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Abstract—In this work, we show how a smart-phone worn
unobtrusively in a nurses coat pocket can be used to document
the patient care activities performed during a regular morning
routine. The main contribution is to show how, taking into
account certain domain specific boundary conditions, a single
sensor node worn in such an (from the sensing point of view)
unfavorable location can still recognize complex, sometimes
subtle activities. We evaluate our approach in a large real life
dataset from day to day hospital operation. In total, 4 runs of
patient care per day were collected for 14 days at a geriatric
ward and annotated in high detail by following the performing
nurses for the entire duration. This amounts to over 800 hours of
sensor data including acceleration, gyroscope, compass, wifi and
sound annotated with groundtruth at less than 1min resolution.

Index Terms—Activity Recognition, health care documenta-
tion, real-world study

I. INTRODUCTION

The main goal of this work was to see how well activities
relevant for nursing documentation in a hospital can be recog-
nized within boundary conditions found in an average hospital.
While a large body of work on activity recognition already
exists, it is often limited by either an artificial, lab setting,
or otherwise only deals with somewhat simple activities like
modes of locomotion. Furthermore, much work also requires
extensive instrumentation of either the environment or the sub-
jects or even both. Given these considerations, it is understand-
able that especially in a hospital setting, activity recognition
and the applications it can support or enable is still very much
an active and difficult research topic. One of the tasks that
health care professionals usually face when treating patients is
an exact and meticulous need for documentation, for various
reasons like treatment monitoring, quality of care and legal
safeguarding. Unfortunately, this is also a very time-intensive
process. Given the high workload nurses face, reducing time
spent here would be beneficial. This article presents a study
aimed at laying the groundwork for exactly that. Especially,
this means trying to recognize complex activities in a real-life
setting under real-life working conditions.

A. Related Work

The usage of wearable and pervasive technology in health-
care is not a new field any longer. It has already been explored

in numerous publications. Overviews include [1] or [2]. The
usefulness of context in wearable computing in general is
e.g. discussed in [3]. Kunze et al. [4] describe a quanti-
tative Wizard-of-Oz study of using context recognition for
a wearable maintenance assistance system. Current research
about activity recognition reveals a wide range of approaches.
Much work was done on the use of inertial sensors such as
accelerometers, gyroscopes or magnetometers. [5], [6].

Activity Recognition in real-life often focuses on recogniz-
ing simple activities like ”walking”, ”sitting”, ”standing” or
”running” [7] or gym-kind exercises (see [8] or [9]). For more
complex activities like workshop or maintenance work, often
a large number of sensors is deployed to reach sufficiently
accurate results (see [10], [11]). If the setting becomes more
complex, additional information sources beyond sensor infor-
mation are required. Here, approaches like hidden Markov
models (HMMs) [12] and conditional random fields (CRFs)
[13] are utilized to represent model-based information (e.g.
about the sequence of events). In [14], relational Markov
networks are used to represent a hierarchical activity model to
determine location based activities from GPS traces. Zinnen et.
al [15] evaluate sensor-based vs. model-based activity recogni-
tion. Other approaches try to transfer learned knowledge from
one application to others thereby reducing the required training
data for new applications [16].

In health care pervasive computing and context recogni-
tion mainly includes context aware systems, which provide
information for care documentation. A future application is
introduced by Agarwal et al. [17] who describe a prototype
context aware perioperative information system to capture
and interpret data in an operating room of the future. The
captured data is used to construct the context of the surgical
procedure and detect medically significant events. Such events,
and other state information, are used to automatically construct
an electronic medical encounter record. In [18] a study is
introduced, which implemented a nursing support system in
a series of laboratory experiments under simulated conditions,
where clinical nurses were asked to perform assigned nursing
tasks and simulated patients were used to make the environ-
ment realistic. Another system introduced by [19] describes
a wireless sensor network system for supporting context-
awareness of nursing activities in hospitals.
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B. Contributions

This work describes a study set in a real hospital, done
during regular working hours with live patient care. Our main
contributions are:

• Recording of a large dataset under real life conditions
during the usual operation of a regular hospital ward
containing over 800 hours of sensor data; this amounts to
over 130 care routines for multiple patients, performed by
multiple nurses, exactly labelled by trailing researchers

• Recognition of a complex set of activities relevant for
nursing documentation using only a standard (and thus
cheap, readily available) smartphone worn unobtrusively
in a coat pocket (and thus suited for daily work). It is
important to point out that no obtrusive, extensive instru-
mentation or special hardware was used or necessary.

• Further augmentation of recognition accuracy by includ-
ing best practice information supplied by a ”nursing
workflow” derived from documentation and observation.
We believe this approach may also be of value to other
researchers for different scenarios.

II. THE SCENARIO

As we described in the Introduction our work was motivated
by the request for an application assisting nursing documenta-
tion and the need to develop a solution that can be deployed in
an average hospital. From this three main constraints resulted:

1) The only sensor placement on which the nurses could
agree was to just put it into the coat pocket (see figure
1). Not all had pockets in the trousers and strapping
anything to the body was considered to be too much
of a disruption and potential source of injury when
patients would hold on to a nurse. Furthermore, all other
locations could easily expose the sensor to damage.

2) No videos were allowed and sound could only be
recorded if it was cut into pieces and randomly mixed
so that no speech could be retrieved.

3) We could follow the nurses and make all the notes we
wanted, but questions and repetitions of activities for
any sort of training were not allowed during the nursing
process.

A. Real-life Data Capture of Morning Activities

In the hospital ward chosen, four nurses performed a
morning hygiene routine for a few (2 to 3) patients each,
including activities like washing, showering, drying, dressing,
making the bed, measuring pulse and blood pressure and so
on. The experiment at the ward lasted for a total duration
of 14 days, each with 4 recorded runs of the morning shift
procedure with a total of 18 different nurses. Overall, more
than 800 hours of sensor data were recorded. Each of these
runs was slightly different, both because the nurses were free
to chose the order of execution of some activities as well as
the need to fit them to a patient’s requirements. The platform
used for sensing was a standard smart-phone, placed in the

Fig. 1. Sensor setup: simply a smart-phone (with its internal sensors) placed
in the nurse’s coat pocket

coat pocket of each nurse. Major constraints were invisibility
towards patients and unobtrusiveness, as it was not permissible
to obstruct or hinder the nurses in any way. The recorded
sensor data was annotated by a researcher trailing each nurse,
using Ipads running a labeling application developed for this
study. This allowed annotations at less then 1min scale. To
maintain the quiet atmosphere on the ward, only two of the
four nurses work could be annotated every day. As a result,
30 sets of activity annotations (including app. 130 patient- and
app. 120 nurse flow executions) were collected.

B. Building a Model

To provide a meaningful description of the sequence and
nature of activities encountered, a hierarchical workflow model
for the morning hygiene routine was created by analysis of
best practice guidelines and the labels collected (see figure
2). Interestingly, although medical procedures are subject to
strong restrictions in their execution, the ward does not provide
detailed workflow models for the patient care procedures on
their own. While well trained medical staff does not need
this information, for our research these models and definitions
were required. For our purpose, the model assembled con-
tained activities performed and their possible sequences (e.g.
dressing will only be performed after showering, which may,
however, be optional). It was further enhanced with relevant
context annotations and restrictions such as spatial limitations
(i.e. a task can only be performed in one of several given
locations) and context requirements like limitations on mode
of locomotion of the task (e.g. not possible to measure pulse
while walking).

III. APPROACH

A. Constraints

Although the chosen smart-phone platform features 8 poten-
tial sources for context relevant data in general scenarios, only
5 of these could be used in the hospital trial conducted: while



Fig. 2. Nursing flow of the morning examination tasks

Accelerometer, Gyroscope, Compass, Microphone and WiFi
were used to record data, Bluetooth, Camera and GPS were not
available as usage was generally not possible or would have
required changes in the ward environment (i.e. installation of
devices or markers in patient inhabited areas) which were not
permitted.

The first difficulty in dealing with the sensor data was given
by the nature of the experiment. Since data was collected
during regular work at the ward, it was not possible to repeat
actions or pause execution. Also, it was not possible to record
video or unscrambled audio for labelling purposes. As a
result, while the labelling information gained by following the
nurses and noting their actions in our Ipad app is reasonably
accurate, it is not accurate enough for standard supervised
training methods. As an example, suppose showering was
to be recognized. Further suppose this activity lasts for 5
minutes and the signal is divided into 5 second windows.
Both acceleration and sound data will contain characteristic
frames that would well represent showering. However, not
only will there be others that only amount to background
noise, even more important, the windows actually containing
the relevant information may be (and in all likelihood are)
different depending on sensing modality. As a consequence,
direct fusion of all modalities at the feature level is not
feasible, as this would mask relevant information by the noise
of other sensors.

B. Recognition Approach

Keeping the above constraints in mind, we decided upon
the following approach (also see figure 3)

a) Step 1: Recognition on single sensors:: For both
inertial sensors and sound, the signal was divided into 4
second windows. For inertial sensors, standard features were
calculated on the (orientation invariant) norm, e.g. min, max,
rms, frequency centroid, etc.. For sound, [20] served as tem-
plate, with features heavily frequency based (e.g. frequency

Fig. 3. Recognition architecture: leverageing flow information in order to
enhance the recognition results

centroid and bandwidth, band energy ratios, etc.). Frames
containing no or little information were marked as ’null’
and not considered further. Criteria included no movement
for inertial sensors and silence for sound. On the remaining
windows, a Bayes classifier was trained using data from 8 of
the 20 annotated datasets. For every window, this resulted in
a predicted activity or the label ’null’ (nothing happening)
if the most likely probability was still below a threshold.
WiFi data was used in a fingerprinting approach. For all
access points visible throughout the ward, signal strength was



gathered and represented as an n-dimensional vector. Points
close to one another then tended to exhibit closeness in this
n-dimensional space, even if single components may fluctuate.
Since wifi signal geometry is influenced by furniture, humans
and environmental conditions, all of which can change, this
approach only gives a rough idea of location (somewhere
between individual rooms and and a group of rooms close
to one another) and cannot be used to pinpoint a nurse’s exact
position.

b) Step 2: Combining sensor modalities:: As a next step,
these single sensor, frame by frame results were combined and
elevated to the event level. To that end, for each activity its
average duration was calculated; afterwards, again for each
activity, a sliding window of that duration was moved along
the individual frame by frame results. All frames within were
counted according to their classifier’s confusion matrix. An
example: assume that there are classes A and B, with our
classifier recognizing A 90% as A and 10% as B. If an
individual frame was then classified as A by said classifier,
it would count 0.9 towards the ’A score’ and 0.1 towards
the ’B score’. The coarse positioning obtained by WiFi was
used as a constraint; if an activity was not possible in the
rough area provided by the location classifier, it was counted
towards ’null’. Once all frames within the window were
counted, a majority decision was performed, the winner (and
its associated winning ratio) being noted down for that time
interval. If subsequent windows contained the same activity,
they were merged. If two activities collided (remember, there
was a sliding window for each one), the one with the higher
winning ratio was selected.

c) Step 3: Workflow Integration Level:: After the fusion
step, domain specific knowledge codified into a best practice
workflow was applied to further enhance recognition results.
We would like to point out that this workflow only served as a
template. The actual information was derived from the labels
recorded during the study. This information was transformed
into a finite state machine, with the transition probabilities
calculated like this: suppose activity A was followed by B
10 times and by C 20 times. The edge (A, B) would then
carry probability 33%. The resulting finite state machine was
then combined with the sequence of activities (each associated
with a ratio) from the previous step. Starting from the first
event, for each following event a new likelihood was calculated
as a weighted product between its ratio from the fusion step
and the transition probability of the finite state machine. The
weighting itself was done by a sigmoid function; i.e. the higher
a probability, the more influence on the result it had.

IV. RESULTS

A. Solely sensor based results

The results of steps 1 and 2 described above (recognition
through sensor fusion without the information about the work-
flow) are shown in 4. The average precision and recall are
48.6% and 49.9%. Given the difficulty of the task, resulting

from the combination of unsuitable sensor placement and
complex activities, this is not unexpected. The results for in-
dividual activities are also in line with expectations. Activities
associated with a loud, characteristic sound are recognized
well. This includes showering, hair drying and shaving. More
subtle yet characteristic sounds are associated with blood
pressure measurement (putting on the calf, pumping) or putting
on gloves (when opening the plastic bag with the one way
gloves). Activities such as dressing the patient and washing
the patient in bed have a strong motion component with
some sound and are also recognized fairly well. On the other
hand activities where the motion is mostly restricted to hands
with little sound such as changing a bandage or drying the
patient are recognized very poorly. It is interesting to note
that measuring pulse (manually with a finger on the wrist),
which has neither sound nor motion is recognized better then
may be expected. This is precisely due to the fact that there
are little situations beyond pulse measurement where there is
so little sound or motion.

B. Results with workflow information

The improvement that can be achieved when using the
workflow information can be seen in Figure 5. The average
precision and recall rise to 72.0% (plus 23.6 percentage points)
and 72.4% (plus 22.5 percentage points). The improvement
can be seen across all activities improving the ”good ones”
towards around 90% but even more dramatically raising the
rates for the ”bad ones” such as changing a bandage and drying
the patient. How much the activities improve clearly depends
on the amount of constraints imposed by the workflow. It is
also interesting to notice, that the errors are mostly due to
substitutions rather than insertions or deletions. Basically, this
means that the system may be wrong about what activity is
happening, but in almost all cases it will both notice correctly
that some event is occurring and at the same miss almost none
of them.

Given this, there is another interesting evaluation especially
pertinent to context sensitive nursing documentation. The
output of the classifier is a list of all possible activities, ranked
by their inferred probability (i.e. the system may think the
event is 70% showering, 20%washing, etc.). If the output of
the system is used for listing the most likely candidates for
a nurse to pick as done in [21], it is already enough for the
correct activity to be among the best two or three candidates.
Given that metric, as shown in Figure 6, the correct activity
is within the 2 best picks in 78.7% of cases and within the 3
best picks in 85.3%. The exact type of confusions are shown
in table I.

V. CONCLUSION AND DISCUSSION

Overall, this work shows that even under unfavorable sensor
constraints, given by the deployment in a real world environ-
ment such as a hospital, reasonable precision and recall can be
achieved when exploiting workflow concerns. While clearly,
this approach is not applicable to all situations, nevertheless,
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Fig. 4. Precision and Recall without semantic knowledge
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TABLE I
CONFUSION MATRIX FOR WORKFLOW ENHANCED RECOGNITION

BP Shower Dry. Hairdr. Dress. Ch.
Band

Pulse Shave M.
Bed

Put
on
gl

Br.
teeth

W. i.
bed

Take
to A

Take
off gl

NULL Sum

BP 50 2 2 56
Shower 16 1 1 0 18
Drying 41 6 2 2 2 3 56
Hairdrying 33 3 1 1 1 3 42
Dressing 15 4 149 12 25 17 222
Change Band 1 2 11 1 2 2 2 5 26
Pulse 5 40 3 5 53
Shave 1 26 1 1 1 2 32
Make Bed 2 5 2 1 46 3 4 1 1 7 72
Put on gloves 3 2 2 3 1 2 57 2 3 5 7 87
Brush teeth 2 2 5 31 6 3 3 52
Wash in bed 3 2 24 43 2 4 9 4 248 4 16 359
Take to A 1 1 29 1 1 33
Take off gl. 2 2 1 3 1 35 3 47
NULL 2 1 4 1 13 4 3 1 5 4 1 8 0 2 47

especially in professional settings where the aim of activity
recognition is documentation or context sensitive support,
there are often strong workflow constraints. These are at the
same time often the situations where practicability issues make
the deployment of rich, well placed sensor configurations and
the collection of adequate training data difficult.

Note that as described in [21] a documentation support
system does not need perfect recognition. If we can reduce the
documentation to a selection from a few alternatives and keep
the number of deletions small then the process can already
be greatly optimized. Thus the results presented here are of
significant practical interest.

As a next step, we will investigate integrating low level
data analysis in a closer and more generalizable way with a
semantic high level representation. By high level representa-
tion we mean a semantic model, that can be broadly defined
as a representation of the scenario and the relations among its
objects.
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