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Abstract—Monitoring of the activities of daily living of the elderly 

at home is widely recognized as useful for detection of new or 

deteriorated health conditions. However, the accuracy of existing 

indoor location tracking systems remains unsatisfactory. The aim 

of this study was therefore to develop a localization system that 

can identify a patient’s real-time location in a home environment 

with maximum estimation error of two meters at a 95% 

confidence level. A prototype based on a sensor fusion approach 

was built. This involved the development of both a step detector 

using the accelerometer and compass of an iPhone 5, and a radio-

based localization subsystem using Kalman filter and received 

signal strength indication (RSSI). The results of our experiments 

were promising with average estimation error of 0.55 meters. We 

are confident that with more work our design can be adapted to a 

home-like environment with a more robust localization solution. 
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I.  INTRODUCTION 

For years, there has been a lack of robust evidence for cost-
effectiveness of remote healthcare systems [1-3]. To address 
this issue, we set up as our core objective the cost-effective 
design of real-time home healthcare telemonitoring based on 
mobile cloud computing. Key considerations about the 
development of our system included lower cost, reduced 
intrusiveness, and higher mobility, usability, deployability and 
portability. A prototype, consisting of three key functional 
components, including vital sign telemonitoring, safety 
telemonitoring (mainly on fall detection) and movement pattern 
telemonitoring, was then developed [4]. The purpose of this 
paper is to present the design and implementation of our 
proposed real-time indoor patient movement pattern 
telemonitoring on the client side, composed of a User Agent 
module (based on iPhone 5) and a Sensor module (formed by a 
number of low-cost sensors). 

In healthcare, it has been widely acknowledged that in-
home monitoring of the elderly or chronic disease outpatients’ 
daily movement patterns is useful for detection of early signs of 
new or deteriorated health issues. However, to achieve 
satisfactory accuracy remains a challenge for indoor location 
tracking/localization [5]. (This paper uses location tracking and 
localization interchangeably.) According to [6], location 
tracking applications are divided into two categories, i.e. 

coarse-grained and fine-grained tracking systems. The former 
in general detect only the presence of the tracked target, while 
the latter detect and measure the distance between the target 
and sensors. For the purpose of this study, we set up our basic 
requirement as to identify the patient’s real-time location 
within a home environment with maximum estimation error of 
two meters at a 95% confidence level. Accordingly, fine-
grained tracking was designed and implemented in our system. 

A radio-based localization technique using trilateration, 
trigonometry and received signal strength indication (RSSI) 
from three triangular deployed Bluetooth Low Energy (BLE) 
sensors was chosen to build the required functionality. 
However, due to the arbitrary variations of RSSI readings from 
the sensors in an indoor environment, we found that it is 
impractical to use raw RSSI data alone to perform reliable real-
time estimation of the patient movement. Therefore, to enhance 
the overall reliability and accuracy of our system, we 
developed the three following elements: a step detection 
mechanism (using the accelerometer and compass of an iPhone 
5) to produce extra patient location information; a discrete-time 
Kalman filter to improve distance estimation; and a tight 
coupling sensor fusion approach to integrate all these features 
as a whole. 

The results of our trials, each performed by a user carrying 
a User Agent and walking around a small office (54 square 
meters), were promising with maximum estimation error of 
0.81 meters and average estimation error of 0.55 meters in a 
normal case. To further illustrate both the issues encountered 
and our solutions to those issues, the remainder of this paper is 
structured as follows. In the next section, we briefly introduce 
related work in indoor location tracking and the concepts of 
RSSI and Kalman filter. In Section III, we describe our design 
and implementation of our proposed system. Section IV 
presents the experimental results and our evaluation. Finally, 
Section V provides our conclusion remarks and future work. 

II. RELATED WORK 

A. Indoor Location Tracking 

Along with the fast-growing smartphone economy, more 
location-aware or location-based applications have been 
emerging. For indoor environments, there have been an 
increasing number of studies on location tracking using 
wireless signals from neighbouring wireless devices, such as 
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Wi-Fi access points and wireless sensor networks (WSN). 
Among all techniques, the RSSI-based ones have gained 
popularity in recent years. Nevertheless, as indicated by [5], 
some major problems in this field remain unresolved, such as 
computationally intensive and inaccurate localization 
algorithms, excessive access point installations and unstable 
wireless signal transmission. 

To tackle the problem of unstable wireless signal 
transmission, both the Monte Carlo [7], [9] and Kalman filter 
[8], [10] methods were commonly adopted for constructing 
RSSI-based localization algorithms. This is because both can 
produce statistically more precise estimation of system states 
than those solely based on one or a few noisy measurements. 
However, from our perspective, the need for an extra computer 
to perform location estimates using the Monte Carlo method, as 
proposed by some studies [7], [9], raises cost and reliability 
issues. 

Another technique commonly adopted was to produce and 
store a detailed wireless signal strength map at each specific 
survey location before performing localization [5], [9], [10]. 
Location tracking was then conducted by comparing real-time 
RSSI measurements with the stored signal strength map. 
However, we consider that the need to produce a wireless 
signal strength map for each survey location would cause 
issues not only on system usability, deployability and 
portability, but also on longer processing time and higher 
software and hardware requirements, such as storage and 
database. In some cases, excessive sensor nodes were needed to 
conduct target tracking. For instance, [8] used both eight static 
sensor nodes and one or more mobile nodes in its simulations. 

With regard to accuracy and performance, some studies 
could achieve an overall estimation error of about two meters. 
For example, the distance estimation errors of [5] were within 
2.3 meters with 90% precision, while the average error for 
walk-through tests of [9] was 2.1 meters. Though the overall 
distance estimate error of [7] was 1.2 meters, its maximum 
error was about 3.5 meters and the use of a networked 
computer for performing heavy computational tasks caused 
latency of up to eight seconds. 

The identified issues mentioned above indicate a remaining 
gap in achieving wider uptake of indoor location tracking in 
society. Moreover, lessons learned from these studies suggest 
that we need to develop a lightweight, but accurate localization 
algorithm suitable for execution in a smartphone, rather than 
another computer. We should also avoid the need to produce, 
store and make comparison of detailed wireless signal maps, as 
well as the need for excessive hardware installations. These 
would help achieve higher mobility, reliability, usability, 
deployability and portability of our real-time telemonitoring 
system at a lower cost. 

B. Received Signal Strength Indication 

Theoretically, this indication is based on the inverse-square 
law that the wireless signal strength is proportional to the 
inverse of the square of the distance from the signal source. 
Equation (1) denotes the relationship between received signal 
strength and corresponding distance [6]. However, in reality, 
due to several issues, such as multi-path fading, indoor 

shadowing, and interference, the relation between signal 
strength and distance in an indoor environment usually 
becomes arbitrary. This significantly increases the complexity 
of RSSI-based distance estimates. To improve the accuracy of 
RSSI-based location tracking, numerous approaches and 
algorithms, such as those mentioned in the previous sub-section, 
have been proposed.  

 RSSId = 10 n log(d) + RSSI0 (1)

In (1), RSSId (in Decibel-milliwatts) is the RSSI measured 
at distance d (in meters) from the source; n is the path loss 
exponent and RSSI0 (in Decibel-milliwatts) is the RSSI 
measured at one-meter distance. 

C. Kalman Filter 

Because a Kalman filter is relatively lightweight and has a 
much better convergence rate than a Monte Carlo filter, we 
chose the former to build our localization algorithm. Equation 
(2) and (3) explain how to model a system using discrete-time 
Kalman filter [11]: 

 xk = Axk – 1 + Buk + wk (2)

 zk = Hxk + vk (3)

In (2), xk is the estimate of the system state variable at time 
k; uk is the control signal; and wk is the process noise. In (3), zk 
is the measurement value at time k; and vk is the measurement 
noise. A, B and H are general form matrices, introduced to 
model the system, and in many cases can be simplified as 
numeric values. To perform the estimates based on a discrete-
time Kalman filter, the two sets of equations in Table I can be 
used repeatedly. 

In Table I, xk

 is the “priori estimate” of the system state at 

time k before measurement update correction; xk – 1 is the 

updated estimate (or posteriori estimate) at time k1 after 

measurement; Pk

 is the “priori error covariance”; Kk is the 

Kalman Gain; xk, which is the updated estimate (or posteriori 
estimate) at time k after measurement, is the very value we try 
to find; and Pk is the updated error covariance after 
measurement. 

TABLE I.  TWO SETS OF DISCRETE-TIME KALMAN FILTER EQUATIONS 

FOR STATE ESTIMATION, AFTER [11] 

Time Update 

 (Prediction) Equations 

Measurement Update  

(Correction) Equations 

xk
 = Axk – 1 + Buk + wk 

Pk
 = APk – 1A

T + Q 
 

Kk = Pk
HT (HPk

 HT + R)1 

xk = xk
 + Kk (zk  H xk

) 

Pk = (1  KkH) Pk
 

 

III. EXPERIMENTAL DESIGNS 

Our designs and experiments started from the use of raw 
RSSI data received from three triangular deployed BLE sensors 
(i.e. TI SensorTags) to estimate the location and movement of a 
tracked target who held a User Agent (i.e. an iPhone 5) and 



walked around a small office environment (nine meters by six). 
The three BLE sensors (denoted as S0, S1 and S2) were placed 
against three different walls of the office at 1.1 meter height 
from the floor. However, because of the very diverse and 
unstable nature of the RSSIs, it was impossible to use the raw 
RSSI data alone to reliably estimate the location and movement 
of the target. 

We then implemented a Kalman filter to improve RSSI 
estimates based on noisy RSSI measurements. However, some 
identified issues in relation to the one-second RSSI update rate 
implemented by iOS caused the resultant RSSI estimates to 
become very unreliable. Consequently, we decided to take a 
sensor fusion approach to perform location estimates. Based on 
this approach, the design and implementation of a step detector, 
a Kalman filter, and several estimate optimization mechanisms 
are described in the following. 

A. Step Detector 

A step detector was designed and implemented on the User 
Agent using accelerometry-related parameters (generated by 
the iPhone’s built-in accelerometer) and heading information 
(by compass). Two thresholds (i.e. a value of 1.07 gravities 
followed by a reduction of 0.209 gravities) of the sum vector 
(SV) of acceleration in X-Y-Z axes were defined. If these 
thresholds were met during real-time monitoring, the User 
Agent would signify a detected step when at the same time the 

Y-axis acceleration was less than or equal to 0.3 gravities or 
the change of heading angle was less than seven degrees. 

Whenever a step or several steps were detected before the 
User Agent received new RSSI updates from all three reference 
sensors, a new location of the target, as well as the change of 
distance between the target and each of the sensors during this 
period of time, was calculated based on both the pre-defined 
length of a step (e.g. 0.65 meters) and the heading data. 

B. Kalman Filter for Distance Estimates 

A discrete-time Kalman filter was developed for estimating 
the distance (denoted as xi,k; hereafter an added subscript i to 
each variable shown in Table I refers to sensor Si) between the 
target and sensor Si (subscript i could be 0, 1 or 2) at time k. 
Upon receiving new RSSI updates from a sensor, the distance 
information calculated by the step detector would be used as 
the control signal ui,k of the Kalman filter. The reason for 
waiting for new RSSI updates before starting a new run of state 
estimation via the Kalman filter was to synchronize the target 
movement with RSSI readings. This was because the iOS 
updates RSSI measurements for each sensor at a maximum rate 
of once per second and updates for different sensors usually 
occur at different times, while a walking step generally takes 
less than one second. In the worst case, this synchronization 
process would incur latency of up to 2.5 seconds. 

When a step was correctly detected, the process noise, 
which occurred mainly due to the inaccuracy of inferring the 
heading angle and step length, would be relatively small. So we 
used a value between zero and 0.23 meters (the standard 
deviation of step detection, if we assumed that on average one 
in every ten steps was incorrectly detected or missed) as the 
process noise wi,k, depending on how much correlation between 

the step detector and the Kalman filter was needed. The process 
noise covariance Qi was hence equal to E[wi,k wi,k

T]. 

The value for measurement noise generally became bigger 
with the increase of distance between the User Agent and 
sensor Si. Based on our empirical observation, we assumed that 
the measurement noise vi,k was equal to the converted distance 
multiplied by a factor of 0.6. Meanwhile, matrices A, B and H 
in (2) and (3) were all simplified as a numerical constant of one. 
The initial value of xi,0 was set to a pre-defined distance, as we 
assumed the real-time monitoring always started at a known 
location and the error covariance Pi,0 was simply set to a non-
zero value, e.g. 0.5. With all these considerations and 
assumptions, the two sets of the Kalman filter equations as 
shown in Table 1 were ready for estimating the distance 
between the User Agent and each of the three sensors. 

C. Mechanisms for Estimate Optimization 

To calculate the real-time location of the tracked target 
based on the outputs from the Kalman filter, traditional 
techniques, including trilateration, trigonometric functions and 
Maximum-Likelihood Estimation (MLE) were first adopted. 
To apply trilateration, the distances from three sensors 
estimated by the Kalman filter at a certain time were used as 
radii to create three circles each centered at S0, S1 and S2 

respectively. Ideally, there should have been a joint intersection 
point among the three circles, representing the optimally 
estimated real-time location of the target at that precise 
moment. However, the reality was much more complicated 
with both underestimates and overestimates of the three 
distances, probably happening at the same time. Therefore, 
when there was an area of intersections, rather than a single 
point, found among the three circles, both trigonometric 
functions and an iterative procedure based on the MLE were 
adopted to estimate the target’s location. Alternatively, if 
intersections were found only between two circles or there was 
not any intersection among the three circles, we enlarged one 
or two of the circles to create intersections and then applied the 
techniques mentioned above. However, the resultant estimates 
were still not satisfactory. 

Our assessment revealed that there might be two main 
causes for such unsatisfactory results. Firstly, the inaccuracy 
and insufficient number of RSSI measurements had inborn 
negative impacts on the accuracy of distance estimation. 
Secondly, the process of manipulating estimated distances to 
create joint intersections among the three circles had introduced 
further noises into the system. Consequently, a follow-step-
detection mechanism was developed to address the first issue 
by choosing a location, nearest to the target location estimated 
by the step detector rather than based on MLE, within the 
intersection area. Furthermore, to address these two issues 
simultaneously, another tight coupling (between step detection 
and Kalman filter) mechanism was also developed by using the 
average of distances both estimated by step detection and 
converted from RSSI readings as the measurement value for 
the next run of the Kalman filter. This mechanism then chose 
one existing intersection point nearest to the target location 
estimated by step detection as the final estimated location of 
the target at that precise moment. 



 

IV. PRELIMINARY RESULTS AND EVALUATIONS 

The results of 20 trials on real-time movement pattern 
monitoring based on our sensor fusion approach varied slightly, 
mainly due to occasional misestimates of step detection and 
intermittent drifts of heading outputs generated by the iPhone’s 
compass. After having tuned a number of different parameters, 
such as path loss exponent and measurement noise, we found 
that the overall accuracy of our localization algorithm was not 
significantly affected by these parameters, but mainly by both 
the accuracy of the step detector, the value of process noise, 
and our choice of a particular coordinate as our optimal 
estimate of the real-time target location. 

As shown in Table II, both the maximum and average 
estimate errors based on the tight coupling mechanism are 
smaller than those based on the other mechanisms. Fig. 1 
depicts the results of location tracking in the small office 
environment based on raw RSSI, the step detection and the 
tight coupling sensor fusion approach respectively. As these 
experiments were based on a normal subject/user, we plan to 
perform further tests and evaluations using a wider range of 
subjects, including for example Parkinson’s disease patients 
with a tremor issue, in the future. 

TABLE II.  ESTIMATION ERRORS BASED ON DIFFERENT MECHANISMS 

Mechanisms for Estimate 

Optimization 

Max. Estimate 

Error (meter) 

Avg. Estimate 

Error (meter) 

Step Detection a 1.17 0.58 

Maximum-Likelihood Estimate 1.75 1.04 

Follow-step-detection Mechanism 1.03 0.54 

Tight Coupling Mechanism 0.81 0.55 

a. excluding results of the worst case 

 

Figure 1.   Location tracking based on raw RSSI, step detection and sensor 

fusion Approach 

V. CONCLUSIONS 

In this paper, we have presented a proposed localization 
system for real-time indoor patient movement pattern 

telemonitoring, which is part of our cost-effective design of 
real-time home healthcare telemonitoring based on mobile 
cloud computing. To enhance the accuracy of our prototype, 
we have developed a tight coupling sensor fusion approach and 
gained promising results. We are confident that with more 
work our design can be adapted to a home-like environment 
with a more robust localization solution. 

For future work, we plan to integrate accurate location 
information from force sensitive resistor (FSR) sensors 
deployed at certain known locations to calibrate the location 
estimates of our step detector and to improve our overall 
localization algorithm. In addition, we will adapt our current 
design to a home-like environment where wireless signal 
transmission might well be further affected by various floor 
plans, partition walls and furniture. It is also desirable to further 
enhance the reliability and accuracy of our step detection 
algorithm. By doing so, we can use the step detector not only to 
record where the patient place reference sensors during system 
set-up and deployment, but also to perform real-time patient 
movement pattern telemonitoring without the need to 
implement RSSI-based localization. 
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