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Abstract—In spite of extensive research in the last decade,
activity recognition still faces many challenges for real-world
applications. On one hand, when attempting to recognize various
activities, different sensors play different on different activity
classes. This heterogeneity raises the necessity of learning the
optimal combination of sensor modalities for each activity. On
the other hand, users may consistently or occasionally annotate
activities. To boost recognition accuracy, we need to incorporate
the user input and incrementally adjust the model. To tackle
these challenges, we propose an adaptive activity recognition with
dynamic heterogeneous sensor fusion framework. We dynamically
fuse various modalities to characterize different activities. The
model is consistently updated upon arrival of newly labeled data.
To evaluate the effectiveness of the proposed framework, we
incorporate it into popular feature transformation algorithms,
e.g., Linear Discriminant Analysis, Marginal Fisher’s Analysis,
and Maximum Mutual Information in the proposed framework.
Finally, we carry out experiments on a real-world dataset col-
lected over two weeks. The result demonstrates the practical
implication of our framework and its advantage over existing
approaches.

Keywords—Activity Recognition, Deep Learning, Convolutional
Neural Network

I. INTRODUCTION

The rapid spread of wearable devices with sensing capa-
bilities offers the opportunity for human activity recognition.
Knowing a user’s activity over a period of time enables
applications such as continuous monitoring of user behavior,
physical activity monitoring [18], abnormal activity detec-
tion [3], elderly care [23] and physical activity recognition [2].

The activity recognition is usually formulated as a classi-
fication problem [15]. Many classification methods have been
leveraged in previous studies. The decision table, decision
tree and naive Bayes classifier are experimented to recognize
twenty predefined daily activities [2]. The support vector
machine (SVM) and k-nearest neighbor (kNN) algorithm are
used to perform fall detection [26]. The linear discriminant
analysis and hidden Markov models are introduced to recog-
nize predefined workshop activities [13].

However, most of the aforementioned activity recognition
approaches frame activity recognition as a “static” machine
learning problem, which assumes the types of activities to
be recognized are predefined. This assumption does not hold
for many real-life applications such as Lifelogger [6], social
activity pattern detection, etc. In these systems, the number of
activities is not constant. Moreover, different users have their

own definition of a “meaningful activity”. It is infeasible to
foresee activities that users may be interested in. So in the
training phase, the systems are required to learn the most
useful sensor modality combination according to different
kinds of activity classes. We call these systems Adaptive
Activity Recognition Systems

In order to recognize personal, unseen activities, some
incremental methods [22], [1] are proposed. However, their
results are similar to those of non-personalized models [12],
indicating that the feature selection is crucial for activity recog-
nition [12]. The semantic attribute sequence based models
are also used for recognizing unseen new activities [5], [4],
but still fail to consider the influence of different features.
We have developed a dynamic heterogeneous sensor fusion
framework for adaptive activity recognition. The key idea is to
find the most discrimnative combination of sensor modalities
(motion, sound, location, time of the day, WiFi environment,
etc.) for each activity. For example, if all sensor modalities
are leveraged, the system will not be able to recognize that the
user is walking unless he walks with the same motion, at the
same location and at the same time as the training walking
examples. On the other hand, when the user annotates new
types of activities, the system needs to adjust the model to
use additional sensor modalities in order to discriminate a
new activity from existing activities. Specifically, when the
user labels an activity as walking, the system learns that
motion feature is sufficient to recognize this activity. Several
days later if the user labels a new type of activity: grocery
shopping, which has very similar motion as walking,
the system will need to incorporate location information to
distinguish these two types of activities. Then the “motion”
and “location” sensors play important roles in this case. The
sensor weight is a value representing the importance
of a sensor. To examine the effectiveness of the proposed
framework, we integrate several feature transformation meth-
ods including Linear Discriminant analysis (LDA), Marginal
Fisher’s Analysis (MFA) and Maximum Mutual Information
(MMI) algorithm.

To summarize, we develop a practical dynamic heteroge-
neous sensor fusion framework, which addresses the challenge
of dynamic sensor fusion in adaptive activity recognition. The
key contributions of the paper are highlighted as follows:

• We propose a sensor fusion framework to learn sensor
weights for each activity class so that activities are eas-
ier to be discriminated in the new distance space. We
implement several feature transformation algorithms
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including LDA, MFA, MMI based on our framework.

• To perform dynamic sensor fusion for each activity,
we propose an adaptive activity recognition method
based on the framework. In contrast to prior activity
recognition methods, this framework learns the sensor
weights without any prior knowledge about which
sensor modalities are relatively more useful.

• Experimental results on our dataset are encouraging
and confirm the effectiveness of the proposed frame-
work on the activity recognition task.

This paper is organized as follows. We begin with a dis-
cussion of the related work. Then we introduce our framework
based on adaptive activity recognition with sensor fusion,
which can learn sensor weights for each activity and adjust
the weights according to the newly arrived labeled data. Then
we propose feature transformation algorithms by utilizing the
proposed framework. After that, we describe the dataset that
we use for evaluation and data preprocessing followed by
details of the experiments and discussion of results. Finally,
we conclude the paper with a summary and future work.

II. RELATED WORKS

A. Activity Recognition and Sensor Fusion

In the past decade, different methods have been applied to
a variety of sensors to address the activity recognition problem.
One influential work in this area is made by Bao et al. [2].
In their experiments, accelerometer data on different body
positions are used to detect activities such as walking, sitting,
standing still, watching TV, running, etc. The decision tree
classifier shows the best performance among other classifiers,
which achieves overall recognition accuracy of 84% on the
predefined activity dataset. It is worth noting that Bao’s results
in terms of accuracy of “snippets” rather than accuracy of
activity segments. CenceMe [14] is a personal sensing system
that enables members of social networks to share their sensing
presence with their friends in a secure manner. Relying on
a two-tier split-level activity classification based on decision
tree, it captures a small set of user status in terms of activ-
ity, disposition, habit and surrounding. However, its “static”
characteristic hinders them to learn a more robust model using
increasing labeled data. The sequential and temporal character-
istic of activities attracts attention of applying dynamic models
such as the variants of the Hidden Markov Model (HMM) [7],
[11]. Although building HMM models does not require labeled
training data, it requires prior knowledge to define the structure
of the HMM model, which limits its feasibility.

In order to train an adaptive model, an incremental active
learning method is applied for daily activity recognition [17].
It uses an unsupervised incremental learning algorithm (Grow-
ing Neural Gas) to select data points that the user should
label, and then updates the supervised classier for activity
recognition. Abdallah et al. describe a personal model that
could be incrementally trained to adapt to changes in a user’s
activities [1]. Another incremental learning method is achieved
using probabilistic neural networks and an adjustable fuzzy
clustering algorithm [22]. Models based on semantic attribute
sequence are used for recognizing unseen new activities [5],
[4]. However, these methods do not consider the influence of
different sensors.

Fusing information from different sensors to infer high
level activities is also a hot topic. There are other approaches
utilizing different sensors such as camera [7], acoustic sen-
sor [25] and GPS to address the activity recognition prob-
lem. However, all these methods assume the targeted types
of activities and the most useful sensor modalities can be
known beforehand, which makes them not applicable under
the adaptive activity recognition scenarios. Ad-hoc solution is
presented to address the problem [9]. In their approach, the
sensor fusion scheme is defined by human and is application
specific. Stiefmeier et al. present a fusion technique based on
classifier selection [19]: two classifiers work on the motion and
ultrasonic sensor modalities and generate predictions respec-
tively. By calculating the conditional probability of correctly
recognizing one class given another classifier’s result, they are
able to select the most reliable prediction from one of the
classifiers. This classifier-wise approach can select the most
robust sensor for recognizing certain activities, but cannot fuse
information from a combination of different sensors.

Although above approaches of activity recognition work
well in certain scenarios, their performance is unknown if used
in the adaptive activity recognition system.

B. Feature Transformation

Feature transformation is an important task in pattern
recognition systems. It can transform high-dimensional sensor
features to a subspace, which makes classification much easier.
An optimal feature combination can significantly improve the
recognition accuracy. The traditional feature transformation
can be embedded into our framework to find the optimal sensor
combination. The well-known Linear Discriminant Analysis
(LDA) [8] maximizes the mean value of Kullback-Leibler
divergence between different classes when classes are sam-
pled from Gaussian distribution with different means but an
identical covariance. Another feature transformation method
is Marginal Fisher’s Analysis (MFA) [24]. MFA combines
an intrinsic graph and a penalty graph to find a feature
transformation that can well separate different classes. Besides,
Maximizing the joint Mutual Information (MMI) between the
features and the class labels can minimize the lower bound of
the classification error [21] and has the similar discriminant
characteristic as LDA.

III. LEARNING ACTIVITY-SPECIFIC SENSOR WEIGHTS

In this section, we present adaptive activity recognition
framework with sensor fusion. Since different sensors may play
as “experts” on different activity classes, the sensor weight
vector w is learned to maximize the discrepancy according to
different objective functions in the sensor modality-distance
space for each activity ak (Figure 2). For a given activity
class, the problem is framed as a binary classification problem.
We separate the dataset into two partitions: in-class Dak and
out-class D¬ak . According to different objective function, it
maximizes the projected distance between class Dak and class
D¬ak in the modality distance space(Figure 1).

A. Sensor Fusion Framework

To learn the weights of sensor for each activity, we
need to build separate models for each activity. For each



Fig. 2. The Heterogeneous Sensor Fusion Framework.

Fig. 1. Left) Original data modality space with three activity types. Right)
The projected space: the blue points are all in-class modality distances, grey
points are out-of-class, the line indicates the central distance between these
two classes.

activity ak ∈ A, where |A| = K is a set of activity,
we frame it as a binary classification task. The set of
labeled data for training can be represented by {(xi, ci)},
i = 1, ..., n, ci ∈ {0, 1}. xi ∈ RM is the feature vector
of M modalities which is a discreet/continuous random
variable drawn from X . ci = 1 denotes sample i belongs
to activity ak while ci = 0 represents sample i is not
activity ak. For example, assume that the training set is
{(x1, walking), (x2, running), (x3, walking), (x4, driving)},
to find the optimal transformation for activity “walking”, the
training set is converted to {(x1, 0), (x2, 0), (x3, 1), (x4, 0)}.
Then we try to find a feature combination in subspace R
in which the discriminant of the data maximized according
to different objective function. Whatever the objective
is, to approximate the transformation from RM to R, a
linear/non-linear function f , wherein w ∈ RD can be
obtained from

w = argmaxw J(ci, yi)

s.t., yi = f(w, xi)
(1)

subject to specific constrains, e.g., wTw = 1. The objective
function J(ci, yi) is designed for specific applications, e.g., it
maximizes the discriminant of data in the selected subspace
according to different assumptions or intuitions. For example,
LDA selects a feature combination, where the ratio of the
between-class scatter matrix and the within-class scatter matrix

is maximized. f(·) can be a linear or non-linear transformation
function upon the distribution of the data.

Once we define the objective function J and the function
of transformation, we can perform gradient ascent to search
for the optimal w for the framework as follows.

wt+1 = wt + η
∂J

∂w
= wt + η

∂J

∂yi

∂yi
∂w

. (2)

B. Incorporating Transformation Algorithms

Since we have a sensor fusion framework, any feature
transformation algorithm can be embedded into according to
the objective function. We provide three weighted transforma-
tion algorithms to show how to extend these classic algorithms
under the proposed framework. These algorithms include the
Linear Discriminant Analysis, the Marginal Fisher’s Analysis,
and the Maximum Mutual Information. According to Eq.(2),
we only need to show J(w) and ∂J(w)/∂w for adaptive sensor
weight learning of conventional LDA, MFA, MMI.

1) Weighted Linear Discriminant Analysis Transformation:
Linear discriminant analysis [8] is a popular supervised feature
transformation learning algorithm for learning discriminant
feature transformation in the projected subspace, yi = wTxi. It
finds a feature transformation to preserve the class structure for
classification defined in the high-dimensional space RM . The
class structure is described by the between-class scatter and the
within-class scatter, which, respectively, measure the separa-
tion between different classes and the scatter of measurements
around their corresponding class centers. The preservation is
achieved by maximizing the ratio of the above two scatter
matrices in R

Mathematically, centers of two classes are defined by

mi =
1

ni

∑
xi∈Di

xi (3)

The between-class scatter matrix is given by

Sb =

1∑
i=0

ni
∑
xi∈Di

(mi −m)(mi −m)T (4)



Fig. 3. The linear discriminant analysis. Left: A projection by a random
vector; Right: A projection by a LDA vector.

and the within-class scatter matrix is

Sw =

1∑
i=0

ni∑
j=1

(xij −mi)(xij −mi)
T (5)

where ni is the number of sample in class i, In our sensor
fusion framework, the LDA objective function is given by

J(w) =
|Sb|
|Sw|

=
wTSbw

wTSww
(6)

with linear transformation yi = wTxi. Actually, this optimiza-
tion problem of (6) has a closed form solution,

w = S−1w (m0 −m1) (7)

2) Weighted Marginal Fisher Analysis (MFA) Transforma-
tion: LDA is motivated from the assumption that the data of
each class is drawn from Gaussian distribution, which cannot
always be satisfied in real world problems. Moreover, the
within-class scatter cannot well characterize the separability of
different classes of the data without the Gaussian distribution
assumption. Algorithmically, MFA [24] constructs an intrinsic
graph and a penalty graph. The intrinsic graph illustrates
the inter-class compactness, and each sample is connected to
its k-nearest neighbors of the same class. The within-class
compactness is characterized by

Sw =
∑
i

∑
i∈Nk(j)orj∈Nk(i)

||xi − xj ||2

= 2wTX(D − Ew)XTw

(8)

where a possible way of defining Ew is as follows

Ewij =

{
1 if j ∈ Nk(i) or i ∈ Nk(j)
0 otherwise

(9)

and Dw
ii =

∑
i 6=j E

w
ij , The between-class separability is char-

acterized by

Sb =
∑
i

∑
(i,j)∈Pk(li)or(j,i)∈Pk(lj)

||xi − xj ||2

= 2wTX(D − Eb)XTw.

(10)

where the definition of Eb is

Ebij =

{
1 if j ∈ Pk(i) or i ∈ Pk(j)
0 otherwise.

(11)

and Db
ii =

∑
i 6=j E

b
ij , Pk(c) is a set of data pairs that are the

k nearest pairs among (i, j), i ∈ πc, j /∈ πc

Fig. 4. Marginal Fisher Analysis. Left: The graph of intra-class with k-
nearest; Right: The graph of inter-class with k-nearest

Fig. 5. The Mutual information J(C, Y).

The linear transformation in the sensor fusion framework
is Y = wTX , then the MFA feature transformation maximizes

J(w) =
Y (Db − Eb)Y T

Y (Dw − Ew)Y T
. (12)

3) Weighted Maximum Mutual Information (MMI) Trans-
formation: Since LDA only makes use of second-order sta-
tistical information, namely the covariance, it is optimal for
data where each class has a unimodal Gaussian density with
well-separated means. Under such scenarios maximum mutual
information is proposed to learn a linear feature transforma-
tion.

For continuous random variable y ∈ Y from y = wTx,
the uncertainty of the class label, making use of Shannon’s
definition, is expressed in terms of class prior probabilities

H(C) = −
∑
c

P (c)logP (c) (13)

After having observed a feature y, the uncertainty of the
class identity is now the conditional entropy

H(C|Y ) = −
∫
y

p(y)

(∑
c

p(c|y)logp(c|y)

)
dy (14)

The amount by which the class uncertainty is reduced,
after observing the feature y, is called the mutual information
J(C, Y ) = H(C)−H(C|Y ). Our target is to find an optimal
y to maximize uncertainty reduction.



Actually, by p(c, y) = p(c|y)p(y) and P (c) =
∫
y
p(c, y)dy,

the MI in our sensor fusion framework can be written as

J(C, Y ) =
∑
c

∫
y

p(c, y)log
p(c, y)

P (c)p(y)
dy (15)

which can also be interpreted as the Kullback-Leibler (K-L)
divergence [10] between the joint density and the product of
the marginal densities of the variable: KL(p(c, y), p(c)p(y)).

In [21], the Renyi’s quadratic [16] is used instead of
Shannon’s entropy for computational advantages.

HR(C) = −log
∑
c

p(c)2 (16)

HR(Y ) = −log
∫
y

p(y)2dy (17)

Making use of quadratic functions, the mutual information
between a discrete variable C and a continuous variable Y can
be estimated as

J(C, Y ) = VIN + VALL − 2VBTW (18)

where VIN , VALL and VBTW are “information potentials”[16],
[21]

VIN =

2∑
c=1

∫
y

p(c, y)2dy

VALL =

2∑
c=1

∫
y

p(c)2p(y)2dy

VBTW =

2∑
c=1

∫
y

p(c, y)p(cp)p(y)dy

(19)

Parzen estimation[21] and GMM estimation[20] are pro-
posed to estimate the joint distribution and marginal distribu-
tion to get VIN , VALL and VBTW .

Mutual information J(yi, ci) can now be interpreted as an
information potential induced by samples of data in different
classes. It is now straightforward to derive partial ∂J/∂yi.
The three components of the sum give rise to following
explanation[21]: 1) samples within the same class attract each
other, 2) all samples regardless of class attract each other
and 3) samples of different classes repel each other. This
characteristic is similar as that of LDA.

IV. ADAPTIVE ACTIVITY RECOGNITION WITH SENSOR
FUSION

In this section, we describe the adaptive activity recognition
mechanism based on the sensor fusion framework and the
incremental sensor weight update method.

Fig. 6. Adaptive Activity Recognition with Different Sensor Weights for
each Activity

A. Adaptive Activity Recognition

After we get the sensor weights for each activity,
we can apply k-NN to calculate the distance between
a testing activity segment with all labeled activity seg-
ments in the weighted distances in motion, location, speed,
light modalities, which results in a modality vector xi =
[xmotioni , xlocationi , xspeedi , xlighti ]. For activity ak, we calcu-
late the optimal transformation wk by discriminant analysis
algorithm. The learned projection is actually a weight vector
which indicates the ability of sensor modalities in separating
a certain activity from other activity types. With the learned
weighting vectors, we modify the standard k-NN algorithm
for activity recognition accordingly. For an incoming activity
segment, we calculate its relative distance drai with each of
the labeled activity segments ai in the database using the
weighting vector wi as

drai =
dai

dai + d¬ai
(20)

where dai is distance between the newly arrived activity
segment anew and center of in-class ai, and d¬ai is distance
between anew and center of out-of-class d¬ai .

We then label the new activity segment according to the
closest activity. The whole process is shown in Algorithm 1.
For each activity, the sensor weights are calculated by closed
form formula directly or iterative methods. Then the incoming
activity can be classified to the nearest class according the
weighted distance.

B. Sensor Weights Updating

Our assumption is that users will label the activity in-
crementally. To achieve dynamic adjustment of the sensor
weight by the new arrival labeled data, we need to update
the parameters for the two datasets for each activity, in-class
D0
k and out-of-class, D1

k. For example, if we use LDA, the
within-class scatter Sw and between-class scatter Sb needs to
be updated according the newly arrived labeled activity.

Another simple enhancement for iteratively updating the
weights wi is by using the previous sensor fusion iteration
as the starting point for current weight updating. There are
intuitively appealing reasons why the previous wi might make



Algorithm 1: Adaptive Learning Activity-Specific Sen-
sor Weights

Input: A labeled data set Dlabel = {xli, ai}, and an
incoming activity unlabeled activity xun

Output: weights of sensor for each activity w and
labels C of hte unlabeled data Xun

foreach ak in the activity set A do
• Initialize the sensor weight for each activity

wk = [1/M, ..., 1/M ]
T , M is the number of

modalities
• Separate the label dataset Dlabel into two

class: D0 = {xi, c0}: the label of xi is
activity ak and D1 = {xi, c1}: the label of
xi is is not activity ak;

repeat
• Applying gradient descent update the

sensor weight wk by eq.(2) iteratively.
until wk convergences;
• for the incoming activity xun, calculate its

distance of (dak ) and (d¬ak ) respectively, then
use eq.(20) to get the relative distance drak
between xun and class ak.

end
• The label for xun, r∗, is calculated by

r∗ = argmink{drak}, where i = 1, ...,K.

a good initialization. Indeed, the new set Dnew
ai added into

the Dai should be “similar” to some extent, and thus the
optimization problem solved by current gradient ascent is also
similar to the previous one.

Algorithm 2: Incremental Sensor Weight Updates
Input: Incoming labeled data Dnew = {(xN+i, aN+i)},

i = 1, ...L
Output: updated weights of sensor for each activity wi,

i = 1, ...N
foreach ai in the activity set A do

if ai ∈ Dnew’s label set then
• Set the starting point of wi as previous

value
repeat

• Use eq.(2) to update the sensor weight
wi;

until wi convergences;
• Remove the samples whose labels are

ai from Dnew

end
end
if Dnew is not empty then

• Create new sensor weight w for the new
coming activity

end

V. EXPERIMENTAL ANALYSIS

We evaluate the performance of the proposed framework
in terms of overall recognition performance and its robustness

Fig. 7. We illustrate the interface of our mobile activity recognition
application. Left: Naive self-report. Mid: Unsupervised activity segmentation.
Right: Location trajectory review for activities.

Sensor Sampling Rate
Accelerometer, Ambient Light 4Hz
Microphone 8KHz
GPS, Speed every 2 minutes

TABLE I. SENSORS AND THEIR SAMPLING RATE USED FOR THE
SINGLE-SENSOR CLASSIFICATION EXPERIMENT.

under the incremental learning scenario. We compared three
activity recognition algorithms including the proposed adaptive
recognition algorithm with dynamic sensor fusion, milti-class
SVM and motion-based k-NN recognition.

A. Dataset

We use the annotated data collected by our mobile sensing
platform (Fig 7). Sensor data is collected from two phones
in two weeks. During the data collection period, a user is
free to use the phone without any limitation or control. At
the end of each day, the user annotates the ground truth by
reviewing the trajectory and the audio recorded by the phone.
Accelerometer data, GPS location, speed and ambient light
data are used in this experiment. The sampling rate is shown
in Table I. The dataset contains 20 activity categories. The
overall activity recognition performance is reported based on
the result of 10-fold cross-validation.

B. Evaluation Metric

To understand the performance of the proposed framework
under real application scenarios, we design an iterative training
and testing strategy for evaluation. The system is initialized
with very few labeled data and then new labeled data is added
incrementally. From each of the 20 activity categories, 90% of
the data will be selected randomly to the training pool and 10%
left are removed the labels as test data. In the first iteration, the
first 10% training data in the pool will be selected and used
for training. In each of the following iterations, 10% more data
is used for training. This procedure repeats 9 times until all
labeled data is leveraged.

The reason of designing this iterative scheme is two-fold:
we attempt to test the system’s performance of classifying
unknown activities as well as its capacity of correctly detecting
known activities.



For the recognition, we evaluate the results using the F -
measure. The Fβ score can be calculated by the following
formula:

Fβ = (1 + β2) · Precision · Recall
β2 · Precision + Recall

(21)

The performance of activity segmentation is measured by
F0.5 score because we believe recall is more important. We
allow a ±2 minutes’ error-margin of activity boundary to be
matched against the ground truth.

C. Result and Analysis

The overall results are shown in Table II. The LDA and
MFA dynamic sensor fusion algorithm outperform the motion-
only k-NN (0.82 vs. 0.69, 0.73 vs. 0.69), which demonstrates
that the effectiveness of the proposed framework. The multi-
class SVM has the worst performance, which is 0.53. We find
that the F0.5 score of SVM can achieve 0.97 when the test is
conducted on the training set. However, its performance drops
significantly in the 10-folder cross-validation. One possible
explanation is that SVM suffers from over-fitting when the
training set is small. However, this is unavoidable in adaptive
activity recognition scenario.

Algorithm F0.5 Score
LDA-Dynamic Sensor Fusion 0.82
MFA-Dynamic Sensor Fusion 0.73
MMI-Dynamic Sensor Fusion 0.41
Motion-only k-NN 0.69
Multi-class SVM 0.53

TABLE II. THE OVERALL ACTIVITY RECOGNITION PERFORMANCE.

The simulation experiment (simulating how user provides
annotations incrementally) (Figure 8) also shows that the
performance of LDA in the proposed framework is robust
under the incremental learning environment. Performance in
the first two rounds is not stable because the number of
labeled activity instances in each class is limited. The system
performs much better when user annotates more instances and
the performance is stable after the 4-th iteration. The F0.5

scores remain about 0.75 after 9-th round of user annotation.
The F0.5 values of MFA and MMI are increasing through the
increasing number of training samples. However, their F0.5
values are lower than the simple LDA transformation because
they are more complicated and prone to overfitting.

Fig. 8. We show the performance of the proposed framework in the simulated
incremental activity annotation scenario. New labeled data is added in each
iteration. Average F0.5 score is 0.75.

Figure 9 shows the weights on motion (accelerometer) and
location (GPS) sensor modalities of 12 activities classes. The

weights for activity classes that have only one member are
omitted because they are all set to the same initial value.
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Fig. 9. The weight vector for motion and location of 12 activity classes with
LDA.

We observe that activities such as “Washing Dishes”,
“WaiteForTrain” “Paper Discussion” and “Meeting” have high
weight on location, but very low reliance on motion (close
to zero). This indicates that location is the most discrimina-
tive modality for these three activity types while motion is
not. “Cooking”, “WritingPaper”, “WorkingBeforeComputer”,
“HavingMeal” need to incorporate both location and motion
information to be distinguished from other activities, which
results in more balanced weights. Notice that “Driving” also
has a high weight on location. This is likely to be an artifact
of our data collection as most users in this study only drive
on regular routes.

Another interesting observation is that some weights are
negative after the learning. For example, the motion weight
of “Washing Dishes” and location weight of “Gaming” are all
negative values. Since the weight vector wk is calculated from
the discriminant ratio between in-class Dak and out-of-class
D¬ak , a negative weight value means the diversity of activity
class k on a certain data modality (e.g., motion) is larger than
the average diversity of the remaining data.

VI. CONCLUSION

In this paper, we developed a sensor fusion framework for
adaptive activity recognition. The framework can evaluate the
importance of each type of sensor data for each activity by
feature transformation and adjust the sensor weights incremen-
tally. Based on the proposed framework, we can apply various
feature transformation algorithms including LDA, MFA and
MMI. The experiments were carried out on a real world dataset
and promising results were obtained. As future work, we
will assess our framework on more datasets and examine its
usability in more complicated activity recognition tasks.
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