
A System for Multimodal Interaction with Kinect-
Enabled Virtual Windows

Ana M. Bernardos, Íñigo Marquínez, David Gómez, Juan A. Besada, José R. Casar
Universidad Politécnica de Madrid, ETSI Telecomunicación

Madrid, Spain
{abernardos, imarquinez, david.gomez, besada, jramon}@grpss.ssr.upm.es

Abstract—Commercial off-the-shelf gaming devices (e.g. such as
Kinect) are demonstrating to have a great potential beyond their
initial service purpose. In particular, when integrated within the
environment or as part of smart objects, peripheral COTS for
gaming may facilitate the definition of novel interaction methods,
particularly applicable to smart spaces service concepts. In this
direction, this paper describes a system prototype that makes
possible to deliver multimodal interaction with the media contents
in a Virtual Window. Using a Kinect device, the Interactive
Window itself adjusts the video clipping to the real time
perspective of the user – who can freely move within the sensor
coverage are. On the clipped video, the user is able to select
objects by pointing at meaningful image sections and to initiate
actions related to them. Voice orders may also complete the
interaction when necessary. Although implemented for smart
spaces, the service concept can also be applied to learning, remote
control processes or teleconference.

Keywords-multimodal interaction; virtual windows; deictic
interaction; smart spaces; smart objects.

I. INTRODUCTION
Systems equipped with multimodal interaction offer the

possibility of interfacing with them through a combination of
natural modes of communication, which may include speech,
body gestures, handwriting, graphics or gaze. This mixing
should be closer to the effective human-to-human
communication, but the creation of satisfactory models that
handle the inputs in an integrated way is still an open challenge
[1]. Nowadays, thanks to commercial off-the-shelf technologies,
in particular to gaming peripheral devices such as Microsoft
Kinect (first version launched in November 2010), it is possible
to implement new concepts of interaction that may enhance our
relationship with daily-life spaces. For example, in our previous
works, we have prototyped a Kinect-enabled Virtual Window
[2]; the Window is responsive to the viewer’s perspective
(which is inferred from her/his head, body pose and
movements) and delivers a realistic window feeling by clipping
a video stream. Users have satisfactorily evaluated the
perception obtained when different layers of processing are
added to Kinect’s raw measurements.

We have also explored deictic interaction in smart spaces.
The pointing gesture is universally used as a way to denote or
attract interest towards an item. In [3], it is described how to
make a space sensitive to 3D pointing directives to command
the space’s objects. The system combines the input from two

Kinect devices to track the user and retrieve her joints spots for
positional analysis. To demonstrate its applicability, the system
has been prepared to control rows of ceiling lamps; user tests
show that 90% of interactions are successful when the user is
inside the optimal Kinects’ coverage area.

On the technology developed for these two systems, we
have built and prototyped a concept to provide enhanced
interactivity to the Virtual Window. Apart from the pose, we
aim at making this Interactive Virtual Window responsive to
pointing gestures to indicate the viewer’s interest towards a
part/object in the scene (selection process), at the same time that
speech control is used to activate specific actions related to the
pointed item (action process) if needed. The idea of combining
pointing and speech for interaction is not new; the proposed
system aims at exploring it as new services enabler for smart
spaces. The paper contextualizes this research and provides a
description of the system architecture and its components.

II. STATE OF THE ART
Kinect device integrates a low-cost depth sensor, an RGB

camera and a multi-array microphone to facilitate full-body 3D
motion capture and facial and voice recognition. Kinect 2.0,
released in 2014, tracks up to 25 joints per person and six
complete skeletons simultaneously. Among its improvements
against version 1.0, it delivers higher depth fidelity, provides
major stability for body tracking and works in a wider field of
view, being its effective distance coverage area from 40 cm to
4.5 meters (Figure 1).

The device is being increasingly used as a tool for
interaction research. It is inexpensive, portable and has a great
potential to gather features, poses and gestures of moving
people in its area of sight. In particular, a review of the device
performance for pointing tasks, which are used in this work, can
be found at [4]. In [5], Kinect facilitates interacting with objects
in a virtual 3D space by pointing. The pointing vector is
obtained from paired elbow-hand joints positions, and object
selection is derived from the movements of a hand-mounted 3D
mouse. Authors find that variations over the posture (sitting vs.
standing) may influence the pointing detection accuracy due to
fatigue. The same corporal reference points are used for creating
the pointing vector in [6]. In this occasion, the system enables
the selection and management of a smart TV. In [7], the human
pointing gestures are interpreted to catch the attention of a
robot: the robot goes toward a target location that is indicated by
the user. This position is also estimated through a Kinect sensor.

INTETAIN 2015, June 10-12, Torino, Italy
Copyright © 2015 ICST
DOI 10.4108/icst.intetain.2015.259498

Different Kinect-detectable gestures are configured in [8] to
interact with 3D medical images. Pointing is one of the
recognized ones; in this case the pointing vector is obtained as a
combination of the users’ eye location and the position of the
index finger’s tip. The problem of hand self-occlusion (when
the user’s body position hinders the identification of the hand
reference points) is considered at [9]; the work explains a
method for compensation when the shoulder is detected but the
hand occluded. In [10], Kinect depth camera is used to detect
the coordinates of a subject's right hand to enable the user to
perform posterior manipulation of the position of a cursor.
NUICursorTools [11] is a toolkit that provides cursor
transformation functions for diverse input modalities. It aims at
offering a device agnostic solution to eliminate inherent
limitations of human motor control in mid-air, in particular
undesirable jitter from continuous hand tremor. Through this
tool, it is possible to create a pointer on a wall-sized display that
can be controlled via a markerless motion tracking sensor, such
as a Kinect device.

Hand pointing is compared to gaze pointing for 3D virtual
environments in [10] – gaze tracking is also available through
Kinect’s API. Authors reach the conclusion that each pointing
technique has different performance in terms of accuracy and
fatigue, thus these facts should be taken into account when
including pointing at interaction method. Regarding combined
speech-pointing interaction, research dates back to the 80s, with
the Put That There demonstration system. For example, [12]
shows that speech-pointing interaction is preferred by the users
for target selection when compared to dwell time and shake
hand movement.

Obviously, Kinect has been widely used to detect corporal
gestures in video games [13], although the pointing action is not
widely exploited. An example is [14], a system that tracks the
user’s pose and gaze direction to control the famous “Candy
Crush” game: corporal gesture is used for interaction, while
targets are selected using gaze pointing. The movements of the
arm indicate actions inside the game, but do not drive any
pointing gesture. This is similar to [15], a single-player game
that uses the angle of the player’s torso in relation to the ground
to help a virtual avatar keep balance in a wobbling world.

A comparative analysis of modern gaming input devices is
available at [16]: users were asked to perform a shooting task
and performance measurements with four devices. Results show
that the mouse is still the best tool, while the game controller
remains in a close second position. The performance of the 3D
input devices (Move and Kinect) was significantly worse. How
older adults react to motion-based games is researched at [17].
A comparative test youngsters vs. elderly was designed to
measure the user’s performance while accomplishing three
different tasks: pointing (the speed at which a person can move
a pointer to a target), steering (the speed at which a person can
move a pointer along a path without colliding with the path’s
borders) and pursuit tracking (the ability to move a pointer so as
to accurately match the location of a moving target). Tasks were
carried out by using Kinect, Move, Mouse and GamePad.
Conclusion shows that elderly are capable to efficiently use and
enjoy motion-based game controls.

On this review of Kinect-enabled pointing methods and its
uses within interaction, next Section presents an interaction
system that exploits multimodality in an Interactive Virtual
Window.

III. SYSTEM DESCRIPTION
The proposed system integrates the Virtual Window concept

described in [2], which translates a moving observer point of
view into video clipping to simulate the resulting perspective,
with two additional interaction components: a) a pointing
detector, that estimates the coordinates in the image the user is
pointing at; and b) a window-related grammar speech
recognizer, in order to make possible for a user to show interest
against meaningful items in the scene and trigger
actions/services related to them. This Section describes the
general system architecture.

A. Service approach
The Virtual Window concept aims at providing a decorative

element that offers a realistic window effect to be integrated
within working spaces, hospitals, hotels, etc., in general within
spaces with limitations regarding their orientation or views. In
practice, the Virtual Window system components include a
display (or a set of displays), a Kinect sensor and the necessary
computation resources to manage and adapt videos to the user
pose. Continuing our previous work, the system presented in
this paper is equipped with the logic needed to estimate which
coordinates within the image the user is pointing at, in order to
facilitate interaction and enable new services.

The displayed images in the Virtual Window are the result
of geometrical transformations (basically clipping and image
interpolation) on a pre-recorded 2D video frames. The
performed clipping is capable of emulating the perspective
changes for the target user, thus the transformations applied are
dependent on the real time pose of the individual with respect to
the sensor. The system can be shown in action at [18].

In order to facilitating 2D deictic interaction, the system uses
the position of the user’s joints delivered by Kinect to estimate
the pointing vector, as described at Section IV.A. In case that
the pointed coordinates are part of a marker embedded in the
video and in case the user maintains the pointing pose for some
seconds (dwell time, 3-5 seconds), the Virtual Window provides
augmented information associated to that specific marker.

Figure 1. System prototype.

Figure 2. System components.

Additionally, the system integrates the recognition of voice
commands to trigger actions related to the marker activated by
the pointing action (Figure 1). Kinect is responsible of grabbing
the user’s voice through its microphone array and a specific
grammar built from the scene is available for the user to
disambiguate the choice when multiple action options are
available for the same object. E.g. when pointing at a car, the
viewer will be able to opt between e.g. traffic information and
boarded pollution sensors through voice commands.

B. Overall architecture
Figure 2 shows the overall architecture of the system. The

video player decodes the input video file to obtain the complete
raw frames that are trimmed in the video crop module
depending on the user’s point of view, and then rendered in the
display device. Additionally, each trimmed video frame is
processed in the markers detection module to dynamically
recognize pre-established patterns and create virtual objects to
represent those markers along with the trimmed video frame.

The user tracking module processes the Kinect’s body frame
source to recognize and track the user’s head and arm and
submit those data to the estimation modules to estimate both the
user’s point of view and the pointing vector. The former is used,
as mentioned above, by the video crop module to trim the video
frame according to the user’s subjective point of view, whereas
the latter detects whether the user is pointing to a visible marker
in the region of video frame that is being displayed. Markers are
defined within the marker detection module. This information is
used by the actions compiler module to trigger actions linked to
the pointing of the user at the markers, e.g. creating virtual
2D/3D objects related to the markers or superimposing data.

Finally, the speech recognition module processes the
Kinect’s audio source and, depending on the grammar that is
currently loaded, sends the recognized voice command to the
actions compiler, in order to perform the action linked to that
speech command. Both the performed actions and the visible
markers are defined by the application context, which

dynamically changes the loaded grammar into the speech
recognizer to define the commands that can be interpreted.

IV. KEY ARCHITECTURE MODULES
After the review of the general architecture, we following

comment on the two modules that make possible, in practice,
the Virtual Window to be interactive: the pointing estimation
and the video marker detection components.

A. Pointing estimation component
The pointing estimation component is in charge of

estimating the 2D coordinates the user is pointing at. Kinect
device provides the user’s arm joints positions which enable to
calculate the pointing vector that, once projected into the target
2D plane, will deliver the desired coordinates (Figure 3). In the
Interactive Virtual Window, the target 2D plane will be the
display infrastructure that serves to simulate the window.

The pointing estimation logic handles multiple coordinate
systems. First of all, the Kinect camera captures the user’s joints
positions referred to the camera coordinate system (Figure 4-a).
The user’s arm pointing vector is estimated from the shoulder
joint position and hand-tip position delivered by Kinect. Both
positions will be transformed to Kinect coordinate system (also
called “skeleton coordinate”, Figure 4-b), which is the 3D
coordinate system defined by the Kinect SDK. Its origin is
located at the center of the IR sensor on the Kinect device.
Although both camera and Kinect coordinate systems are right-
handed, the first one is rotated around Z axis for 180 degrees
with respect to the second.

When a real scene is reconstructed, the resulting 3D
coordinates are relative to a certain point at the scene. So, to
perform the subsequent transformation, a calibration pattern-
based coordinate system (Figure 4-c) is needed; this new
coordinate system will have its origin in the calibration pattern
(calibration is mandatory). The transformation between the
coordinates referenced to Kinect coordinate system to the
calibration pattern-based coordinate system needs to use a
rotation matrix and a translation vector extracted during a

previous calibration process. This stage of the process includes
the use of a new reference system, called the global coordinate
system (Figure 4-d). It is employed to reference the points to the
real 3D space and makes possible to position objects in the
room. The transformation to this global coordinate system is
calculated by making a rotation of axis and a translation, which
corresponds to the distance between the origins of both
coordinate systems (in the global coordinate system).

Figure 3. Pointing estimation.

At the fourth transformation, the system needs to project the
pointing vector, referred to the global coordinate system, to the
target projection plane. This plane has a predefined coordinates
in the global coordinate system, concretely it is null in Z. The
projection result will deliver the coordinates (xpG, ypG).

Figure 4. Scheme with the relations to the coordinates transformations between

the existing coordinate systems.

In order to perform Kinect camera calibration, we have used
Calibration toolbox for Matlab [19], following the process
described at [2][3]. The resulting parameters are divided within
two groups, intrinsic and extrinsic parameters. Extrinsic
parameters estimate the location and the orientation of the
camera in the real space; they are obtained from the camera
intrinsic parameters. Intrinsic parameters (e.g. principal axis,
optical center and focal distance) are related to the internal
geometry and the optical features of the camera and remain
constant if the features and relative positions of the optics and
the imaging sensor do not vary. With respect to the calibration
pattern, we have used a chessboard of 5x5 60 mm-sided
squares. Kinect camera has taken 21 images with the
operational calibration pattern in different positions and poses,
in order to extract the camera intrinsic parameters.

B. Video marker detection module and display management
Another key aspect of the Interactive Virtual Window is

how to deal with the automatic recognition and classification of
objects in the video the user is looking at. This problem has
been widely handled from different approaches in diverse fields
such as traffic monitoring [20], surveillance [21] or Augmented
Reality [22]. E.g. in [23] it is applied a biologically inspired
model of visual object recognition to satisfactorily categorize

multiple objects in natural images, although the system is not
real-time. Both [24] and [25] describe different approaches to
the problem of object class recognition in photographs,
validating their models through different image databases. In
[26], a method is proposed for object recognition and
classification on a real-time video stream, with the limitation
that only the moving targets are taken into consideration.

In this first version of the Interactive Virtual Window, we
have chosen a simple but functional approach to detect and
classify object types in video streaming. As the Window
initially uses a pre-recorded video, we have opted for a manual
configuration of the markers in a pre-visualization stage.
Although this work is tedious, it allows to define with great
accuracy whatever object or area in the video, avoiding
misrecognition problems. This is important at this stage of the
prototyping, as our next goal is to validate user experience, thus
we have to keep error sources under control.

Figure 5. Definition and real-time visualization of video markers.

Thus, to define a marker it is necessary to specify both the
coordinates of the polygon that enclose the marker and the
frames in which the shape is valid, as it is depicted in the upper
part of Figure 5. This allows us to have multiple markers that
can change not only the position but also shape along the time.
The definition of those markers is stored in an XML file,
following the sample structure showed in Figure 6. The root
node of the XML file, called <markers>, has as many <marker>
child nodes as there are video markers. Each of those <marker>
nodes has a compulsory attribute, called tag, which uniquely
identifies that marker. It also has one or more <frames> child
nodes, to specify all the different positions and time intervals of
each marker. The child nodes <from> and <to> inside the
<frames> node indicate the indices of the start and end frames
where the marker is valid following the shape defined in the
child node <polygon>. The shape is defined as a collection of
two-dimensional coordinates representing the vertices that
compose the polygon. Once the video markers are defined, the
user can interact with them in real time. As is it shown in the
bottom part of Figure 5, depending on the user’s point of view,
the active markers will differ.

Moreover, we need to know if the user is really pointing at
any of those markers. That involves a fifth coordinate
transformation between the global coordinate system and the
video frame coordinate system (pixels). On one hand, the user is
pointing at a point in the wall that has global coordinates (xpG,
ypG). Knowing the global coordinates of the left upper corner of
the screen playing the video (xsG, ysG), the coordinates of the
given point using the screen coordinate system (xpS, ypS) can be
calculated. The relationship between the pixels of the cropped

video frame that is being visualized and their screen coordinates
is known. Thus, it is now feasible to calculate which pixel in the
video frame is the point the user is pointing at. Finally, we can
check if that pixel belongs to any of the markers defined in the
XML file, and trigger the corresponding action.

Figure 6. XML file sample for video markers definition.

V. CONCLUSIONS
The proposed system aims at delivering a real multimodal

interaction linked to a Virtual Window. Still a prototype with
limited functionalities, the concept is applicable to different
service scenarios, which may include learning, remote control
or monitoring, and teleconference. Regarding technical aspects,
the automatic and real time recognition of interaction markers in
the video streams (both recorded or live) can be significantly
improved to ensure service diversity (i.e. to facilitate the
inclusion of new videos or streaming). Another fundamental
issue is the construction of a sound user experience; to do so, it
is necessary to carry out dedicated user studies in which the
interaction concept and the technology performance can be
evaluated. That is our next goal, to analyze how the user feels
when using the Interactive Virtual Window concept, in order to
study aspects such as fatigue, control feeling and acceptance.

ACKNOWLEDGMENTS
This work has been supported by the Spanish Ministry of

Economy and Competitiveness under grant TEC2014-55146-R.

REFERENCES
[1] A. Jaimes and N. Sebe, “Multimodal human–computer interaction: A

survey,” Comput. Vis. Image Underst., vol. 108, 1–2, 116–134, 2007.
[2] J. A. Besada, J. M. Rodera, A. M. Bernardos, J. I. Portillo, and J. R.

Casar, “Design and user experience assessment of Kinect-based Virtual
Windows,” J. Ambient Intell. Humaniz. Comput., vol. In press.

[3] A. Fernández, L. Bergesio, A. M. Bernardos, J. A. Besada, and J. R.
Casar, “A Kinect-based system to enable interaction by pointing in
smart spaces,” Procs. IEEE Sensors Applications Symposium, 2015.

[4] H. Fürntratt and H. Neuschmied, “Evaluating Pointing Accuracy on
Kinect V2 Sensor,” Procs. Intl. Conf. on Multimedia and Human-
Computer Interaction, 2014.

[5] M. Henschke, T. Gedeon, and R. Jones, “Extending the index finger is
worse than sitting: Posture and minimal objects in 3D pointing
interfaces,” Procs. IEEE 4th International Conference on Cognitive
Infocommunications, pp. 797–802, 2013.

[6] K. Watanabe, Y. Miyake, N. Nakamichi, T. Yamada, and T. Ozeki,
“Remote Touch Pointing for Smart TV Interaction,” Procs. IEEE
Global Conference on Consumer Electronics, pp. 232–235, 2014.

[7] S. S. Raza Abidi, M. Williams, and B. Johnston, “Human Pointing As a
Robot Directive,” Procs. ACM/IEEE International Conference on
Human-robot Interaction, pp. 67–68, 2013.

[8] L. Gallo, A. P. Placitelli, and M. Ciampi, “Controller-free exploration
of medical image data: Experiencing the Kinect,” Procs. Intl. Symp. on
Computer-Based Medical Systems, pp. 1–6, 2001.

[9] H. Kim, Y. Kim, D. Ko, J. Kim, and E. C. Lee, “Pointing Gesture
Interface for Large Display Environments Based on the Kinect
Skeleton Model,” in Future Information Technology, 2014, 509–514.

[10] C. J. Lin, S.-H. Ho, and Y.-J. Chen, “An investigation of pointing
postures in a 3D stereoscopic environment,” Appl. Ergon., vol. 48, pp.
154–163, 2015.

[11] S. Achmiz and D. Bolchini, “NUICursorTools: Cursor Behaviors for
Indirect-pointing,” Procs. International Working Conference on
Advanced Visual Interfaces, pp. 331–332, 2014.

[12] E. Schapira and R. Sharma, "Experimental Evaluation of Vision and
Speech based Multimodal Interfaces", Procs. of the 2001 workshop on
Perceptive user interfaces. ACM, 2001.

[13] “Kinect Fun Labs,” Kinect Fun Labs. Available:
http://marketplace.xbox.com/en-US/Product/Kinect-Fun-
Labs/66acd000-77fe-1000-9115-d80258480811?nosplash=1.

[14] C.-C. Huang, R.-H. Liang, L. Chan, and B.-Y. Chen, “Dart-It:
Interacting with a Remote Display by Throwing Your Finger Touch,”
in ACM SIGGRAPH 2014 Posters, pp. 46, 2014.

[15] A. Biskupski, A. R. Fender, T. M. Feuchtner, M. Karsten, and J. D.
Willaredt, “Drunken Ed: A Balance Game for Public Large Screen
Displays,” in Procs. CHI ’14 Extended Abstracts on Human Factors in
Computing Systems, pp. 289–292, 2014.

[16] A. Zaranek, B. Ramoul, H. F. Yu, Y. Yao, and R. J. Teather,
“Performance of Modern Gaming Input Devices in First-person
Shooter Target Acquisition,” Procs. Extended Abstracts on Human
Factors in Computing Systems, pp. 1495–1500, 2014.

[17] K. M. Gerling, K. K. Dergousoff, and R. L. Mandryk, “Is Movement
Better?: Comparing Sedentary and Motion-based Game Controls for
Older Adults,” in Proc. of Graphics Interface, pp. 133–140, 2013.

[18] VIEW, http://www.grpss.ssr.upm.es/index.php/es/videos/video/view
[19] J. Heikkila and O. Silven, “A four-step camera calibration procedure

with implicit image correction,” Procs. IEEE Computer Society Conf.
on Computer Vision and Pattern Recognition, 1106–1112, 1997.

[20] B. Morris and M. Trivedi, “Robust classification and tracking of
vehicles in traffic video streams,” Procs. IEEE Intelligent
Transportation Systems Conference, pp. 1078–1083, 2006.

[21] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: real-time
surveillance of people and their activities,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 22, no. 8, pp. 809–830, 2000.

[22] E. N. G. Weng, R. U. Khan, S. A. Z. Adruce, and O. Y. Bee, “Objects
Tracking from Natural Features in Mobile Augmented Reality,”
Procedia - Soc. Behav. Sci., vol. 97, pp. 753–760, Nov. 2013.

[23] J. Mutch and D. G. Lowe, “Multiclass Object Recognition with Sparse,
Localized Features,” in 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 1, pp. 11–18, 2006.

[24] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by
unsupervised scale-invariant learning,” Procs. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2, pp.
II–264–II–271, 2003.

[25] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost for
Image Understanding: Multi-Class Object Recognition and
Segmentation by Jointly Modeling Texture, Layout, and Context,” Int.
J. Comput. Vis., vol. 81, no. 1, pp. 2–23, 2007.

[26] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, “Moving target classification
and tracking from real-time video,” Procs. IEEE Workshop on Apps. of
Computer Vision, pp. 8–14, 1998.

<markers>
 <marker tag="WEATHER">
 <frames>
 <from>1</from>
 <to>M</to>
 <polygon>xw1, yw1, xw2, yw2, xw3, yw3,
xw4, yw4</polygon>
 </frames>
 <frames>
 <from>M+1</from>
 <to>N</to>
 <polygon>xw1', yw1', xw2', yw2', xw3',
yw3', xw4', yw4'</polygon>
 </frames>
 </marker>
 <marker tag="TRAFFIC">
 <frames>
 <from>1</from>
 <to>M</to>
 <polygon>xt1, yt1, xt2, yt2, xt3, yt3,
xt4, yt4, xt5, yt5</polygon>
 </frames>
 </marker>
 <marker tag="BOAT">
 <frames>
 <from>M+1</from>
 <to>N</to>
 <polygon>xb1, yb1, xb2, yb2, xb3,
yb3</polygon>
 </frames>

