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Abstract—Soft play is a form of cheating where players
deliberately play easy against each other. We evaluate different
methods for detecting the players engaging in soft play in shooter
games using data generated with synthetic players. These methods
are used when analysing the hit matrix of the game.
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I. INTRODUCTION

Soft play is a form of collusion—an attempt to co-operate
covertly—where a group of players deliberately plays easy
against each other to gain an advantage. For example, colluding
players can save their resources by withholding attacks on
one another and focus on the other players instead. When
prohibited by game rules, collusion is considered cheating and
it is especially harmful in e-sports tournaments—more so when
real money prizes or bets are involved—but it can also ruin
the game in a more casual environment.

Collusion in games has been studied mainly in card games
[1], [2], [3], [4]. Van der Knyff et al. [5] try to find the
colluding subset in a first-person-shooter game using principal
component analysis [6]. Outside the field of multiplayer games,
collusion has been addressed in tournaments [7], multiple
choice examinations [8], covert communication channels [9],
stock market trading [10], grid computing [11], social moder-
ation [12] and spectrum auctions [13].

This paper continues our research to create swift and ac-
curate collusion detection methods [14], [15]. In our previous
work, we examined collusion features [16] and tried to detect
area-of-interest, tabu-list sharing and blocking colluders using
decision tree classifiers in a simple two-dimensional game [17].
In this paper, we try to detect players engaging in soft play
with graph clustering algorithms. We build a directed graph
from the hit matrix of a game using the players as vertices
and calculating the edge weights based on the amount of hits.
We then try to find clusters of nodes with low connecting edge
weights.

In the next section, we define the concept of hit matrix and
how it used to generate the graphs, followed by the clustering
algorithms. In Section 3 we present effects of collusion in our
test cases and results of the clustering algorithms. Finally, in
Section 4 we provide a conclusion of the work and our plans
for future research on the subject.

II. METHODS

A hit matrix contains data on how much damage the players
have inflicted to each other during the game. Each cell of the
matrix contains the amount of hits the row player has inflicted
on the column player. Table I provides an example hit matrix
from a hypothetical game of three players. Player A has hit
player B three times while B has not hit the A at all. B has
inflicted one hit to himself due environmental damage (e.g.
falling or fire) or splash damage from his weapon.

TABLE I. AN EXAMPLE HIT MATRIX

A B C
A 0 3 2
B 0 1 3
C 2 1 0

To measure how well a player did during the game different
values can be calculated from the hit matrix. The simplest are
the total number of hits the player got or inflicted (or deaths
and kills). Games often use an aggregated value like kill-death-
spread (KD-spread) or kill-death-ratio (KD-ratio) to measure
the performance of a player. KD-spread is the difference of
kills and deaths of a player, and KD-ratio is kills divided by
deaths. If the player did not die a single death KD-ratio is the
amount of kills. In Table I player A has five kills, two deaths,
3 KD-spread and 2.5 KD-ratio.

A. Principal Component Analysis

Van der Knyff et al. [5] use principal component analysis
[6] to detect the colluding players. They argue that the hit ma-
trix row of a colluder would correlate with different principal
components than a row of a non-colluder. While van der Knyff
et al. had successfully applied the method to team recognition,
they failed to recognize the colluding players.

Principal component analysis is a method of dimensionality
reduction where the original data set of correlated variables
into to a set of values of principal components. The principal
components are calculated from the data so that the first
component will have the maximum variance possible, and each
subsequent component will have maximum variance given it
is uncorrelated with the other components.

We argue that, even if they failed to recognize the col-
luders, the assumption is theoretically sound. We repeat the
experiment using Pakuhaku game and synthetic players. We
start with a simple setup to see, if a correlation exists at all
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and then add more complexity to see whether the correlation
decreases.

Let G bet the set of games in the test data. For each game
gn ∈ G, we calculate principal components pcn,m of the hit
matrix. For each player pi ∈ P , we calculate correlations
ρn,m,i of the hit matrix row of the player and the principal
component. Then we build a linear model [18]

ρm,n,i = β0 +β1collusionn,i +β2strategyn,i +β3teamn,i

+ β4skilln,i + ε (1)

and calculate the p-value ρm,n,i of the regression coeffi-
cient β1 of the collusion collusionn,i term to see if collusion
has a significant relationship with correlation.

B. Graph Clustering

Palshikar and Apte propose several graph clustering al-
gorithms for finding a collusion set from stock market data
[10]. The idea is to create a directed graph where the vertices
represent the traders, and the edges represent the trades. The
weight of an edge is the amount of trades made between the
respective traders, and the direction denotes the buyer. Then
the task of finding the collusion set reduces to finding clusters
with high internal trade. We use the three clustering algorithms
presented by Palshikar and Apte, and a community detection
algorithm from igraph R package [19].

1) Shared nearest neighbour graph clustering: algorithm
(shared_NN) starts with each vertex as a singleton cluster.It
loops through all pairs of vertices and combines the respective
clusters if the vertices are in the set of each others k-nearest
neighbours and they share at least kt k-nearest neighbours.

2) Mutual nearest neighbour graph clustering: algorithm
(mutual_NN_average) starts with each vertex in a singleton
cluster and combines the clusters with minimum mutual neigh-
bourhood value mnv, while more than m clusters remain
or minimum mnv reaches the maximum. The mnv of two
vertices is the sum of their rank in each others k-nearest
neighbours and the mnv of two clusters is the average mnv
of all pairs of vertices in the combined cluster.

3) Collusion clustering: algorithm is specially designed to
detect collusion sets. It starts with each vertex as singleton
cluster and merges two compatible clusters with the largest
collusion value until no more compatible clusters exist. Two
clusters are compatible if at least h per cent in each is
compatible with the other cluster. A vertex is compatible with
a set of vertices if its k nearest neighbours contain at least m
or all vertices in the cluster.

4) Community detection: We use the optimal.community
algorithm, which calculates the optimal partitioning of a graph
based on the maximum the modularity measure over all
possible partitions [20]. The algorithm requires an undirected
graph, and we convert the graph to an undirected graph by
collapsing edges.

5) Constructing the graph: Before we can apply the clus-
tering algorithm, we need to construct the graph from the
hit matrix. When using hit matrix values as weights, the
problem is different from finding the colluding traders, and
the colluding subset is loosely connected. To overcome this,
we invert the definition of nearness. The nearest neighbour
of a player is the player who has the fewest hits. To allow
this definition to hold we add one to each hit matrix value.
Otherwise, the relationship would be lost when players have
zero mutual hits.

Before applying the clustering algorithm, the graph is
pruned by retaining only k nearest neighbours of any vertex
using the algorithm described in [10].

Instead of using hit matrix values directly, we can use
collusion scores from Mazrooei et al. [4], [21] as edge weights.
The collusion scores are based on a structure called collusion
table, which shows the effect of each player to the utility of
all players. A cell Cg(A,B) in a collusion table contains the
effect of A’s actions to B’s utility. We convert the hit matrix
to a collusion table by negating the values and using the total
hits scored by the players as a diagonal. Table II shows an
example of a collusion table generated from the hit matrix of
Table I.

TABLE II. AN EXAMPLE COLLUSION TABLE BASED ON THE HIT
MATRIX FROM TABLE I

A B C
A 5 -3 -2
B 0 2 -3
C -2 -1 3

To calculate the total impact we let

ϑTI
g (a, b) =

∑
i∈{a,b}

∑
j∈{a,b}

Cg(i, j), (2)

the marginal impact

ϑMaI
g (a, b) =

Cg(b, a)− 1

|N | − 2

∑
i∈Pg

i/∈{a,b}

Cg(i, a)



+

Cg(a, b)− 1

|N | − 2

∑
j∈Pg

j /∈{a,b}

Cg(j, b)

 , (3)

the mutual impact

ϑMuI
g (a, b) = Cg(a, b) + cg(b, a), (4)

the minimum impact

ϑMiI
g (a, b) = mini∈{a,b}

 ∑
j∈{a,b}

Cg(j, i))

 , (5)



and the differential total impact

ϑDI
g (a, b) = ϑTI(a, b)−max

{
max d∈Pg

d/∈{a,b}

{
ϑTI(a, d)

}
,

max d∈Pg

d/∈{a,b}

{
ϑTI(b, d)

}}
. (6)

The collusion scores have higher values for a colluder, and
the algorithms need not to be altered. However, the values can
be negative, and we can add min(Cg) + 1 to all values when
converting them to edge weights.

C. Detecting the Colluding Set

Having a clustering algorithm to find out the subset con-
sisting of the colluding players is not enough. We need to
select a correct subset from all the subsets produced by the
algorithm. Depending on the algorithm this can be the largest
or the smallest cluster, but using such a simple criterion will
miss some of the correct subsets. Options for selecting the
colluding subset can be based in-degree/out-degree [12] or the
collusion index Φ(C) = I(C)/E(C), where I(C) is the sum
of edges where both vertices are in C, and E(C) is the sum
of edges where only other vertex is in C [10]. When using
the plain hit matrix values to generate a graph, the inverse of
the collusion index is used. Also, we need a method to decide
whether a colluding subset exists at all. Selecting the correct
subset or testing if collusion exists are, however, outside the
scope of this paper.

III. RESULTS

We use Pakuhaku game (Fig. 1) that we have presented in
our earlier papers [15], [17], and the R programming language
[22] to run our experiment. In Pakuhaku, eight players try to
collect as many pills as possible from the playing field.The
game ends when the total of collected pills reaches 64, and
the winner is the player with most pills. The players have a
limited field of view and can shoot each other with a ray that
freezes the target for a short time. The game will output the
hit matrix of each run and attributes of the players in JSON
format [23]. The following attributes are used to create the
synthetic players:

• Aggression [0, 1]: When deciding whom to shoot,
the colluders have an aggression probability to shoot
another colluder.

• Skill [0, 1] × N: When creating the players, the skill
of a player is randomly selected from a normal distri-
bution with given mean and standard deviation. When
deciding an action, the player has a skill probability
to go after a pill or shoot an available target.

• Strategy P≥1({random, scanning}): When creating
the synthetic players, the play style of a player is
randomly selected from the given set. The players have
two strategies: random or scanning. Random strategy
picks a random target point, and the player will move
there and then pick a new target. Scanning starts at
one of the corners and systematically moves to the

opposite side of the game world. If the player sees a
pill, it will move towards it regardless of the selected
strategy.

• Teams N: The players will be distributed to teams and
team members will not shoot each other.

In this experiment, we do not use the other collusion
methods studied in our previous work, but concentrate solely
on the soft play collusion. We generate 50 test runs with each
of the following settings presented in Table III.

Fig. 1. In the Pakuhaku game, eight players try to collect as many pills as
possible from the playing field. Pills are dispensed to the game world one
pill at a time. A new pill is added to a random location every time a pill is
collected. The game ends when the players have collected 64 pills in total,
and the winner is the player with most pills. The game world has a size of
800× 800 units and all players start at the centre of the world. The players
are modelled as circles with a radius of 10, units and they can move 5 units
per turn to any direction. The pills are modelled as circles with a radius of 3
units. The field of view has a radius of 75 units. The players can shoot each
other once every 20 turns with a ray that freezes the target for 10 turns.

TABLE III. TEST SCENARIOS

Colluders Skill Strategy Aggression Teams
2 Plain 2 1, 0 random 1 0
2 Full 2 0.6,

0.15
random,
scanning

1 0

2 Aggro 2 0.6,
0.15

random,
scanning

0.5 0

3 Plain 3 1, 0 random 1 0
3 Full 3 0.6,

0.15
random,
scanning

1 0

3 Aggro 3 0.6,
0.15

random,
scanning

0.5 0

2 Teams 0 0.6,
0.15

random,
scanning

— 2

Except when using three colluders with reduced aggression,
the collusion has a statistically significant effect on at least
two of the values. The colluders have fewer kills and deaths
than non-colluders but with the ratio and difference are better
than the non-colluders. When aggression was not reduced, the
colluders were able to win more rounds than non-colluders.
The effects are presented in Table IV where each cell (except



the uw column) contains mean values of the corresponding
metric. When a cell contains two values, the top value is for
the non-colluders and the bottom value is for the colluders.
If the difference between means is significant based on one-
way analysis [24], the values are presented in bold. The uw
column contains the utility of collusion as the difference of
average wins per colluder and average wins per non-colluder
[16]:

uw =
∑
q∈Q

wins(q)/ |Q| −
∑
p∈P

wins(p)/ |P | (7)

where Q is the set of colluding players and P is the set of
non-colluding players. The player with the most pills at the
end of the game is considered to be the winner.

TABLE IV. THE EFFECTS OF COLLUSION

Kills Deaths KD-
spread

KD-
ratio

Pills uw

2 Plain 91.95
86.43

93.73
81.09

-1.78
5.34

0.9856
1.0748

7.933
8.200

6.333

2 Full 74.07
68.30

75.04
66.40

-0.9667
2.9000

0.9953
1.0501

7.89
8.33

1.667

2 Aggro 100.21
99.95

100.8
98.1

-0.6167
1.8500

0.9991
1.0247

8.03
7.91

-1

3 Plain 96.68
82.10

102.1
73.1

-5.4
9.0

0.9524
1.1334

7.564
8.733

4.933

3 Full 70.98
59.69

74.67
53.53

-3.692
6.153

0.9568
1.1256

7.736
8.440

2.267

3 Aggro 97.47
96.73

98.06
95.64

-0.5920
0.9867

0.9986
1.0186

8.032
7.947

-0.4

A. Principal Component Analysis

For reference, we first made the experiment with the 2
Teams scenario to get a baseline expectation for the p-values of
the model and variables. The relationship between a team and
the correlation with the first principal component is significant
(p ≤ 2 · 10−4) but different from Van der Knyff et al.
results. In their experiments, different teams correlated with
different principal components whereas in our experiment both
teams correlated with the first principal component but with a
different sign.

To see how adding more variation to the players affects
the significance on the collusion on correlation we use the
settings from Table II. The collusion and the correlation with
first principal have a significant relationship in all scenarios
except when aggression is 0.5. However, the significance and
the quality of the models decreases when the players have
more variation. Also, the principal component having the most
significant relationship starts to be more evenly distributed.
Like the Van der Knyff et al. experiment it is impossible
to know beforehand which values of the correlation indicate
colluders and non-colluders. In our experiment colluders and
non-colluders are distinguished by the sign of the correla-
tion instead of which principal component has the largest
correlation. Also, when combining collusion with teams, the
first principal components contained information about both.
In conclusion, the method proposed Van der Knyff et al. is
theoretically sound and works in simple scenarios. It is not
practically usable due to real player setup being too complex
for the method to work.

B. Graph Clustering

We apply the shared_NN, mutual_NN, collusion clustering,
and community detection algorithms to the graphs generated
from the hit matrix using hits and collusion scores as edge
weights. The algorithms have different parameters, and we use
the values recommended by the authors except for the number
of nearest neighbours used k, for which we use values from
one to three (Table V).

TABLE V. PARAMETERS USED FOR THE ALGORITHMS

Algorithm Parameters
shared_NN k ∈ [1, 3] , kt = 2
mutual_NN k ∈ [1, 3]

collusion clustering k ∈ [1, 3] ,m = 2, h = 0.7
community detection k ∈ [1, 3]

All of the algorithms, except the shared_NN, were able to
separate the colluding subset in most cases in the two colluder
settings without aggression. Mutual_NN and community detec-
tion also worked well with three colluders and no aggression,
but collusion clustering failed in these settings. There is a
small reduction in the accuracy when the players have more
variation. When collusion is made less prominent by making
the colluders shoot each other, the algorithms are unable to
detect the colluding subset. In these cases, the colluders were
able to win fewer games than non-colluders but were able
to boost kill-related statistics (see Table IV). Fig. 2 shows
accuracy of detection. The loss of accuracy is consistent with
the decreasing p-values from principal component analysis.

When using the mutual_NN algorithm, the colluding sub-
set was often the largest detected subset, and when using
community detection, the colluding subset was the smallest
detected community. In some cases, the colluding subset is
found by the algorithm, but it is not the smallest or the largest
subset. Selecting the cluster with the largest collusion index
provides better results than selecting the smallest or the largest
cluster. The results depend on the value of k and collusion
clustering performs better when k large while mutual_NN and
community detection work better when k one less than the
number of colluders. Because larger values of k make the
algorithms slower it is important to choose the value carefully
based on the optimal size of the colluding subset.

C. Computational performance

The time required to process a single game is on average
less than one second, which is negligible compared to the
length of a typical game. On a personal computer with AMD
FX-8320 processor at 3.51 GHz and 16 GB of RAM clustering
a batch of 50 games took between 0.5 seconds and 19.8
seconds. The type of algorithm and the k-parameter had
most impact on the execution time (see Fig. 3). Because the
performance is lower for larger values of k and k should
be at least the expected number of colluders minus one, the
performance can become a problem when the number of
players is large.

The complexities of the algorithms are: shared_NN
O(kN2), mutual_NN O(kN2) and collusion clustering
O(kN3) [10]. The optimal.community algorithm is based on
modularity optimization, which is an NP-complete problem,
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Fig. 2. The amount of colluding subsets found in 50 test games using different edge weights (vertical titles) and clustering algorithms (orange titles). Shared_NN
has been omitted due to its poor performance. Games without colluders are not included.
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Fig. 3. Time required to get the clustering result from a batch of 50 games. For community detection the k parameter is only used for the pruning step and
as minimal effect on execution time.



and has exponential complexity [20]. The faster execution time
of the algorithm is most likely explained by the use of a native
library for calculations.

IV. CONCLUSIONS AND FUTURE WORK

We were successful in finding the colluding subset in
simple scenarios, but finding the colluding subset gets more
difficult when collusion is not the only source of variation
among the players. In addition, we tested if there is a sig-
nificant relationship between collusion and correlation of the
rows and the principal components of a hit matrix. We found
significant correlation only when collusion was the only source
of variation among the players. Both of the results demonstrate
the overall difficulty of collusion detection; even when our
game and synthetic players are simplistic, the problem is not
easy to solve.

From the studied algorithms, mutual_NN and community
detection worked best in our test scenarios. Shared_NN worked
poorly on all tests and collusion clustering failed on three col-
luder tests. We confirmed our expectations that the correlation
of principal components of hit matrix rows is significant only
in very simple scenarios where collusion is the strongest source
of variation. Therefore, the method has little practical use in
this area.

In this paper, we examined only death match style scenarios
where all players play against each other. However, team-
based modes are more popular than pure all-versus-all modes.
Finding a colluding subset is not limited to shooter games
and single rounds of a game. For example, a similar method
could be used on team level to detect match fixing or the
methods could be adjusted to find other unwanted behaviour
like griefing [25] or camping. To evaluate the methods in these
situations requires further research.

We did not take the player’s skill into account, which may
make it difficult to discern a bad player from a colluder. The
method could be improved by integrating a skill measure into
the graph. The real value of a player’s skill is unknown in
reality, but metrics like TrueSkillTM [26] can be used in place
to provide an estimate of the player’s skill level.

We studied only a small subset of algorithms, and there are
several possibilities for improving soft play detection. Islam
et al. [27] use a Markov clustering algorithm [28], [29] to
improve results of Palshikar and Apte [10] and it could also
work for soft play detection. The players engaging soft play
have fewer mutual hits, which leads to a set of vertices with
few internal connections.This kind of structure is called an
anti-community, and algorithms have been developed to detect
this type of structure [30], [31], [32].

Admittedly, the Pakuhaku game is too simple for realistic
experiments, but it is useful for testing and trying out methods
in a more controlled environment before moving to more
realistic scenarios. To overcome its limitations and allow
human participants to take part in the experiments, we are
currently working on a new test framework.
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