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Abstract— Market rating systems give Android users the 

opportunity to provide feedback on an application (app). 

Developers aspire for the highest ratings possible, as they reflect 

upon user perceptions of their apps. However, no mechanism 

exists to predict in any way the market rating of an app before 

publication. We downloaded and reverse-engineered 10,740 apps 

from the Slide Me market, and analyzed them using quality 

related metrics. We compared the results of the 1,000 highest 

rated apps against the lowest rated 1,000. Our results show that 

traditional white box quality metrics do little to distinguish the 

groups, while certain Android specific user-perspective metrics 

are useful in prediction. 
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I.  INTRODUCTION 

Smart Phones have been wildly successful in recent years. 
Driving this success is the ability to install custom applications 
(apps) from a marketplace. Google’s official Play Store 
reached one million applications, with over fifty billion 
downloads, in 2013 [1]. Google allows the distribution of apps 
through third party markets as well. 

With such a large assortment of apps to choose from in 
today’s marketplaces, users are faced with a difficult task in 
determining which to install. From this problem stems the 
community rating system, which allows app users to assign a 
score based on their respective experiences.  

The developer views the rating as an assessment of his 
application [2]. It follows that he wants to maximize his score. 
Development and feedback is a time-consuming cycle. In 
addition, it is often difficult to extract useful information from 
reviews. As such, a mechanism to predict application ratings 
would be of value. 

II. PREVIOUS WORK 

In [2], the authors present a tool, WisCom, used to 
download and analyze user comments from 171,749 Google 
Play store apps, summarizing the data into an easily digestible 
format. The program also determines inconsistencies between 
user comments and ratings. AR-Miner [3] builds upon the work 
presented in WisCom. AR-Miner analyzes app store reviews 
and presents a ranked list of those that are most relevant. 

Though some studies have been performed on the mining 
of market rating information, none of these have involved code 
analysis. We found no work that attempted to predict market 

rating based on quality metrics. Therefore we concluded that 
such a study would be of value. 

III. METHODOLOGY 

Our goal was to obtain a sample of free apps from an 
Android marketplace, reverse engineer them, and examine code 
features that might correlate with app quality. Our study 
involves the collection, unpacking, and mining of APK 
(Android Package) files.  

The logical first step was to determine which market best fit 
our needs. We originally wanted to use Google Play for our 
study, as it is the most popular and has a widely used rating 
system. However, we found a major roadblock in doing so. A 
user may not download an APK file directly from Play to a PC. 
We turned our attention to third party markets, landing on Slide 
Me, which has a widely used rating system.   

We then downloaded 10,740 APK files from the Slide Me 
market, and reverse-engineered them using apktool [4]. This 
produced Dalvik byte-code, along with resources and the 
manifest file. Next we developed a set of metrics with to 
measure app quality from an APK file. 

A. Size Metrics 

These metrics characterize the size of a software system in 
terms of amount of code. Collecting data such as this can be 
useful in controlling quality attributes as well as estimation.  

 Number of Instructions. This is the byte-code 
equivalent of the lines of code (LOC) metric. 

 Number of Methods. The app’s total number of 
methods. 

 Number of Classes. The app’s total number of classes. 

 Number of Methods per Class (MPC). Total number of 
classes divided by the total number of methods. 

 Number of Instructions per Method (IPM). Total 
number of byte-code instructions divided by total 
number of methods. 

 Cyclomatic Complexity. This metric measures the 
complexity of a piece of code. 

B. Object Oriented Metrics 

These metrics, introduced in [5], are intended to measure 

adherence to object oriented design principles. 

MobiCASE 2014, November 06-07, Austin, United States
Copyright © 2014 ICST
DOI 10.4108/icst.mobicase.2014.257773



 Number of Children (NOC). The number of classes 

extending a particular class.  

 Depth of Inheritance Tree (DIT). A measure of the 

number of levels in a given inheritance tree. 

 Lack of Cohesion of Methods (LCOM). This metric 

measures the how related methods within a particular 

class are.  

 Coupling Between Objects (CBO). The average 

number of objects that reference other objects. 

 Percent Public Instance Variables (PPIV). The percent 

public instance variables across all classes in each app. 

 Access to Public Data (APD). The number of accesses 

to public and protected fields within a class’s methods. 

C. Android Specific Metrics 

Unlike the previous metrics, these come from attributes that 
directly influence the user’s experience, and are specific to the 
Android platform. 

 Unchecked Bundles. The getExtras() method of the 

Activity class may return null.  The return value 
should be checked to avoid a 

NullPointerException. 

 APK File Size. In addition to using more memory on 
device, large APK files take longer to download. 

 Number of String Resources.  The developer may 
declare strings by name in a strings.xml resource file. 

 Bad Smell Method Calls. In [6], the authors identify a 
set of methods that commonly lead to crashes. We 
identified unchecked calls to these methods. Those we 
include are show(), setContentView(), onKeyDown(), 
and onBackPressed(). 

In order to meet our research goal of determining if any 
metrics could be used to predict app quality, we divided our 
apps into two groups: the 1,000 highest rated and the 1,000 
lowest rated. The lowest had ratings from 0.5 to 2.0, whereas 
the highest were all rated at 5.0 (there were more than 1,000 
apps rated at 5.0 – we selected 1,000 randomly). We compared 
the average values for each of our metrics between the groups. 

IV. RESULTS 

Our goal is to quantify whether a given metric can be used 
to predict quality. We define a Difference Index (DI), a decimal 
number that is defined for each metric m as follows:  


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A high DI indicates that there is a large disparity between 
the average for the top and bottom apps. A high DI therefore 

indicates that a specific metric is related to user rating. Table 1 
shows the metrics values and DI for each metric. 

TABLE I.  RESULTS 

Metric Top 1,000 Bottom 1,000 DI 

No instructions 9093.44 8969.58 1.38 

No methods 340.55 352.88 3.5 

No classes 64.45 65.00 0.84 

MPC 4.84 5.25 7.89 

IPM 28.67 28.75 0.25 

Cyclomatic complexity 6.69 6.36 5.17 

NOC 1.05 0.79 32.23 

DIT 1.40 1.37 2.15 

LCOM 46.79 47.37 1.22 

CBO 3.25 3.36 3.10 

PPIV 17.40 19.07 8.75 

APD 6.02 6.24 3.54 

APK File Size 8.85 15.94 47.62 

No strings 66.03 46.48 42.08 

show() 9.14 10.11 9.57 

setContentView() 0.62 2.97 79.24 

onKeyDown() 0.001 0.03 96.25 

onBackPressed() 0.001 0.01 81.13 

 

V. CONCLUSION 

Our study clearly demonstrates that traditional quality 
metrics are not strongly correlated with app ratings. However, 
we have introduced a number of Android-specific quality 
metrics that are predictors of app ratings. Thus we conclude 
that these metrics effective in assessing Android application 
quality. 
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