB/s [4], and as
noted by Babcock et al., traditional database approaches are
not designed to process such data streams [5]. Indeed, this
issue becomes more acute when the high data throughput
requirements of the Internet of Things are considered.

Therefore, to address the systems challenges of processing
potentially large data volumes continually on a smartphone,
we base the design of the mDSS on existing data stream
management systems (DSMSs), in which streaming processes
accept, operate on and output data streams directly. However,
we also retain the clear separation of knowledge and reasoning
in typical KBSs, thus preserving the advantage of genericity.
Further requirements which are also considered include the
ability to support the whole disease management process, to
pause and resume the reasoning process in case the smartphone
is, for example, switched off, and to support scenarios in which
patient input is necessary to complete a reasoning process.

Section II presents the design of the mDSS, followed by
a discussion in Section III and conclusions in Section IV.
Although the mDSS is designed to be domain-independent, we
use simple illustrative examples drawn from the two MG pilot
domains: atrial fibrillation (AF) [6] and gestational diabetes
mellitus (GDM) [7].

II. DESIGN OF THE MDSS

A. Overall Architecture

Fig. 1 shows the high-level architecture, i.e. set of principal
design decisions [8], of the mDSS. Solid rectangles depict
system components, each of which represents a subset of
the system’s functionality, whilst dashed rectangles depict
system connectors, i.e. interactions between components. Each
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Fig. 1. Overall architecture of the mDSS, abstracting away from the specific details of the MG system. [*] is used to denote multiplicity in the figure.

connector is associated with an arrow representing data flow
and is classified using the taxonomy by Taylor et al. [8].

Similar to existing guideline-based DSSs, the mDSS pro-
vides decision support by applying the provided guideline
knowledge to the available patient data. However, as shown in
Fig. 1, our mDSS does not retrieve the input data by querying a
database via a data access connector. Instead, the input data are
streamed from multiple sources, such as the smartphone GUI
and the sensors on the BSN, and are processed directly by the
mDSS. Likewise, the mDSS outputs the results of its analysis
in multiple streams to its data sinks, which may include the
smartphone GUI and any actuators in the patient’s BSN.

Furthermore, unlike traditional KBSs in which the infer-
ence engine operates directly on the knowledge base [8], the
reasoning component of the mDSS is stateful and embodies
the guideline knowledge during run-time. Whenever the mDSS
is updated with new knowledge, the knowledge base notifies
the reasoning component and triggers it to adjust its behaviour
by retrieving and assimilating the relevant knowledge as deter-
mined by the current state and context of the patient. Likewise,
automatic updates may also be performed by the reasoning
component as the disease management process progresses.

Thus although the mDSS also contains a knowledge base
like other KBSs for storing the received knowledge persis-
tently, its primary function is to allow the pause and resumption
of the guideline execution process. The patient may terminate
the mDSS by, for example, switching off the smartphone, and
in such cases, the reasoning component would be triggered
by a procedure call from the system controller to store its
execution status. In this way, the reasoning component can
resume its operations on restart by simply accessing the
knowledge base to retrieve the stored state.

B. Internal Architecture of the Reasoning Component

Similar to the query plans of various existing DSMSs such
as Aurora [9] and STREAM [10], our approach for reasoning

on data streams is to realise the guideline knowledge as a
directed, acyclic network of concurrent, streaming processes.
We consider each such process as a component that accepts
data items from one or more input streams and processes them
sequentially in the order of arrival (which may or may not
correspond to the order in which the items were generated).
The results of the processing are then sent in a single stream
to one or more target components, such as external data sinks
or other streaming processes in the reasoning component.

However, unlike the typical streaming processes within a
query plan in DSMSs, we distinguish four types of high-level
streaming processes, namely Monitoring (M), Analysis (A),
Decision (D) and Effectuation (E) as shown in Fig. 2, to reflect
the different activities involved in the full disease management
process. For example, measuring the heart rate of an AF
patient may involve some algorithmic processing specific to
the sensor used, whilst deducing that the patient should cease
exercising may involve a generic inferencing process. Indeed,
guideline representation languages generally include constructs
for decisions and actions [11], and in our MADE model, which
is based on work previously reported [12], further distinctions
are made between diagnostic and therapeutic decisions as well
as measurement and therapeutic actions.

We define the four types of processes as follows:

• Monitoring (M) is the process of making observations
about the patient and his or her context. Conceptually,
this process includes sensing as well, but for the
mDSS, it mainly involves transforming the measured
data from the data source to lower-level concepts
about the patient and his or her context.

• Analysis (A) is the diagnostic process of inferring
higher-level, more abstract concepts from the mon-
itored lower-level concepts. In line with Seyfang et
al. [13], we use diagnosis to include both a single
assessment of a patient (e.g. diagnosis of GDM) as
well as on-going assessments of clinical status.



Fig. 2. Architecture of the MADE network in the reasoning component,
focusing on the main data flows only. For simplicity, the stream connectors
between the MADE processes are also not shown in the figure.

• Decision (D) is the therapeutic decision-making pro-
cess of deciding on the appropriate course of action
(e.g. to take medication) given the higher-level con-
cepts (clinical abstractions) reached about the patient.
Assuming all resources necessary to perform the ac-
tions are available, this process is equivalent to a
planning process in the AI domain [14].

• Effectuation (E) is the process of performing the
decided course of action. Conceptually, this process
also involves the patient or actuators performing some
physical action, but for the mDSS, it mainly involves
instantiating or terminating a MADE process and
converting the decided course of action into specific
instructions for the (human) actor or the actuators.

As implied by the definitions above and as shown in Fig. 2,
M processes can only be succeeded by A processes, and
likewise A by D and D by E processes. However, to account for
processes which must be performed by the patient or require
some manual input to complete, the data flow is not constrained
to enter from an M process or exit through an E process.
In the MG system for example, as determined by the GDM
guideline [7], GDM patients are required to monitor their
carbohydrates intake and analyse their own compliance to the
recommended diet regime, inputting cases of non-compliance
only and thereby stream data directly into the corresponding
A process. Furthermore, to improve patient compliance, GDM
patients may be reminded regularly to monitor their blood
glucose levels, in which case the required output would be
streamed directly from an M process to a data sink, namely
the smartphone GUI in the MG system.

In addition to the MADE network, the reasoning com-
ponent contains a MADE builder as shown in Fig. 3 which

Fig. 3. Internal architecture of the reasoning component. The dashed arrow
in the figure denotes the instantiation and termination of the MADE network
by the MADE builder.

interfaces with the system controller and the knowledge base
of the mDSS. Whenever new guideline knowledge needs to
be executed, such as when the patient enters into a new phase
of treatment or when the knowledge base is updated by a
knowledge source, the MADE builder accesses the knowledge
base to retrieve the relevant knowledge and instantiates from it
the corresponding network of MADE processes. Furthermore,
the MADE builder can access the execution status of the
processes in the MADE network, enabling the mDSS to store
its execution status when necessary, such as before termination
by the system operator.

III. DISCUSSION AND FUTURE WORK

A. Specification of the MADE Processes

A prototype of the mDSS has been developed for Android
smartphones and has been demonstrated as part of the complete
MG system for a GDM scenario. In the first prototype, the
mDSS receives blood glucose measurements from the smart-
phone GUI and analyses them to detect any non-compliance
to the measurement regime. On detection of non-compliance,
the mDSS then notifies the patient via the GUI and sends the
results to the back-end for further processing.

Work is on-going to develop and evaluate a fully generic
specification of the MADE processes. To ensure its clinical
validity in the two MG pilot domains at the minimum, our
approach is to induce the specification from the MG require-
ments and extend it for increased genericity by considering,
amongst other factors, the state-of-the-art in AI systems and
DSMSs. For example, from the requirement that GDM patients
should analyse their own compliance to the recommended
diet regime (Section II-B), we can induce that any number
of MADE processes may require some form of manual input.



Furthermore, the streaming processes in DSMSs commonly
involve sliding windows to evaluate the most recent data only
or small summaries to enable incremental data processing [5],
[15], and such features may also be incorporated into the
MADE specification.

However, as presented in Section II-B, each type of MADE
process is different in nature, and of particular consideration
is the trade-off between the scope and the complexity of each
type of process. For example, the computational complexity of
planning and therefore D processes may range from constant
time to EXPSPACE-complete depending on the assumptions
made, such as whether the permitted actions can exhibit
negative effects or not [14].

B. Mechanisms for Quality-Aware Decision Support

Unlike conventional guideline-based DSSs, the mDSS will
be used by the patient in a free-living setting, and the in-
herent noise in such an environment may result in additional
problems. For example, an inaccurate blood glucose reading
may lead to the erroneous conclusion that a GDM patient is
hypoglycaemic and, in turn, cause the patient to consume more
sugars than is appropriate for her. In data stream processing,
delayed, missing and out-of-order data are also common issues
[16], the causes of which may include an unreliable commu-
nications infrastructure or malfunctioning sensors.

To account for such problems, we are also investigating
an appropriate mechanism for adding quality awareness to
the mDSS. Typical examples from the AI domain include
the use of probabilistic or fuzzy logics, but for any cho-
sen approach, we believe that it must be adapted for the
telemedicine domain. It may not be possible, for example, to
accurately quantify the uncertainty in the data, particularly if
manual input is required. Furthermore, due to this uncertainty,
multiple, mutually exclusive decisions may be recommended
at the same time, thus necessitating extra procedures to, for
example, select the safest decision to effectuate. Indeed, as
part of the MG project, our work on a quality-aware mDSS
forms a continuation of the work by Larburu et al. on quality
of data, which includes a requirements elicitation methodology
for determining its clinical effects [17]. In this way, the clinical
validity of the provided decision support may be preserved
despite the possible fluctuations in the data’s quality.

IV. CONCLUSION

Traditional guideline-based clinical decision support sys-
tems are designed to be used in a clinical environment and to
query a central database for the relevant data. In this paper,
we have presented the architecture of a mobile DSS that is
intended for use by the patient in a free-living setting and is
tailored towards the telemedicine domain and the processing of
multi-channel data streams such as from a BSN. The design of
our mDSS was inspired by existing data stream management
systems but extended to account for the different types of activ-
ities involved in the full disease management process, namely
Monitoring, Analysis, Decision and Effectuation. Furthermore,
the clear separation of knowledge and reasoning inherent in
typical KBSs is retained, thereby preserving their domain-
independence property.

The mDSS currently provides pervasive guidance to the pa-
tient by virtue of being implemented on his or her smartphone,
but we believe that the MADE approach can be extended
further to facilitate pervasive healthcare where processing is
distributed across multiple physical devices. Since the MADE
processes can, by definition, be executed independently and
concurrently on their own threads, they can be distributed
arbitrarily across different physical devices provided that the
appropriate underlying infrastructure is available. Indeed, sim-
ilar mechanisms for distributing streaming processes have also
been presented to optimise the performance of DSMSs [15].
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