
A Dual-Issue Embedded Processor For Low Power

Devices

Hanni Lozano 1, Mabo Ito 1
1 Department of Electrical & Computer Engineering The University of British Columbia , Vancouver, Canada

Abstract—While energy efficiency is essential to extend the

battery life of embedded devices, performance cannot be ignored.

High performance superscalar embedded processors are more

energy efficient than low performance scalar processors,

however, they consume more power which is very limited in

battery operated or self powered embedded industrial devices. In

this paper we propose an energy efficient dual-issue embedded

processor that can deliver up to 60% improvement in IPC

(instruction-per-cycle) performance with less than 20% increase

in power consumption compared to a single-issue scalar

processor. In contrast to traditional multi-issue embedded

processors that use power intensive superscalar techniques to

extract instruction-level parallelism from applications, the

proposed processor uses simple hardware techniques to resolve

instruction scheduling conflicts. The processor is optimized for

implementation on low cost FPGA which makes it a suitable

candidate for cost sensitive embedded industrial applications.

Keywords-embedded processors; low power

I. INTRODUCTION

The challenge in designing energy efficient embedded
devices is how to increase the compute performance while
using the least amount of power. Most embedded
communication devices like remote sensors in industrial
applications operate on batteries and in some cases these
batteries cannot be replaced so frequently or at all. In these
cases, alternative energy sources like energy-harvesting are
used. However, a major drawback of energy-harvesting
technology is the very limited supply of power that can be
generated from them. For example, a 36.5 x 64 mm 3Volts
solar panel from PowerFilm delivers 66 mWatts in 100% sun
and less than 20 mWatts in 25% sun which is a typical
threshold intensity used by portable devices [1].

Despite the reduction in power budgets, demand for higher
performance is increasing as more functions, for example
different types of sensors, are incorporated into modern
embedded devices. In order to design an energy efficient
solution, power and performance need to be properly balanced.
Superscalar processors can issue multiple instructions per cycle
and, therefore, are more energy efficient than scalar processors
[6]. However, superscalar processors use complex hardware
techniques to extract instruction level parallelism from
applications which increases power consumption. The solution
is to design a multi-issue processor that consumes comparable
power to a single-issue processor.

We propose a dual-issue embedded processor that delivers
up to 60% higher IPC than a single-issue scalar processor while
using only 20% more power. The average increase in IPC for
all the embedded benchmarks that were simulated is around
40%. The proposed processor has two instructions wide
pipeline that can fetch, decode and issue two instructions
simultaneously every cycle. Increasing the number of
instructions that are issued every cycle reduces applications
run-time and allows the processor to be turned off for longer
periods to save energy similar to a superscalar processor. In
contrast to superscalar processors, we use simple hardware
techniques to extract available instruction level parallelism
from programs without adding too many additional hardware
resources, thus keeping power consumption down. For
example, the dual-issue processor uses no more than 30%
additional logic gates than the single issue scalar processor
when implemented on a low cost FPGA.

The main characteristics of the processor are: a short four-
stage pipeline that executes a rich 32-bit RISC instruction set
based on the MIPS32 instruction set [2], tightly coupled
program and data memories (TCM), a static branch predictor
that performs within a 5% range of an ideal branch predictor, a
result forwarding scheme that uses FPGA built-in features
without any additional external logic, and an optimized multi-
port register file that uses a novel reduced gate count memory
redundancy technique. A custom cycle-accurate C simulator is
used to evaluate architectural design decisions in the early
phases of the design process. The final single-issue and dual-
issue processors are implemented in a low cost FPGA to
measure performance, power consumption and hardware
resource usage for each configuration.

Although, there are several academic ([9], [10]) as well as
commercial soft core processors ([2], [3], [4]) available, we are
not aware of any dual-issue soft core processor that can deliver
comparable performance and power consumption as our
proposed solution. The processor combination of high
performance and low power consumption makes it an ideal
target for low cost FPGA based embedded devices.

The paper is organized according to the following outline.
The simulation environment including the benchmarks is
described in section II. Section III introduces the single-issue
scalar processor architecture and discusses its operation. The
dual-issue processor extension and simulation results are
included in section IV. Section V discusses related work and
the conclusion is presented in section VI.

INISCom 2015, March 02-04, Tokyo, Japan
Copyright © 2015 ICST
DOI 10.4108/icst.iniscom.2015.258414

Fig. 1. Instruction type distribution for the large data set per MiBench benchmark (IMUL=integer multiply, IDIV=integer division, IALU=integer ALU as

listed in the text, SHIFT=logical and arithmetic shifts, CONTROL=conditional & unconditional branch, MEM=memory load/store, REGMOVE=register

move, FP_ARITH=floating point arithmetic operations and FP_LOGIC=floating point logic operations).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si
cm

at
h

bi
tc

ou
nt

qs
or

t

su
sa

n.
sm

oo
th

in
g

su
sa

n.
ed

ge
s

su
sa

n.
co

rn
er

di
jk
st
ra

pa
tri

ci
a

bl
ow

fis
h.

en
co

de

bl
ow

fis
h.

de
co

de

rij
nd

ae
l.e

nc
od

e

rij
nd

ae
l.d

ec
od

e
sh

a

ad
pc

m
.e

nc
od

e

ad
pc

m
.d

ec
od

e

C
R
C
32

FFT
IF

FT

st
rin

gs
ea

rc
h

jp
eg

.e
nc

od
e

jp
eg

.d
ec

od
e

T
o

ta
l
In

s
tr

u
c
ti
o

n
s
 E

x
e
c
u

te
d

 IMUL IDIV IALU SHIFT CONTROL MEM REGMOVE FP_ARITH FP_LOGIC

II. SIMULATION ENVIRONMENT

Programs extracted from the MiBench benchmark suite [7]
are used as a workload to simulate a wide range of embedded
applications grouped into six categories: automotive, consumer,
network, office, security and telecom. All benchmarks are cross
compiled and statically linked using a GNU MIPS32 cross-
compiler version 4.4.3 and a GNU lib version 2.4. Benchmarks
are run to completion using the large data set and each output is
compared to a reference output generated by executing the
same benchmark natively on a host machine. Table I list the
benchmarks programs and the total number of instructions
executed for each benchmark. The program and data memory
image sizes shown in the last two columns of Table I represent
program and data memory minimum sizes per benchmark
targeting a bare metal implementation without OS support.

TABLE I. MIBENCH BENCHMARK LIST WITH THE CORRESPONDING

TOTAL NUMBER OF INSTRUCTIONS EXECUTED PER RUN AND PROG./DATA

MEMORY IMAGE SIZE USING THE LARGE DATA SET.

Benchmark

Name
Category

Total

Number of

Instructions

Executed

Prog.

Size

(bytes)

Data

Size

(bytes)

basicmath automotive 3,211,569,629 788,464 21,692

bitcount automotive 595,183,708 608,512 21,808

qsort automotive 616,386,556 621,904 21,492

susan.smoothing automotive 392,905,660 684,480 21,748

susan.edges automotive 69,545,376 684,480 21,748

susan.corner automotive 23,397,130 684,480 21,748

jpeg.encode consumer 115,060,309 694,112 22,484

jpeg.decode consumer 25,411,302 706,560 22,540

stringsearch office 6,227,880 608,848 32,368

dijkstra network 289,665,966 605,840 21,600

patricia network 918,545,085 607,680 21,544

blowfish.encode security 1,949,847,190 614,128 21,548

blowfish.decode security 1,946,194,228 614,128 21,548

rijndael.encode security 451,426,609 644,384 21,624

rijndael.decode security 439,654,189 644,384 21,624

sha security 130,156,790 605,792 21,460

ADPCM.encode telecom 611,853,238 603,136 21,384

ADPCM.decode telecom 524,099,205 603,136 21,384

CRC32 telecom 6,014,143,443 604,320 21,464

FFT telecom 501,452,631 663,584 21,788

IFFT telecom 316,676,257 663,584 21,788

Fig. 1 shows the average distribution per operation type for
each MiBench benchmark. The IALU category contains the
following combination of integer arithmetic and logical
operations: integer addition, integer subtraction, bitwise logical
operations and operands comparison. The SHIFT category
contains all bitwise logical and arithmetic shift operations
which in some benchmarks represent 10% of the total number
of operations. There are several observations to be drawn from
the results in Fig. 1:

• There are almost no floating point operations (floating
point arithmetic and floating point logic) in the majority
of the benchmarks. Only the FFT and IFFT benchmarks
have a measurable percentage of floating point
instructions equal to 4% and 7% respectively. The
number of floating point instructions in the remaining
benchmarks does not exceed 0.5%.

• For all benchmarks, with the exception of
susan.smoothing, 95% of total number of operations is
distributed between only three types of operations: ALU
which includes the shift operation category, control and
memory operations.

• ALU and memory operations represent the largest
percentage each ranging from 35% to 50% of total
number of instructions executed.

• Control operations which includes conditional as well as
unconditional branches represent the third largest
percentage with conditional branches (not shown)
representing less than 15% of total number of branches
on average for all benchmark programs.

A custom cycle accurate simulator written in the C
language is used to conduct a thorough evaluation of different
architectural design decisions as well as to collect run-time
statistics (e.g. total number of cycles, number of mispredicted
branches, etc.). The base simulator models a 32-bit RISC
processor described in details in section III. The number of
pipeline stages as well as a number of other options, e.g. branch
prediction technique, can be configured by the user
dynamically at runtime.

Fig. 3. Base processor IPC performance using different branch prediction techniques (no-pred=no branch prediction, static-taken=static predictor with default

taken prediction, static-not-taken=static predictor with default no-taken prediction, perfect = perfect branch prediction)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

ba
si
cm

at
h

bi
tc
ou

nt

qs
or
t

su
sa

n.
sm

oo
th
in
g

su
sa

n.
ed

ge
s

su
sa

n.
co

rn
er

di
jk
st
ra

pa
tr
ic
ia

bl
ow

fis
h.
en

co
de

bl
ow

fis
h.
de

co
de

rij
nd

ae
l.e

nc
od

e

rij
nd

ae
l.d

ec
od

e
sh

a

ad
pc

m
.e
nc

od
e

ad
pc

m
.d
ec

od
e

C
R
C
32

F
F
T

IF
FT

st
rin

gs
ea

rc
h

jp
eg

.e
nc

od
e

jp
eg

.d
ec

od
e

IP
C

no-pred static-taken static-not-taken perfect

Fig. 2. Base processor top level block diagram

III. BASE SCALAR PROCESSOR

The base processor is a scalar single-issue RISC processor
with a Harvard memory configuration. The processor has four
pipeline stages: fetch, decode, execute and memory access. We
experimented with different pipeline stages ranging from three
up to six and found out that a four stage pipeline is less
complex to implement in hardware than a five or six stage
pipelines and produced better IPC performance than a three
stage pipeline which was severely impacted by frequent
pipeline stalls created by multi-cycle memory access
operations. The processor uses the 32-bit MIPS32 instruction
set [2] excluding all floating point and co-processor
instructions as previous results (Fig. 1) showed that there are
hardly any floating point instructions or co-processor
instructions in the embedded benchmarks being simulated. Fig.
2 shows the top level diagram for the base scalar processor.

A. Arithmetic and Logic Unit (ALU)

The ALU is the largest block in terms of resource usage as
it consumes almost 60% of the scalar processor total logic. The
ALU includes a 32-bit fixed point adder with overflow
detection, a fixed-point 32-bit multiplier with a 64-bit
accumulator, a 32-bit logic unit that performs bitwise
operations (OR, AND, XOR) and a 32-bit shift unit for bitwise
logical and arithmetic shifts. All ALU operations including
additions and multiplications excluding division, which is
emulated in software, execute in a single cycle.

In the FPGA, the 32-bit multiplier is implemented using the
FPGA internal embedded 9-bit multipliers. Using the
hardwired FPGA multipliers instead of coding our own reduces
the total logic elements count by 20%. The drawback is that
several 9-bit embedded multipliers need to be cascaded
together to perform 32-bit wide multiplications which increases
latency and reduces the processor top clock speed thus
affecting performance. For example, in the current
implementation, increasing the multiplication width from 16-
bits to 32-bits reduced the processor speed by almost half from
100 MHz to little bit over 50 MHz. Considering that the
average percentage of integer multiply operations in the
embedded benchmarks is less than one percent excluding the
susan.smoothing benchmark which exhibit an exceptionally
high percentage of integer multiplication, the 32-bit multiplier
can be replaced with a smaller pipelined version that performs
a 32-bit multiplication over two or more cycles, provided that
the introduced delay does not decrease overall program latency.
Using a smaller pipelined multiplier can also be advantageous
when implemented in an ASIC, where a reduction in the total
number of gate count will help reduce power consumption as
well as die size.

B. Instruction Decoder

The second largest block is the instruction decoder and its
main function is to extract relevant fields, e.g. addresses of the
source and destination registers, from newly fetched
instructions. The decoder is also responsible for generating the
control signals needed to read from and write to the register file
and the data memory. The register file as well as memory
addresses and write control signals are buffered for two cycles
to account for the delay between the decode stage, when the
values are generated, and the memory-access stage, when the
results are written to the register file or data memory. The
decoder is also responsible for detecting control instructions,
calculating the branch target address using a dedicated 32-bit
adder and forwarding it to the instruction fetch unit to update
the program counter for the next fetch cycle. For each
conditional branch instruction, a branch recovery address is
also calculated and temporarily stored in a register in case the
processor needs to recover from a mispredicted branch.

C. Branch Prediction

All branch instructions, except for the indirect jump
instructions which store the target address in a general purpose
register, are executed during the decode stage. A branch
predictor allows conditional branches to be dispatched before
they are executed to prevent stalling the pipeline. Fig. 3
compares IPC results for a single-issue processor using a static
branch predictor with two prediction heuristics, always taken
and always no-taken, a processor without a branch predictor
(no-pred) and a processor with a perfect predictor (perfect).
The results in Fig. 3 reveal that not using any branch predictors
degrades IPC by as much as 10%. On the other hand, a simple
static predictor can boost average IPC to within 5% of the IPC
of a perfect predictor. Comparing the static predictor two
prediction heuristics shows that the always taken heuristic
performed better than the always not-taken heuristic by an
average of 2%.

Upgrading from a static branch predictor to a 2-bit
saturating history counter bimodal dynamic predictor had little
impact on performance. A dynamic branch predictor with a 4K
fully-associative entry history table improved IPC marginally
by as little as 2% to 6%. However, a 4K history table which use
more logic and consume more power than the entire processor
core. A more realistic and smaller history table size of 64 or
128 entries achieves only a 2% to 4% improvement in IPC,
respectively, which we believe is too small of an improvement
to justify the added logic and complexity. For example,
bimodal predictors require an additional pipeline stage be
inserted between the decode stage and execute stage to access
the branch history table. Inserting pipeline stages between the
decoded stage and execute stage increases the number of
speculative instructions that has to be flushed out from the
pipeline if a branch outcome is mispredicted which wastes
energy.

D. Register File

The register file contains 32 general purpose registers each
32-bit wide with one write port and two read ports. The
difficulty in implementing multi-port register files is that FPGA
embedded random access memory (RAM) modules have only
two ports that can be configured as read ports or write ports
[FPGA REF]. Adding three or more ports requires the design
of a custom RAM module which cannot be done in an FPGA
though might be feasible but very costly in an ASIC
implementation. Therefore, register files is the most critical
bottleneck to increasing the width of a processor pipeline.

The alternative is to use a technique to emulate multi-read
and multi-write memories using standard two-port RAM
modules [9]. Most of the techniques listed in [9] can be
implemented on an FPGA. However, in our case the replication
method is found to use the least amount of FPGA resources to
emulate a three-port memory and, therefore, is the method that
we used to implement the register file. The drawback of the
replication method, as its name implies, is that it requires at
least double the number of logical bits to physically implement
a three-port memory. On the plus side, the register file uses a
small number of logical bits even after replication (2K bits of
total RAM organized as 32 registers each 32-bit wide), which
can easily fit in a single FPGA embedded RAM block.

E. Result Bypass

When a true dependency, also known as read-after-write
dependency, exists between two consecutive instructions,
results must be made available to the decode stage as soon as
instruction execution is complete. Otherwise, program
execution has to be stalled for at least one cycle until the result
is written back to the register file or data memory before it can
be retrieved by the decoder. The solution is to forward the
result directly to the decode stage while, simultaneously,
writing it back to the destination register or memory location.
This technique is known as result bypass and is usually
implemented using a MUX and logic comparators. An
alternative solution to the bypass technique is to use the write-
through built-in feature that exists in some embedded
memories [3]. Using the write-through feature, the new data
can be written to a memory location and read from the same
memory location at the exact same clock edge which eliminates
the external bypass logic entirely. Although, the write-though
feature uses some additional logic, the biggest advantage is that
the logic itself is transparent to the user and the data can be
seamlessly written to and read from the same memory location
without any additional effort by the processor. In the target
Cyclone FPGA the write-though feature in the register file
added less than 10% overhead in logic elements, which is
almost equal the number of logic elements that the traditional
MUX and comparators solution uses.

F. FPGA Implementation

The base scalar processor is coded in Verilog and
implemented on an Altera Cyclone-IV E 22K using Altera
QuartusII web edition toolset version 13.0 [3]. Compilation
options used are shown in Table II. A subset of the MiBench
benchmarks is simulated using Modelsim-Altera before the
final implementation in hardware using a commercial
development board. Compiled benchmarks are downloaded and
stored in the internal program memory during the initialization
phase of the FPGA and then executed until completion. The
built-in JTAG interface in the FPGA serves as a programming
and communication link between the host system and the
FPGA through the Quartus-II toolset. All logic memories are
implemented using the inferred RAM techniques to make the
code portable between different FPGA vendors as well as
between FPGA and ASIC implementation.

TABLE II. COMPILATION OPTIONS FOR QUARTUS-II WEB EDITION

Option Value

Target device EP4CE22F17C7

Core voltage 1.2 V

Logic elements 22320

User IOs 154

Memory bits 608,256

Optimization technique Balanced

Synthesis Timing driven

Physical synthesis effort level Normal

Fitter Auto Fit

TABLE III. SUMMARY OF SINGLE-ISSUE PROCESSOR FPGA RESOURCE

UTILIZATION

Resource Base Processor

Logic elements (LE)

(LUT / registers)

1,673

(1,642 / 347)

Logic RAM (bits) 2K

Physical RAM block (M9K) 2

Embedded 9-bit multipliers 8

Speed MHz 60 MHz

Dynamic power 0.48 mW/MHz

Coremark/MHz 2.51

Table III shows a summary of the FPGA resources used by
the base scalar processor. The total number of FPGA logic
elements (LE) is around 1.6K which corresponds to 7% of the
total logic elements in the Cyclone IV-E 22K FPGA. The total
number of RAM bits reported in Table III does not include
program and data memory which can be configured by the end
user independently from the processor core. The 3-port register
file uses only 3% the total number of embedded memories
(M9K) in the FPGA. The 32-bit wide fixed point multiplier
uses eight 9-bit embedded multipliers cascaded together which
limits the processor speed to 60 MHz. If the multiplier width is
reduced to 16-bits, the processor speed can be increased to 100
MHz. However, a 16-bit multiplier has to be pipelined to
perform 32-bit multiplications which may potentially reduce
performance.

The average dynamic power dissipation of the single-issue
processor is around 29 milliWatts when operated at 60 MHz
which gives a power rating of 0.48 milliWatts/MHz. Most of
the processor power, 48% to be exact, is consumed by the
FPGA routing resources. The ALU consumes 32% of the total
power and the decoder and register file each consume 10%.
Using the PowerFilm solar panel as a power source delivering
a max of 20 milliWatts, the processor can be operated at a max
speed of roughly 40 MHz. Dynamic power estimates were
generated using Altera PowerPlay tool which is part of
Quartus-II. Signal activity results generated by Modelsim gate
level simulation were fed to PowerPlay to give an accurate
power estimates.

IV. DUAL-ISSUE SCALAR PROCESSOR

The base single-issue processor average performance is
around 0.83 instructions per cycle as shown in Fig. 3. Even
under ideal conditions when branches are predicted perfectly,
the average performance does not exceed 0.87 instructions per
cycle. In order to boost the performance of the single-issue
processor beyond the scalar level, the pipeline needs to be
widened to increase the flow of instructions coming into the
processor. In [7], the authors show that the MiBench
benchmarks have the potential to achieve an IPC of at least two
instructions per cycle when a “high-end” processor, the 4-issue
superscalar Compaq Alpha 21264, is used. However,
superscalar processors use power intensive techniques and,
therefore, are not well suited to be used in power sensitive
embedded applications.

Instead we use simple scalar techniques to resolve
instructions scheduling conflicts (both software conflicts like
true-dependencies and hardware conflicts like resource
allocation), which can be quite challenging especially when the
number of parallel instructions is higher than two. Also, the
inter-dependency between instructions within the same cycle as
well as resource limitation can add additional complexity. For
these reasons, we restrict the pipeline width to two instructions.
In this section we evaluate some of the implementation
challenges of a dual-issue scalar processor and propose a
simple solution to each challenge. The order in which the items
are listed is irrelevant and does not represent the challenge
severity level.

A. Register file

Decoding and executing two instructions simultaneously
each cycle requires two writes and four reads to the register
file, which is double the number of ports used in the single-
issue implementation. The replication method can still be used
but the implementation becomes more complex [9]. A six ports
logical memory implemented with two ports modules requires
a total of 4K bits of physical RAM in addition to a small
amount of logic for module selection and a multiplexer which
combined together use less than 1% of the Cyclone-IV E 22K
FPGA total logic elements. Four embedded memory blocks are
used to implement the six port register file which represents 6%
of the total number of available memory blocks in the target
FPGA.

A single 32-bit register is used to track which memory
module contains the latest data for each register. The 32-bit
decoded value of the second write address is accumulated into
the 32-bit register every clock cycle. Simultaneously, the 32-bit
decoded value of each read address is compared with the
content of the 32-bit register to generate four separate control
signals. Each control signal is further buffered for one clock
cycle to select between two outputs. This technique uses a
minimal amount of logic and has a very short latency compared
to previous replication techniques that store register tags in a
separate register file and thus require an additional pipeline
stage to access data from the register file [12].

Fig. 4. A six-port register file (2W-4R) showing only two read ports

Previous multi-port memory duplication methods [12] track
the location of the register by generating a 2-bit tag every time
data is written to the register. The tag indicates the memory
module number the register data is located in and is usually
stored in a separate register file with 32 entries each 2 bits
wide. When data is read from the register the tag is retrieved
and the corresponding RAM module is accessed. This method
uses one RAM module per read port. However, because tags
are stored in a separate register file, an additional pipeline stage
is needed to retrieve the tag information before data can be read
from the RAM module. Also, this method requires a four-to-
one 32-bit multiplexer per read port.

In comparison to the previous duplication method, our
method uses double the amount of RAM but does not require
an additional pipeline stage for register reads. Also, our method
uses just one two-to-one 32-bit multiplexer per read port which
eliminates half the propagation latency introduced by the
multiplexers. The speed up in our method is a result of
reducing the width of the register tag from 2-bit to 1-bit which
allows the replacement of the additional 32x2-bit tag register
file with a simple 32-bit register. Each bit in the 32-bit tag
register represents a single register in the processor. If the
processor has more than 32 registers than the tag register need
to be increased to accommodate the extra registers. Registers
stored in the second set of RAM modules (RAM1-0, RAM1-1,
RAM1-2 and RAM1-3) are marked with a logic one (‘1’ bit) in
the tag register. Writes to the first set of RAM modules
(RAM0-0, RAM0-1, RAM0-2 and RAM0-3) need to clear the
corresponding bit in the tag register which is accomplished
with a logic ‘XOR” gate. A logic ‘OR’ gate accumulates
previous writes tags and updates the tag register with the new
values. Reads are executed by checking the value of the
corresponding bit in the tag register. If the corresponding bit in
the tag register is set then datum is read from the second RAM
module and vise versa. Fig. 4 shows only two read ports,
however, the logic is identical for each read port.

B. True-dependency stalls

In the base scalar processor true dependencies exist only
between two consecutive instructions in different pipeline
stages. Forwarding the result from the execution stage to the
decode stage resolves the problem and avoids stalling the
pipeline. In a dual-issue processor, true dependencies can
potentially exist between instructions within the same cycle. In
this case, the pipeline has to be stalled for at least one clock
cycle until the first instruction executes and its result is
forwarded to the next instruction. Fig. 5 shows an example of
true-dependency between two instructions issued in parallel.
Although, instruction fetching is halted for a single cycle, in the
next two consecutive cycles only a single instruction is issued
which reduces the IPC performance during these cycles by
half. A solution is to issue instructions I2 in parallel with I1 to
fill up the empty fetch slot and maintain the flow of
instructions coming to the decoder. This means that in the
following cycle, I3 is re-fetched in parallel with the new
instruction I4. This whole process is equivalent to sliding
instructions by a single slot which can be easily achieved by
incrementing the program counter by one instruction instead of
the regular two instructions increment.

I0: add reg2, reg3, 0x01 (reg2 = reg3+0x01)

I1: add reg4, reg2, 0x02 (reg4 = reg2+0x2)

Pipeline Stages
Cycles

(each column represents a single clock cycle)

Fetch I0:I1 I2:I3 bubble … … …

Decode I0:I1 I1 I2:I3 … …

Execute I0 I1 I2:I3 …

Memory Access I0 I1 I2:I3

Pipeline Stages Cycles

Fetch I0:I1 I2:I3 I3:I4 … … …

Decode I0:I1 I1:I2 I3:I4 … …

Execute I0 I1:I2 I3:I4 …

Memory Access I0 I1:I2 I3:I4

Fig. 5. Example of a true dependency between instructions within the same

cycle and a proposed solution to reduce the number of empty instruction slots

created by the true dependency.

C. Branch Misprediction

Recovering from a mispredicted branch decision is a
difficult challenge in a dual-issue pipeline because a the
instruction slot that a branch instruction is located in affects the
calculation of the recovery address as well as the selection of
instructions to be flushed out from the pipeline. In order to
simplify the logic and limit the number of resources used, a
branch instruction is decoded only when it is in the first
instruction slot. This guarantees that the instruction in the
second slot is always going to be the delay slot instruction.
Delay slots are a feature of RISC architectures which requires
that the instruction that immediately follows a branch
instruction be executed before the branch is taken. Therefore,
when a branch instruction is detected in the decoder second
instruction slot, an exception is triggered and the issue of the
branch instruction is delayed until it is moved to the first slot.

I0: nop

I1: beqz reg0, addr

I2: add reg0, 0x01 (delay slot instruction)

Pipeline Stages
Cycles

(each column represents a single clock cycle)

Fetch I0:I1 I2:I3 I2:I3 … … …

Decode I0:I1 I1:I2 … … …

Execute I0 I1:I2 … …

Memory Access I0 I1:I2 …

Pipeline Stages Cycles

Fetch I0:I1 I8:I9 I2:I3 … … …

Decode I0:I1 I1 I1:I2 … …

Execute I0 bubble I1:I2 …

Memory Access I0 bubble I1:I2

Fig. 6. Example of a branch instruction located in the second slot and the

corresponding delay slot instruction (I2) present in (top) and not present

(bottom) in the fetch unit.

Fig. 7. IPC results for a dual-issue processor relative to the IPC of a single-issue processor using a static branch predictor with an always taken heuristic under

different ALU configurations. The ideal case is for a processor with unlimited hardware resources and perfect branch prediction.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

ba
si
cm

at
h

bi
tc
ou

nt

qs
or

t

su
sa

n.
sm

oo
th

in
g

su
sa

n.
ed

ge
s

su
sa

n.
co

rn
er

di
jk
st
ra

pa
tri

ci
a

bl
ow

fis
h.

en
co

de

bl
ow

fis
h.

de
co

de

rij
nd

ae
l.e

nc
od

e

rij
nd

ae
l.d

ec
od

e
sh

a

ad
pc

m
.e

nc
od

e

ad
pc

m
.d
ec

od
e

C
R
C
32

FF
T

IF
FT

st
rin

gs
ea

rc
h

jp
eg

.e
nc

od
e

jp
eg

.d
ec

od
e

R
e
la

ti
v
e
 I
P

C
ideal 1-ALU 2ADD 2ADD+2LOGIC

Although the branch instruction issue is delayed for one
clock cycle, the fetching of the branch target address still gets
executed unless the branch delay slot instruction is not present
in the fetch unit. Otherwise, the delay slot instruction is fetched
and is issued in the following cycle together with the branch
instruction. The technique used to align branches to the first
instruction slot is identical to the technique used to resolve
true-dependency between instructions discussed earlier which
consists of sliding instructions over by one slot. As a result, the
true-dependency stall resolution logic can be reused as is to
align branches to the first decoder slot with some minor
additional logic, just a single two input logic gate, for detecting
branch instructions when they are present in the decoder
second slot.

In the previous discussion it is assumed that the delay slot
instruction is already fetched and ready for decoding. In some
cases the delay slot instruction might not be present in the fetch
unit and has to be explicitly fetched; for example when a
branch instruction is decoded in the previous cycle and the
target address of that branch instruction is loaded into the fetch
unit instead of the current branch delay slot instruction as
shown in Fig. 6 example. If this condition occurs then the
issuing of the branch instruction as well as the fetching of the
branch target address are delayed for an additional cycle until
the delay slot instruction is fetched and loaded into the decoder
unit (Fig. 6 bottom).

The decision to delay the issue of branch instructions until
they are located in the first decoder slot wastes only a single
decoder slot and only when the delay slot instruction I2 is
present in the fetch unit (Fig. 6 top example). Otherwise, if the
delay slot instruction I2 is not present in the fetch unit (Fig. 6
bottom example) then both approaches (issue branch
instructions from the second decoder slot or delay them until
they are moved to the first slot) achieve similar performance
because the branch instruction is delayed anyway until the
delay slot instruction is fetched regardless of which slot the
branch is present in when it is decoded.

D. Hardware Dependencies

In order to process two instructions per cycle most of the
processor resources need to be duplicated. However, we know
from previous instruction distribution analysis (Fig. 1) that
some of the operations like for example multiplication appears
very infrequently in the benchmarks. Therefore, adding two
multipliers will not affect performance for the majority of the
benchmarks, whereas it will increase gate count dramatically as
well as the max power budget. From the point of view of
energy efficiency, idling resources can be turned off to reduce
energy waste. However, if we need to limit the increase in total
gate count we must determine which processor resources are
the most critical to performance and just duplicate these
resources. We limit our investigation to the ALU because the
ALU is the biggest block in the processor in terms of logic
elements at 60%. We conducted a thorough quantitative
analysis to determine which ALU resource must be duplicated
by selectively duplicating one resource at a time and comparing
the IPC results to the results of a dual-issue processor with a
single ALU (1-ALU case in Fig. 7) to see if there is any
improvement in performance. Results are shown in Fig. 7 and
discussed below.

E. Results

The average increase in IPC for a dual-issue processor is
around 40%. Some benchmarks like rijndael and sha
experienced more than 70% improvement in IPC. The higher
than average performance of these benchmarks is a result of the
small number of control instructions contained in them which
means that the basic block size is larger and, consequently, the
number of instructions that can be issued in parallel is much
higher than in the rest of the benchmarks. Because the dual-
issue processor lacks advanced superscalar techniques to issue
instructions out-of-order it can only extract instruction level
parallelism from within basic blocks boundaries. Compiler
assisted techniques that increase the size of basic blocks like
loop unrolling can increase performance even further.

The worst performing benchmark, adpcm, still managed to
achieve at least a 20% gain in IPC. The adpcm benchmark
happens to have the highest percentage of control instructions
of all the benchmarks. Benchmarks with a high percentage of
control instructions might benefit from using a high
performance branch predictor like the bimodal predictor.
However, we did not evaluate the performance of the bimodal
branch predictor in the dual-issue implementation because
using a branch history buffer requires the insertion of an
additional pipeline stage between the decode stage and execute
stage which increases the number of speculative instructions
that needs to be flushed out from the pipeline following a
mispredicted branch.

Earlier we mentioned that duplicating resources
unnecessarily especially ALU functions will increase the max
power budget and total gate count without benefiting
performance. The more effective approach is to only duplicate
the resources that affect performance the most. First, we notice
that the average drop in IPC for a single ALU configuration is
around 2%, which is unexpectedly low. For some benchmarks,
like susan.corner, rijndael, adpcm and jpeg, the IPC loss is
higher than 5%. Increasing the number of adders to two helped
these benchmarks, excluding rijndael, recover all the lost
performance. The rijndael benchmark benefited the most from
duplicating the logic unit but only managed to recover half the
IPC loss. The remaining IPC loss is tied to other ALU
functions like the comparator and shifter. Although, duplicating
these ALU functions benefited the rijndael benchmark they
had no impact on the IPC of the remaining benchmarks.

The ideal case shown in Fig. 7 is for a dual-issue processor
with unlimited resources and perfect branch prediction. For
most benchmarks, the IPC performance of a dual-issue
processor with a single ALU unit is within 5% to 8% the IPC
performance of an ideal processor. This gap can be reduced to
less than 2% if a second 32-bit adder is added. Adding a second
logic unit has no impact on performance for the majority of the
benchmarks. In the case of the rijndael benchmarks the
improvement in IPC did not exceed 3% which does not justify
the additional resources.

F. FPGA Implementation

Table IV shows a summary of the resources used to
implement the dual-issue processor on the target FPGA. The
first column shows the results for the single-issue processor
copied from Table II. The total number of FPGA logical
elements increased by almost 30%. The total number of logic
bits used by the register file doubled from 2-Kbits to 8-Kbits
which requires the use of eight separate embedded memory
blocks (M9K). The number of embedded 9-bit multipliers
remains the same because only a single ALU functional unit is
used. Speed also remains the same which is determined by the
multiplier latency similar to the single-issue implementation.

The Coremark result for the dual-issue processor shows a
40% improvement in performance over the single-issue
processor. It should be noted that the Coremark results should
be considered in combination with other factors such as power
consumption in order to determine the real advantage of the
new architecture. The power consumption increased by almost

20% from 0.48 milliWatts/MHz to 0.57 milliWatts/MHz.
Using the PowerFilm solar panel introduced earlier as a power
source, the dual-issue processor can operate at a max speed of
35 MHz which is roughly 12% lower than the max speed of the
single-issue processor using the same power source. Even with
12% reduction in speed, the Coremark/MHz performance
increased by almost 40% compared to the single-issue
processor which is twice the increase in power consumption.
Therefore, we expect a comparable sizable increase in energy
efficiency.

TABLE IV. SUMMARY OF DUAL-ISSUE PROCESSOR FPGA RESOURCE

UTILIZATION

Resource Single issue Dual Issue Change

Total logic elements 1673 2215 +30%

LUT 1642 2169

Registers 347 419

Logic RAM (bits) 2K 4K +100%

Physical RAM blocks (M9K) 2 8 +200%

Embedded 9-bit multipliers 8 8

Speed (MHz) 60 60

Dynamic power

(mWatt/MHz)
0.48 0.57 +18%

Coremark/MHz 2.5 3.4 +40%

V. RELATED WORK

The majority of academic research in the area of embedded
processor architecture focuses on superscalar techniques, with
some of the work specifically targeting FPGA implementation
[9] and [10]. A number of other works investigated the use of
single scalar cores in multi-chip processors targeting standard-
cell implementations [11] as well as FPGA [13]. Some research
looked into specific aspect of the architecture, for example
static branch prediction [11] or the design of the register file
[12], etc. Other works investigated the design of embedded
processors targeting a specific application like biomedical [14]
or smart grid [15]. For example, the authors in [14] studied the
performance impact of several static and dynamic branch
predictors for biomedical applications. The branch predictors
that they studied are similar to the ones we evaluated although
targeting different applications. Their conclusion is identical to
ours; it shows that the static predictor with the taken heuristic
provides the best return compared to other predictors even the
more advanced dynamic history based predictors.

On the key components in the implementation of the
processor is the register file which uses non-standard memories
with multiple read and write ports. A novel implementation of
the register file was introduced. There are an extensive amount
of prior work on the implementation of the register file or
reorder buffer in case of superscalar processors. [12] gives a
brief introduction to the different techniques. In [16], the
authors combined several of these techniques to optimize the
implementation of a 12-read and 6-write port register file.
However, their technique similar to most previous techniques
requires an additional pipeline stage to read data from the
register file. We introduced a novel memory replication
technique that requires no additional pipeline stages and uses

the least amount of logic compared to all other published
techniques though it uses more physical memory.

Commercial processors optimized for low power embedded
applications, e.g. ARM Cortex-M series [3] with the exception
of the ARM Cortex-M7 which is a 6-stage superscalar
processor, are mostly single-issue scalar processors. Higher end
embedded processors capable of dual-issue, e.g. Cortex-R or
Cortex-A series, consume substantially more power and are
unsuitable for battery operated applications. High-end
superscalar processors are exclusively used in products which
prioritize performance over power. Whereas low-end single
issue scalar processors are usually reserved for low-cost and
low-power devices such as industrial sensors that tend to be
powered by either small embedded batteries that last for several
years or energy harvesting power sources such as the
PowerFilm solar panel introduced earlier which requires less
maintenance than battery operated sensors.

Also, most FPGA vendors provide have their own soft
processor cores optimized for their own platforms. Altera
NIOS-II is a family of 32-bit soft processor cores that comes in
three different types: economy, standard and fast [4]. The
economy soft core is a basic sequential microcontroller with a 6
cycles-per-instruction performance. The standard soft core is
five-stage processor with static branch prediction and optional
support for tightly coupled memories. The fast soft core is
Altera highest end processor core and is a six-stage processor
with dynamic branch prediction. The power consumption of the
NIOS-II fast core is around 1.65 milliWatts/MHz [4], [17] and
it’s highest Coremark/MHz performance is 1.60 [5]. Our dual-
issue soft processor core is roughly three times more power
efficient, 0.57 compared to 1.65 milliWatts/MHz, than a NIOS-
II core and delivers twice as much performance, 3.4 compared
to 1.60 Coremark/MHz.

We are not aware of any multi-issue commercial processor
that specifically targets the ultra-low power embedded market
segment. In fact all the multi-issue processors surveyed are
uniquely geared towards the high end of the embedded market
where performance matters more than power consumption. Our
research pushes the limit of processor performance without the
use of superscalar techniques in order to achieve the highest
energy efficiency possible. In this paper we specifically explore
the impact of doubling the pipeline width on IPC performance
while using simple hardware techniques to resolve conflicts in
instruction scheduling

VI. CONCLUSION

A single-issue scalar processor can operate on a very low
power budget but its performance is constrained. A multi-issue
superscalar processor can deliver multiple fold increase in
performance but is power intensive. To address this problem, a
dual-issue scalar processor capable of processing up to two
instructions simultaneously every cycle is introduced. The
processor delivers an average 40% higher IPC than a single-
issue processor while consuming less than 20% more power.
Applications that contain a large amount of instruction-level
parallelism are particularly suitable for the dual-issue processor
and experience up to 60% improvement in IPC. The dual-issue
processor is implemented on a low cost FPGA using less than

10% of the total logic elements which leaves plenty of
resources to implement additional functions. Compared to
Altera NIOS-II soft processor core, the proposed dual-issue
processor is three times more power efficient and it can deliver
twice the performance. The proposed processor is an ideal
candidate for embedded industrial devices that are powered by
green sources of energy like solar panels. Power supplied by a
36.5 x 64 mm small solar panel is enough to operate the dual-
issue processor at a max speed of 35 MHz and deliver a
Coremark/MHz performance of 3.4 which is 30% higher than
the Coremark/MHz performance of the single-issue scalar
processor.

REFERENCES

[1] www.powerfilmsolar.com

[2] www.mips.com

[3] www.altera.com

[4] www.arm.com

[5] www.eembc.com/coremark

[6] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowen, R. L.
Allmon, “High-Performance Microprocessor Design,”IEEE Journal of
Solid-State Circuits,Vol. 33, No. 5, May 1998.

[7] Guthaus, M.R.; Ringenberg, J.S.; Ernst, D.; Austin, T.M.; Mudge, T.;
Brown, R.B., "MiBench: A free, commercially representative embedded
benchmark suite," Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, pp.3,14, 2 Dec. 2001.

[8] Michael K. Gowan, Larry L. Biro, Daniel B. Jackson. Power
Considerations in the Design of the Alpha 21264 Microprocessor, DAC
98, June 15-19, 1998.

[9] Dwiel, B.H.; Choudhary, N.K.; Rotenberg, E., "FPGA modeling of
diverse superscalar processors," Performance Analysis of Systems and
Software (ISPASS), 2012 IEEE International Symposium on,
pp.188,199, 1-3 April 2012.

[10] Rosiere, M.; Desbarbieux, J.-L.; Drach, N.; Wajsburt, F., "Morpheo: A
high-performance processor generator for a FPGA implementation,"
Design and Architectures for Signal and Image Processing (DASIP),
2011 Conference on, pp.1,8, 2-4 Nov. 2011.

[11] Bechara, C.; Berhault, A; Ventroux, N.; Chevobbe, S.; Lhuillier, Y.;
David, R.; Etiemble, D., "A small footprint interleaved multithreaded
processor for embedded systems," Electronics, Circuits and Systems
(ICECS), 2011 18th IEEE International Conference on, pp.685,690, 11-
14 Dec. 2011.

[12] Rosiere, M.; Desbarbieux, J.-L.; Drach, N.; Wajsburt, F., "An out-of-
order superscalar processor on FPGA: The ReOrder Buffer design,"
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2012, pp.1549,1554, 12-16 March 2012.

[13] Saldana, M.; Nunes, D.; Ramalho, E.; Chow, P., "Configuration and
Programming of Heterogeneous Multiprocessors on a Multi-FPGA
System Using TMD-MPI," Reconfigurable Computing and FPGA's,

2006. ReConFig 2006. IEEE International Conference on, pp.1,10, Sept.
2006.

[14] Strydis, C.; Gaydadjiev, G.N., "Evaluating Various Branch-Prediction
Schemes for Biomedical-Implant Processors," Application-specific

Systems, Architectures and Processors, 2009. ASAP 2009. 20th IEEE
International Conference on, pp.169,176, 7-9 July 2009.

[15] Sai, R.T.S.; Mukherjee, A.; Cecchi, V.; Kailas, A., "Architecture
exploration of a heterogeneous embedded processor for the smart grid,"
Southeastcon, 2013 Proceedings of IEEE, pp.1,6, 4-7 April 2013.

[16] Yantir, H.E.; Bayar, S.; Yurdakul, A., "Efficient Implementations of
Multi-pumped Multi-port Register Files in FPGAs," Digital System
Design (DSD), 2013 Euromicro Conference on, pp.185,192, 4-6 Sept.
2013.

[17] Senn, L.; Senn, E.; Samoyeau, C., "Modelling the Power and Energy
Consumption of NIOS II Softcores on FPGA," Cluster Computing
Workshops (CLUSTER WORKSHOPS), 2012 IEEE International
Conference on, pp.179,183, 24-28 Sept. 2012.

