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Abstract—We aim at developing an intelligent robotic platform
that provides cognitive assistance and natural support in indoor
environments to the elderly society and to individuals with
moderate to mild walking impairment. Towards this end, we
process data from audiovisual sensors and laser range scanners,
acquired in experiments with patients in real life scenarios. We
present the main concepts of an automatic system for user intent
and action recognition that will integrate multiple modalities.
We demonstrate promising preliminary results, firstly on action
recognition based on the visual modality, i.e. color and depth
cues, and secondly on the detection of gait cycle patterns that
exploit the laser range data. For action recognition we are based
on local interest points, 3D Gabor filters and dominant energy
analysis, feeding a support vector machine. Then the recognized
actions can trigger the gait cycle detection that detect walking
patterns by exploiting the laser range data, modeled by hidden
Markov models. In this way, we shall acquire the overall patient’s
state and the robot shall autonomously reason on how to provide
support.
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I. INTRODUCTION

As the elderly population rises in our societies, mobili-
ty issues become a major problem. Recent research shows
that, approximately 20% of people aged over 70 years, and
50% of people aged over 85, face mobility difficulties, [1]-
[3]. In the EU, the rising life expectancy is estimated to
bring about an increase of 40% of population aged over 80
during 1995-2015; thus mobility disabilities are expected to
pose even greater significance. Walking deficiency hampers
daily activities, while causing drawbacks both physically and
psychologically, due to lack of exercise and independence.
Moreover, the insufficiency of nursing staff, [4], leads to the
need of robotic assistants that incorporate functionalities such
as posture support and stability, walking assistance, navigation
in indoor/outdoor environments and health monitoring. We
envisage a robotic assistant walker that combines multimodal
action recognition and behaviour analysis by integrating va-
rious sensing technologies that assists the elderly people with
specific forms of moderate to mild impairment in a particular
user-centered, context-adaptive and natural manner for an
assisted living, [5].

There are several attempts towards developing intelligent
robotic mobility aids, i.e. robotic wheelchairs and robotic wal-
kers, especially rollators, [6], which constitute a mechanized
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Fig. 1.  Experimental platform: first sensorized prototype used for data
acquisition and recordings.

version of the standard walking frame attached to the wheels,
mainly used for balance problems. The robotic walkers, in-
corporate features such as physical support, sensorial and
cognitive assistance, health monitoring and human - machine
interaction, [7]. These walkers are either passive or active
devices, [8]. There have been attempts of integrating various
sensors onto robotic walkers, such as fusion techniques of
sensorial data from a camera for face tracking and a laser
sensor for user legs’ detection, [9], and a framework for
multimodal human-robot interaction using data from a laser
scanner and two inertial measurement units, [10].

Our research aims at developing a robotic walker for indoor
environments that localizes the user, estimates the body pose
and recognizes human actions, gestures and intentions. A
crucial feature of our approaches is the integration of multiple
modalities, [11]. Herein, we develop a system that takes as
input the multimodal data, first processes the visual data to
perform action recognition, and then the recognized actions
can trigger gait processing that detects walking patterns by
exploiting the laser range data. Initial results of our work are
presented recently in [12], [11], [13].

II. EXPERIMENTAL PLATFORM AND MULTIMODAL DATA

The experimental platform consists of a passive rollator
prototype that moves forward only after applying force on
it, equipped with various sensors, as shown in Fig. 1. The
sensing technologies include: (i) two Laser Range Finder
sensors (LRF), a Hokuyo UTM-30LX placed at the front of the
platform facing the walking area for environment mapping and
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obstacle detection, a Hokuyo UBG-04LX-FO1 rapid LRF at
the back of the platform mounted at a height of approximately
40cm from the ground for detecting lower limbs movement, (ii)
two 6 DOF HR3 force/torque sensors placed at the handles, to
measure the applied forces between the patient and the rollator,
(iii) two types of visual sensors: a GoPro HD camera to record
patient’s upper body movements and two Kinect-for-Windows
(KFW) sensors. The first horizontal KFW captures the torso,
waist, hips and the upper part of the limbs and the second
KFW faces downwards at the lower limbs, (iv) an array of 8-
microphone MEMS is used for audio capturing. This platform
is used for data acquisition in predefined scenarios of everyday
life actions involving elderly people with mobility inabilities.

III. MULTIMODAL: VISUAL - HUMAN ACTION
RECOGNITION

Towards multimodal action and gesture recognition, we
develop robust computer vision techniques to process multiple
cues, such as spatiotemporal RGB appearance and depth data
from Kinect sensors. These data are employed to automatically
recognize human actions such as stand-up, sitting intent,
dynamic walking/stability behavior of the user and gestures
recognition, as related to action intention.

For gesture recognition, we employ features extracted both
on handshape and movement information, which are then
modeled via hidden Markov models (HMM). We also explore
multimodal fusion techniques to take advantage of audio in-
formation and enhance the robustness of our framework, [11].
Preliminary results are promising, despite the specificities of
the task, as the not very active movements, the variance among
users, and the inconsistency in gesture performance.

For action recognition, our front-end, [12] detects local
spatio-temporal interest points, which are voxels in a video
that maximize a saliency function. The latter is an energy
map computed by multiband spatio-temporal filtering with
3D Gabor filters and dominant energy analysis. We apply
the Teager-Kaiser Energy Operator (TKEO) to each fil-
tered channel and the most dominant channel’s magnitude
forms the energy map of every pixel. TKEO has the ability
to track energy oscillations and separates them into their
amplitude and frequency components with excellent spatio-
temporal resolution and small complexity. The detections are
represented through local gradient based descriptors computed
in a volume around each detected point. For all the above
we also take advantage of depth information to localize and
segment the user. Thus the spatio-temporal interest points are
better localized. An example of user segmentation and the
detected features are presented in Fig. 2.

The above described descriptors are processed to form Bag-
of-Features (BOF) histograms. For this, we form groups of
descriptors by clustering. The centroids are the visual features
that represent a video through the frequency of appearance of
each descriptor. We use a moving temporal window to extract
features to construct a BOF histogram for each temporal frame.
BOF representations are evaluated through support vector
machine (SVM) classifiers with y2-kernels. These result to the
probabilities of a video frame to belong to a specific action.
A background model (BM) is employed to represent sections
not belonging in our vocabulary, such as silent sections and
visual noise.

Finally, we end up with probabilities for each action seg-
ment. These probabilities are smoothed by a Gaussian/median
window and are feeded forward to the Viterbi algorithm, [14],
as observation likelihoods. Viterbi is combined with a penalty
applied on the diagonal of its transition matrix to constrain
frequent action transitions. This is applied in order to avoid
action transitions in consequent frames. The same algorithm
provides the final result of the recognized action sequence (see
Sec.V). The recognition of actions provide information for the
processing of gait cycles by predicting the intention of the
subject to walk.

Fig. 2. Interest points detection. Left: RGB/depth images. Right: Interest
points for the original frame (top), and after employing depth stream to localize
the user (bottom). Elimination of false alarms in the background improves
recognition performance.
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Fig. 3. Limbs’ detection from range data. Blue stars correspond to the
raw laser data; black "X’ correspond to the detected leg centers; green "X’
correspond to the estimated positions. The rectangle is the search window

IV. MULTIMODAL:LASER RANGE SCANNER- GAIT
CYCLE DETECTION

A. Gait Analysis

Our next objective is the analysis and classification of
walking patterns. Normal gait has periodic transitions of each
foot from one position of support to the next. The gait cycle
describes the period of time during which one leg leaves the
ground for the first time to perform a forward motion till when
the same leg contacts the ground again, [15]. Each gait cycle
has two phases: stance and swing. In stance the foot is in
contact with the ground; 60% of the gait cycle. In swing the
foot is in the air performing a ballistic motion; 40% of the gait
cycle. The gait cycle is divided into eight events:
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Fig. 4. Internal states of normal gait cycle (Left Leg: blue dashed line, Right
Leg: red solid line).

Fig. 5. Left-to-right HMM used for gait analysis and recognition.

1) IC - Initial Contact: 0% (Heel Strike)

2) LR - Loading Response: 0-10% (Foot Flat)

3) MS - Midstance: 10-30% (Opposite Toe Off)

4) TS - Terminal Stance: 30-50% (Heel rise)

5) PW - Preswing: 50-60% (Opposite Initial Contact)
6) IW - Initial Swing: 60-70% (Toe Off)

7) MW - Midswing: 70-85% (Feet Adjacent)

8) TW - Terminal Swing: 85-100% (Tibia Vertical)

B. Detection and Tracking through laser data

The recognised actions initialize gait processing. The dete-
ction and tracking of user’s limbs using the range data precedes
the feature extraction. Towards this end we apply the following
process, i.e. a combination of K-means clustering along with
Kalman Filtering (KF):

1)  An initial orthogonal search window in the x-y plane
is set, as the most probable area of detecting the user’s
limbs.

2) A background extraction based on thresholding ex-
cludes the outliers and the K-means algorithm assigns
two clusters to the corresponding legs. A least squares
nonlinear circle fitting process is used to approach the
legs’ centers. Those centers are the observation vector
that enters a constant acceleration KF.

3) The KF tracks the central positions of the limbs by
stochastically estimating their position according to a
motion and an observation model.

4)  The predicted positions are seed to the K-means al-
gorithm for the next laser frame, while their variances
are used to adjust the initial search window.

5)  The process is repeated until no more laser measure-
ments enter the system.

In Fig. 3 we show an example of a laser frame with the detected
legs’ centers and their estimated positions. From the results of
the detection and tracking process the 9x1 feature vector per
laser frame is used for gait cycle classification. The feature
vector consists of the left and right leg positions and velocities
in the X,y coordinates along with the interleg distance. In Fig. 7

we show a few strides of normal gait with respect to the laser
frame along with a plot of the distance between the legs.

C. Detection of Gait Cycle

The dynamic properties of walking led to the usage of Hid-
den Markov Models. These modeling generative sequences,
where an observable variable results from a combination of
hidden states, are stochastic processes, commonly employed
in speech processing, as well as human activity analysis, [16],
due to their ability to model temporal transitions.

We employ a HMM for gait recognition with seven states
corresponding to the seven events of normal walking; the TW
phase is excluded as equivalent to the IC that triggers a new
gait cycle — see Fig. 4. Our observations are based on the
feature vector presented in Sec. IV-B. A left-to-right HMM is
defined (see Fig. 5) and the Baum-Welch algorithm is used
for the estimation of the model parameters, [14]. Initial results
obtained by applying this model in normal human gait data
are promising, [13].

V. EXPERIMENTAL RESULTS

Dataset: For the experiments in this preliminary work we
employ data from subjects who take part in the following
scenario: the subject (patient) sits in a chair, stands up,
performs straight walking and then sits back. For the case of
visual modality processing and action recognition we employ
data from six patients performing the above three actions
(SU, WALK, SD), while performing several gestures. For the
laser data we employ data from 10 subjects (non-patients, i.e.
subjects who performed normal walking) who took part in the
same scenario. The multimodal data set is acquired by two
sensors: the upper Kinect (KFW) and the rear laser scanner
facing the user’s legs. The KFW captures RGB and depth
data on a 30Hz sampling frequency. The laser scanner has an
angular resolution of 0.36°, scan time 28msec and accuracy
10mm for distances till 1m.

The evaluation of the proposed approach for action recog-
nition is applied on the above real experimental data. Results
on the detection and classification of actions on a continuous
video via the probabilistic outputs of SVMs is shown in Fig. 6;
these include three actions and a background model. Then, by
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Fig. 6. Probabilistic outputs of 3 actions + BM, the annotated and recognized
labels for our action recognition framework.



taking into account the recognized actions, the gait analysis
can be initialized at the detection of ‘StandUp’, translated as
the patient’s intention to start walking.

For the evaluation of HMM-based gait detection, we em-
ploy experimental data from ten subjects with normal gait.
HMM training incorporates only a part of subjects data,
excluding the recorded data of one subject for evaluation.
In the evaluation phase we estimate the sequence of state
transitions that occur in the unseen test data.
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Fig. 7. Real experimental normal gait data for testing and evaluation of

HMM. Top: Left (blue data) and Right (red data) legs displacement. Bottom:
legs distance in the sagittal plane.
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Fig. 8. Estimated sequence of gait phases based on the constructed model

(HMM), w.r.t. time.

Preliminary results are presented in Fig. 8. These show that
the evolution of the gait states after testing the trained model
on the unseen experimental data of Fig. 7, match the general
evolution of the human gait model that is represented by the
HMMs; i.e. the gait phases appear sequentially with the correct
order, and the time frame of each state is within the general
bounds as discussed in Sec. IV-A.

VI. CONCLUSIONS AND FUTURE WORK

We presented our objectives on developing an intelligent
robotic walker that provides optimal support to the users in
indoor environments by integrating sensorial data from visual
and laser range sensors. The first prototype consists of a

passive rollator, used for data acquisition with elderly people.
Initial results have been presented regarding recognition of
human actions. The action recognition subsystem employing
visual data can trigger the process for detection of user’s
walking patterns based on the laser range data.

Our ongoing research is to develop an extended action
recognition system that will provide the ability of user-robot
communication based on audio-gestural recognition. An ad-
vanced framework for the recognition of gait patterns and
their classification into normal or pathological ones is also
currently being developed. Finally, we aim at integrating all
modalities into a general human-state recognition system that
aims at designing a human-adaptive mobility aid with cognitive
support according to the patient’s needs in the context of
assisted living.
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