
Hardware Accelerated Rician Denoise Algorithm for
High Performance Magnetic Resonance Imaging

Efstathios Sotiriou-Xanthopoulos, Sotirios Xydis, Kostas Siozios, George Economakos and Dimitrios Soudris
School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

Email: {stasot, sxydis, ksiop, geconom, dsoudris}@microlab.ntua.gr

Abstract—Rician denoising is a mandatory task of Magnetic
Resonance Imaging (MRI), as it enables higher-quality image
processing, which is crucial for correct diagnosis. However,
denoising is a slow task, especially because of the increased image
resolution and the need for high image clarity. A solution towards
this need is the implementation of rician denoise algorithm onto
hardware. In this paper, we propose a hardware implementation
of rician denoise, which processes the MR image into segments
in a pipelined manner, while avoiding further processing on
already denoised pixels of the image. Using a synthetic MRI scan
separated into 16 segments, the proposed implementation achieves
a speedup of 6.8× with comparable image quality, as compared
to a software-only approach running on Intel Core2Duo.

Keywords—Magnetic Resonance Imaging; Rician Denoise;
Hardware Acceleration; High Performance

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a domain of utmost
importance in medical imaging, as it enables the accurate
diagnosis of diseases in complex human organs, like the brain
or the cardiovascular system, by depicting their inner status
and possible structural abnormalities. A typical MRI pipeline
comprises four basic tasks [1]: Reconstruction, Denoising,
Registration and Segmentation. Reconstruction converts the
signal produced by the MRI scanner to a 3D image of X×Y ×
Z pixels, each of which depicts an inner point of the organ-
under-examination. As long as the MRI scanning induces noise
to the 3D image, a denoising algorithm restores the image
content. For the scope of this paper, we focus on denoising of
images with rice-distributed (or rician) noise. Afterwards, the
denoised image is further processed by the registration and the
segmentation phases, where image differences and distinctive
parts of the organ are detected respectively.

However, the requirement for images of high clarity and
the high resolution of typical MRI scans have increased the
execution time of rician denoising: A typical software-only
implementation [2] [3] may take tens of seconds [4] or even
minutes, depending on the image resolution and the denoising
effort. Such delays should be avoided especially when the
physician has to examine multiple MRI scans and make a
correct diagnosis in very strict deadlines. A commonly used so-
lution to alleviate this problem is to implement rician denoising
onto hardware. Apart from the execution time improvement,
another advantage is that a hardware implementation can be
used as a PC peripheral or as a mobile-scale embedded system,
which enables the physician to remotely examine a MRI scan
from a low-end laptop or tablet, e.g. in case of emergency.

In [1], a study on domain-specific architectures shows the
benefits of using specialized processing elements (e.g. GPUs,

FPGAs, etc) in such applications, while another survey for
accelerating medical applications is presented in [5]. Also, het-
erogeneous many-accelerator systems-on-chip architectures,
featuring multiple CPUs, memories, hardware cores and FP-
GAs, have been proposed for offering significant performance
and/or energy improvements in MRI applications [6]. To
enable rician denoising parallelization, a typical approach is to
analyze the dataflow graph (DFG) of each algorithm, in order
to examine which arithmetic operations (additions, multiplica-
tions, square roots, etc.) can be parallelized [7], and map each
operation onto specific parallel-running hardware components.
In such a selection, the performance improvements come from
the parallelization opportunities of the algorithm DFG.

This paper extends the existing hardware mapping and
parallelization solutions, by presenting an efficient pipelined
hardware architecture for rician denoising of MRI 3D scans,
which enables the image processing into parallel segments,
while respecting the data dependencies among the image seg-
ments, in order to fully retain the denoising accuracy. The basic
contribution of this work, as compared to the existing ones, is
that the parallelization is achieved not only by parallelizing
the arithmetic operations, but also by processing in parallel
multiple image parts which do not have data dependencies
among each other. In addition, it is noticed that some areas
of the 3D image (e.g. those which are close to the edges)
are denoised much earlier than others (e.g. at the center
of the image). The proposed architecture avoids unnecessary
processing of those areas for sake of performance, while
achieving comparable denoising quality.

For the scope of this paper, the evaluation of the proposed
architecture will be achieved by using a representation of
the overall system, also known as Virtual Platform (VP)
[8], where each component of the hardware architecture is
virtually modeled in software. Afterwards, the VP components
are simulated altogether, so that the designer can validate
the system functionality (i.e. examine the correctness of data
processing) and explore the best combinations of architectural
parameters (e.g. clock frequency, memory size, memory type,
parallelization degree, etc.) towards performance, area and
power consumption. For VP modeling, we will use SystemC
[9], which combines the software execution with hardware
description language features, thus allowing the modeling of
any hardware component in multiple levels of abstraction.

The rest of the paper is organized as follows: Section II
presents a theoretical background of rician denoise. Section
III describes the proposed pipelined hardware implementation.
Section IV shows the effectiveness of the proposed architec-
ture. Finally the conclusions are presented in Section V.

MOBIHEALTH 2014, November 03-05, Athens, Greece
Copyright © 2014 ICST
DOI 10.4108/icst.mobihealth.2014.257361

II. BACKGROUND ON RICIAN DENOISE

Rician denoise is a total variation algorithm which tries
to remove noise n from an observed image f (obtained from
reconstruction phase), by finding a denoised image u, such that

f = u+ n (1)

Every possible u which satisfies Equation 1 belongs to a
domain Ω of images, which is the domain of function f .
To achieve this goal, the first step is to model the rician
noise distribution. A most common one is the Rudin-Osher-
Fatemi (ROF) model, firstly presented in [10]. According to
ROF model, the objective for MRI denoising is expressed in
Equation 2:

min
u∈BV (Ω)

∫
Ω

|∇u| dx+ λ

∫
Ω

[
u2 + f2

2σ2
− log I0

(
uf

σ2

)]
dx (2)

In Equation 2, I0() is the zero-order Bessel function, σ is
the Rician noise constant parameter, while λ > 0 denotes the
variation step of rician denoising; the higher the value of λ,
the more intense the variation will be, albeit at the expense of
denoising quality. This minimization objective is achieved by
using a gradient descent expressed in Equation 3:

∂u

∂t
= ∇

∇u
|∇u|

−
λ

σ2
u+

λ

σ2

I1
(
uf

σ2

)
I0
(
uf

σ2

) f (3)

The proposed hardware architecture is based on the gra-
dient descent software implementation of [2]. According to
the source code and the documentation [11] of the software
implementation, the term ∇ ∇u|∇u| of Equation 3 for each pixel
ux,y,z can be approximated by the following equation:

∇
∇u
|∇u|

≈
∑

(x′,y′,z′)∈Nx,y,z

(gx′,y′,z′) (4)

Where Nx,y,z is the set of neighbor coordinates of (x, y, z)
and gx,y,z is a gradient function approximating 1

|∇u| :

gx,y,z = [(ux+1,y,z − ux,y,z)2 + (ux−1,y,z − ux,y,z)2 +

+(ux,y+1,z − ux,y,z)2 + (ux,y−1,z − ux,y,z)2 +

+(ux,y,z+1 − ux,y,z)2 + (ux,y,z−1 − ux,y,z)2 + ε]
−1/2 (5)

In addition, the gradient descent is implemented as an
iterative minimization algorithm, where the output of each
iteration k is used as input to iteration k + 1. The algorithm
stops when total convergence is achieved, i.e. the difference
between the input and output becomes lower than a given
threshold, for all the image pixels. To enable this iterative
implementation, Equation 3 is re-written as follows:

u
k+1
x,y,z =

ukx,y,z +D

G(gkx,y,zu
k
x,y,z) +

λ
σ2

I1

(
ukx,y,zfx,y,z

σ2

)
I0

(
ukx,y,zfx,y,z

σ2

) fx,y,z


1 +D
(
G(gkx,y,z) +

λ
σ2

) ,

(6)

G(px,y,z) =

∑
(x′,y′,z′)∈Nx,y,z

(p
k
x′,y′,z′) (7)

Equations 4, 5 and 6 also describe the data dependencies of
the rician denoising algorithm. In particular, they imply that a

Fig. 1. The proposed hardware implementation for rician denoise

Fig. 2. Segmentation of each image slice

5 × 5 × 5 cube of neighbor pixels is required, the center of
which will be the pixel ux,y,z to be denoised. Finally, in order
to achieve lower execution time, the zero-order and first-order
Bessel functions I0 and I1 are polynominally approximated,
according to [11].

III. EFFICIENT HARDWARE IMPLEMENTATION OF RICIAN
DENOISE

Figure 1 depicts the pipelined architecture of the proposed
implementation of rician denoise. The pipeline consists of N
hardware cores, with private image, gradient and convergence
buffers, each of which processes a X × (Y/N) × Z segment
of the 3D image, denoising one image pixel each time. When
a core i ∈ [1...N] processes a 2D slice in coordinate zi of Z
axis, the previous core i− 1 can process in parallel a 2D slice
in the next coordinate zi−1 = zi + 1.

Management of the data dependencies among hardware
cores: At the first and the last rows of each segment, some
data dependencies for gradient computation may be violated.
To avoid such a violation, each core in the middle (i.e. except
first and last core) also takes as input two extra rows, one at
the beginning and another at the end of its input, thus covering
in total Yc = (Y/N) + 2 rows. Also, the first and the last
core include one extra row, at the end and at the beginning
respectively, thus Yc = (Y/N) + 1. Such a technique leads to
overriden image rows, as in Figure 2, where a segmentation
example for N = 4 demonstrates which rows of the 2D
slice are processed by each core. However, in any case, the
actual denoising output of every core is an image segment
with (Y/N) rows, while the extra rows are utilized only for
inner calculations.

In addition, the image segment denoising in core i re-
quires the preceding neighbor pixels to be already denoised,
which may also lead to dependency violations at the limits
of two adjacent segments. To override this issue, each core
i = 0, ..., (N − 1) sends the denoised row before last (i.e.
(Y/N) and (Y/N)+1 respectively) to the next core j = i+1,
j = 1, ..., N , which stores the row pixels into a buffer.
Both techniques are of utmost importance, as they ensure the
correctness and accuracy of the hardware implementation.

Buffer analysis: When applying the rician denoise algo-
rithm on pixel ux,y,z , a set of buffers is used in order to
cover data dependencies, avoid unnecessary re-computations
by storing previously calculated internal results, and trace the
early-converged image areas.

In particular, a “gradient buffer” is utilized for storing
previously-calculated gradients: It is noticed that the gradients
gx−1,y,z , gx,y−1,z and gx,y,z−1, for x > 0, y > 0 and
z > 0, have already been calculated, during denoising of
the preceding pixels. Thus, unneccessary arithmetic operations
can be avoided, e.g. denoising ux,y,z uses gradient ux,y,z+1,
which can be re-used for denoising ux−1,y,z+1. Thus, when
denoising a pixel ux,y,z for y > 0, only gradient gx,y,z+1 can
be calculated, while for the remaining gradients previously-
calculated values can be re-used. The only exception is for
y = 0, only preceding gradients can be re-used, while all
succeeding gradients should be calculated as well. In total,
the re-usable gradients range from gx,y,z−1 to gx,y,z+1. Thus,
the length of the gradient buffer should be [2×X × Yc + 1]
elements.

An “image buffer” stores the neighbor pixels required for
denoising, as well as for gradient computation. The pixels
needed for denoising range from ux,y,z−1 to ux,y,z+1, however
the calculation of gradient gx,y,z+1 requires pixel ux,y,z+2

too. To satisfy all the data dependencies, a pixel range from
ux,y,z−1 to ux,y,z+2 has to be covered, thus the length of the
image buffer should be [3×X × Yc + 1] elements.

Finally, during denoising, some image areas (e.g. at the
edges) may converge earlier than others (e.g. at the center).
Formally, in iteration k, there are coordinates (x, y, z), where∣∣ukx,y,z − uk−1x,y,z

∣∣ < T . In such cases, those pixels will only be
used for gradient calculation, while no further denoising may
be applied. Towards this direction, a [X × Yc × Z] memory
module called “convergence buffer” is used for marking the
early-converged pixels of the 3D image.

Hardware core manipulation: Each hardware core is
controlled by a dedicated CPU via a bus. The running software
executes every iteration of the algorithm, by manipulating the
input/output data of the hardware core. A CPU can obtain/store
the initial image, the intermediate image segments and the final
output by accessing a shared memory module. In addition,
the shared memory stores the appropriate synchronization
mechanisms (e.g. semaphores, etc.), in order to ensure that the
rows to be sent from core i to core i+1 will not be corrupted.

The CPUs need X×Yc×(Z+2) accesses to their hardware
cores in order to fully process an image segment:

1) The first 2 × X × Yc accesses populate the image
buffer, while no denoising is made.

2) In each of the next X × Yc × (Z − 2) accesses, the
hardware core stores the input pixel ux,y,z to the
image buffer and denoises the pixel ux,y,z−2 by using
the preceding and succeeding pixels which are all
stored in the image buffer. Afterwards, the denoised
pixel replaces the initial one in the buffer. During
denoising, the gradient and convergence buffers are
also populated. If the pixel to be denoised has con-
verged in an earlier iteration, according to conver-
gence buffer, no further denoising is applied and the
pixel is returned to the CPU unaffected.

3) The final 2×X×Yc accesses flush the image buffer,
the remaining pixels of which are denoised.

IV. EXPERIMENTAL RESULTS

For evaluation purposes, a virtual platform of the proposed
architecture with N = 16 denoising cores has been deployed.
The hardware cores are controlled by ARM11 CPUs, each
having 32-kilobyte instruction and data caches. The operation
frequency of hardware cores is 333 MHz, while each ARM11
CPU operates at 500 MHz. The functionality and the delay
of each hardware core are modeled in custom-made SystemC
modules, while the CPU, the memories and the bus were
obtained from SoCLib [12] component library. The system
can be emulated by compiling the source code of the VP
and running the produced simulator. For the interaction among
the VP components, the simulator includes a scheduler and
other event handling mechanisms which are provided by the
SystemC kernel.

The 3D image to be used for simulation is a synthetic MRI
scan of a healthy brain, with dimensions 90×112×90, obtained
from the BrainWeb [13] database. However, the proposed
implementation can denoise MRI scans of any organ and in
any resolution. As BrainWeb only supports Gaussian noise,
we obtained a clear 3D image, a slice of which is shown in
Figure 3a, and we added rice-distributed noise. The maximum
noise value is equal to the 9% of the maximum luminosity of
the 3D image. The respective slice of the resulted image is
depicted in Figure 3b. To validate the denoising quality of the
proposed architecture, a reference denoising has been made
(Figure 3c) by using the software implementation available in
[2]. The result of denoising by using the proposed hardware
implementation is shown in Figure 3d.

In both software and hardware implementation, rician
denoise requires 12 iterations in order to denoise the input
3D image. However, there is a result difference between the
hardware and the software implementation, which relies on the
fact that the hardware implementation does not apply further
denoising in early-converged areas of the image segments.
However, after a careful analysis, the difference ranges only
from -0.4% to +0.4% for 98.9% of the 3D image, while no
difference exists for the 77.6% of the image. In addition, it is
noticed that some details depicted in Figure 3a can be better
shown in Figure 3d rather than in Figure 3c, which means that
the depiction of some structural parts of the brain can be better
achieved when avoiding the early-converged image areas.

To investigate the time improvements of the proposed
hardware implementation, a 16-segment implementation is
firstly compared to a single-segment hardware implementation,

(a) (b) (c) (d)

Fig. 3. (a) A slice of the synthetic MRI scan, obtained from BrainWeb; (b) The MRI scan with rice-distributed noise; (c) Denoising with the reference software
implementation [2]; (d) Denoising with the proposed 16-core hardware implementation

0 1000 2000 3000 4000 5000

Software

Single−segment Hardware

16−segment Hardware

Execution time (miliseconds)

4971.0

451.2

3073.0

6.81 x

11.02 x

Fig. 4. Comparison of execution time

derived from the same VP by setting N = 1. According
to Figure 4, the pipeline of the proposed architecture can
result to 11× lower execution time, thus covering both the
synchronization overhead and the extra accesses needed for
populating the buffers.

In addition, the 16-segment hardware architecure is com-
pared to the reference software implementation, which has
been executed on Intel Core2Duo1, running at 2.4 GHz. As
Figure 4 depicts, the hardware architecure results to time
improvements reaching 6.81×, which are very significant
if we take into consideration that the proposed architecture
incorporates slower CPUs. These gains were resulted not only
by pipelining, but also by not applying denoising on early-
converged image parts. This is also noticed when comparing
the single-segment hardware implementation with the refer-
ence software. In particular, the use of slower CPUs to the
hardware implementation and the need for populating the
buffers before actual denoising might result to a time overhead
reaching 62%, as compared to the software implementation.
However, as compared to the overall time gains, this overhead
remains low, while a significant part of the time overhead is
also covered by avoiding the early-converged image parts.

V. CONCLUSION

This paper presents a hardware implementation for rician
denoising, which processes the input MRI scan in segments,
in a pipelined manner, thus achieving significant performance
improvements. In addition, the implementation is able to
avoid further denoising on early-converged pixels of the 3D
image, thus resulting to further performance enhancement. In

1Only one of the CPU cores is utilized, as the software implementation is
single-threaded.

total, when denoising a synthetic MRI scan divided in 16
segments, the proposed hardware implementation can achieve
execution time improvements reaching 6.81×, as compared to
the reference software implementation.

ACKNOWLEDGMENT

This work has been partially supported by the EC
funded project Swan-iCare (FP7-ICT, Project No. 317894) and
“TEAChER: TEach AdvanCEd Reconfigurable architectures
and tools” project funded by DAAD (2014).

REFERENCES

[1] A. Bui, K.-T. Cheng, J. Cong, L. Vese, Y.-C. Wang, B. Yuan, and
Y. Zou, “Platform characterization for domain-specific computing,” in
Design Automation Conference (ASP-DAC), 2012 17th Asia and South
Pacific, Jan 2012, pp. 94–99.

[2] (2014) Center of domain-specific computing, CDSC image processing
pipeline. https://code.google.com/p/cdsc-image-processing-pipeline/.

[3] P. Coupé. (2014) MRI denoising software.
https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-
medical-imaging/mri-denoising.

[4] M. Vatsa, R. Singh, and A. Noore, “Denoising and segmentation of 3d
brain images,” in IPCV’09, 2009, pp. 561–567.

[5] J. Cong, V. Sarkar, G. Reinman, and A. Bui, “Customizable domain-
specific computing,” Design Test of Computers, IEEE, vol. 28, no. 2,
pp. 6–15, March 2011.

[6] J. Cong, M. Ghodrat, M. Gill, B. Grigorian, H. Huang, and G. Reinman,
“Composable accelerator-rich microprocessor enhanced for adaptivity
and longevity,” in IEEE International Symposium on Low Power Elec-
tronics and Design (ISLPED), 2013, Sept 2013, pp. 305–310.

[7] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Charm: A composable heterogeneous accelerator-rich microprocessor,”
in Proceedings of the 2012 ACM/IEEE International Symposium on
Low Power Electronics and Design, ser. ISLPED ’12. New
York, NY, USA: ACM, 2012, pp. 379–384. [Online]. Available:
http://doi.acm.org/10.1145/2333660.2333747

[8] R. Leupers, F. Schirrmeister, G. Martin, T. Kogel, R. Plyaskin, A. Herk-
ersdorf, and M. Vaupel, “Virtual platforms: Breaking new grounds,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2012, March 2012, pp. 685–690.

[9] (2014) SystemC official webpage. http://www.accellera.org/home.
[10] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation

based noise removal algorithms,” Phys. D, vol. 60, no. 1-4, pp. 259–
268, Nov. 1992. [Online]. Available: http://dx.doi.org/10.1016/0167-
2789(92)90242-F

[11] (2014) Center of domain-specific computing, riciandenoise: 2d and
3d total variation based rician denoising. http://cdsc-image-processing-
pipeline.googlecode.com/files/riciandenoise.pdf.

[12] (2011) SoCLib tlm2.0 library website. http://www.soclib.fr.
[13] (2006) Brainweb: Simulated brain database.

http://brainweb.bic.mni.mcgill.ca/brainweb/.

