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Abstract—While energy efficiency is essential to extend the 

battery life of embedded devices, performance cannot be ignored. 

High performance superscalar embedded processors are more 

energy efficient than low performance scalar processors, 

however, they consume more power which is very limited in 

battery operated or self powered embedded industrial devices. In 

this paper we propose an energy efficient dual-issue embedded 

processor that can deliver up to 60% improvement in IPC 

(instruction-per-cycle) performance with less than 20% increase 

in power consumption compared to a single-issue scalar 

processor. In contrast to traditional multi-issue embedded 

processors that use power intensive superscalar techniques to 

extract instruction-level parallelism from applications, the 

proposed processor uses simple hardware techniques to resolve 

instruction scheduling conflicts. The processor is optimized for 

implementation on low cost FPGA which makes it a suitable 

candidate for cost sensitive embedded industrial applications. 

Keywords-embedded processors; low power 

I.  INTRODUCTION 

The challenge in designing energy efficient embedded 
devices is how to increase the compute performance while 
using the least amount of power. Most embedded 
communication devices like remote sensors in industrial 
applications operate on batteries and in some cases these 
batteries cannot be replaced so frequently or at all. In these 
cases, alternative energy sources like energy-harvesting are 
used. However, a major drawback of energy-harvesting 
technology is the very limited supply of power that can be 
generated from them. For example, a 36.5 x 64 mm 3Volts 
solar panel from PowerFilm delivers 66 mWatts in 100% sun 
and less than 20 mWatts in 25% sun which is a typical 
threshold intensity used by portable devices [1]. 

Despite the reduction in power budgets, demand for higher 
performance is increasing as more functions, for example 
different types of sensors, are incorporated into modern 
embedded devices. In order to design an energy efficient 
solution, power and performance need to be properly balanced. 
Superscalar processors can issue multiple instructions per cycle 
and, therefore, are more energy efficient than scalar processors 
[6]. However, superscalar processors use complex hardware 
techniques to extract instruction level parallelism from 
applications which increases power consumption. The solution 
is to design a multi-issue processor that consumes comparable 
power to a single-issue processor. 

We propose a dual-issue embedded processor that delivers 
up to 60% higher IPC than a single-issue scalar processor while 
using only 20% more power. The average increase in IPC for 
all the embedded benchmarks that were simulated is around 
40%. The proposed processor has two instructions wide 
pipeline that can fetch, decode and issue two instructions 
simultaneously every cycle. Increasing the number of 
instructions that are issued every cycle reduces applications 
run-time and allows the processor to be turned off for longer 
periods to save energy similar to a superscalar processor. In 
contrast to superscalar processors, we use simple hardware 
techniques to extract available instruction level parallelism 
from programs without adding too many additional hardware 
resources, thus keeping power consumption down. For 
example, the dual-issue processor uses no more than 30% 
additional logic gates than the single issue scalar processor 
when implemented on a low cost FPGA. 

The main characteristics of the processor are: a short four-
stage pipeline that executes a rich 32-bit RISC instruction set 
based on the MIPS32 instruction set [2], tightly coupled 
program and data memories (TCM), a static branch predictor 
that performs within a 5% range of an ideal branch predictor, a 
result forwarding scheme that uses FPGA built-in features 
without any additional external logic, and an optimized multi-
port register file that uses a novel reduced gate count memory 
redundancy technique. A custom cycle-accurate C simulator is 
used to evaluate architectural design decisions in the early 
phases of the design process. The final single-issue and dual-
issue processors are implemented in a low cost FPGA to 
measure performance, power consumption and hardware 
resource usage for each configuration. 

Although, there are several academic ([9], [10]) as well as 
commercial soft core processors ([2], [3], [4]) available, we are 
not aware of any dual-issue soft core processor that can deliver 
comparable performance and power consumption as our 
proposed solution. The processor combination of high 
performance and low power consumption makes it an ideal 
target for low cost FPGA based embedded devices. 

The paper is organized according to the following outline. 
The simulation environment including the benchmarks is 
described in section II. Section III introduces the single-issue 
scalar processor architecture and discusses its operation. The 
dual-issue processor extension and simulation results are 
included in section IV. Section V discusses related work and 
the conclusion is presented in section VI. 
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Fig. 1.  Instruction type distribution for the large data set per MiBench benchmark (IMUL=integer multiply, IDIV=integer division, IALU=integer ALU as 

listed in the text, SHIFT=logical and arithmetic shifts, CONTROL=conditional & unconditional branch, MEM=memory load/store, REGMOVE=register 

move, FP_ARITH=floating point arithmetic operations and FP_LOGIC=floating point logic operations). 
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II. SIMULATION ENVIRONMENT 

Programs extracted from the MiBench benchmark suite [7] 
are used as a workload to simulate a wide range of embedded 
applications grouped into six categories: automotive, consumer, 
network, office, security and telecom. All benchmarks are cross 
compiled and statically linked using a GNU MIPS32 cross-
compiler version 4.4.3 and a GNU lib version 2.4. Benchmarks 
are run to completion using the large data set and each output is 
compared to a reference output generated by executing the 
same benchmark natively on a host machine. Table I list the 
benchmarks programs and the total number of instructions 
executed for each benchmark. The program and data memory 
image sizes shown in the last two columns of Table I represent 
program and data memory minimum sizes per benchmark 
targeting a bare metal implementation without OS support. 

TABLE I.  MIBENCH BENCHMARK LIST WITH THE CORRESPONDING 

TOTAL NUMBER OF INSTRUCTIONS EXECUTED PER RUN AND PROG./DATA 

MEMORY IMAGE SIZE USING THE LARGE DATA SET. 

Benchmark 

Name 
Category 

Total 

Number of  

Instructions 

Executed 

Prog. 

Size 

(bytes) 

Data 

Size 

(bytes) 

basicmath automotive 3,211,569,629 788,464 21,692 

bitcount automotive 595,183,708 608,512 21,808 

qsort automotive 616,386,556 621,904 21,492 

susan.smoothing automotive 392,905,660 684,480 21,748 

susan.edges automotive 69,545,376 684,480 21,748 

susan.corner automotive 23,397,130 684,480 21,748 

jpeg.encode consumer 115,060,309 694,112 22,484 

jpeg.decode consumer 25,411,302 706,560 22,540 

stringsearch office 6,227,880 608,848 32,368 

dijkstra network 289,665,966 605,840 21,600 

patricia network 918,545,085 607,680 21,544 

blowfish.encode security 1,949,847,190 614,128 21,548 

blowfish.decode security 1,946,194,228 614,128 21,548 

rijndael.encode security 451,426,609 644,384 21,624 

rijndael.decode security 439,654,189 644,384 21,624 

sha security 130,156,790 605,792 21,460 

ADPCM.encode telecom 611,853,238 603,136 21,384 

ADPCM.decode telecom 524,099,205 603,136 21,384 

CRC32 telecom 6,014,143,443 604,320 21,464 

FFT telecom 501,452,631 663,584 21,788 

IFFT telecom 316,676,257 663,584 21,788 

Fig. 1 shows the average distribution per operation type for 
each MiBench benchmark. The IALU category contains the 
following combination of integer arithmetic and logical 
operations: integer addition, integer subtraction, bitwise logical 
operations and operands comparison. The SHIFT category 
contains all bitwise logical and arithmetic shift operations 
which in some benchmarks represent 10% of the total number 
of operations. There are several observations to be drawn from 
the results in Fig. 1: 

• There are almost no floating point operations (floating 
point arithmetic and floating point logic) in the majority 
of the benchmarks. Only the FFT and IFFT benchmarks 
have a measurable percentage of floating point 
instructions equal to 4% and 7% respectively. The 
number of floating point instructions in the remaining 
benchmarks does not exceed 0.5%. 

• For all benchmarks, with the exception of 
susan.smoothing, 95% of total number of operations is 
distributed between only three types of operations: ALU 
which includes the shift operation category, control and 
memory operations. 

• ALU and memory operations represent the largest 
percentage each ranging from 35% to 50% of total 
number of instructions executed. 

• Control operations which includes conditional as well as 
unconditional branches represent the third largest 
percentage with conditional branches (not shown) 
representing less than 15% of total number of branches 
on average for all benchmark programs. 

A custom cycle accurate simulator written in the C 
language is used to conduct a thorough evaluation of different 
architectural design decisions as well as to collect run-time 
statistics (e.g. total number of cycles, number of mispredicted 
branches, etc.). The base simulator models a 32-bit RISC 
processor described in details in section III. The number of 
pipeline stages as well as a number of other options, e.g. branch 
prediction technique, can be configured by the user 
dynamically at runtime. 



Fig. 3.  Base processor IPC performance using different branch prediction techniques (no-pred=no branch prediction, static-taken=static predictor with default 

taken prediction, static-not-taken=static predictor with default no-taken prediction, perfect = perfect branch prediction) 
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Fig. 2.  Base processor top level block diagram 

III. BASE SCALAR PROCESSOR 

The base processor is a scalar single-issue RISC processor 
with a Harvard memory configuration. The processor has four 
pipeline stages: fetch, decode, execute and memory access. We 
experimented with different pipeline stages ranging from three 
up to six and found out that a four stage pipeline is less 
complex to implement in hardware than a five or six stage 
pipelines and produced better IPC performance than a three 
stage pipeline which was severely impacted by frequent 
pipeline stalls created by multi-cycle memory access 
operations. The processor uses the 32-bit MIPS32 instruction 
set [2] excluding all floating point and co-processor 
instructions as previous results (Fig. 1) showed that there are 
hardly any floating point instructions or co-processor 
instructions in the embedded benchmarks being simulated. Fig. 
2 shows the top level diagram for the base scalar processor. 

A. Arithmetic and Logic Unit (ALU) 

The ALU is the largest block in terms of resource usage as 
it consumes almost 60% of the scalar processor total logic. The 
ALU includes a 32-bit fixed point adder with overflow 
detection, a fixed-point 32-bit multiplier with a 64-bit 
accumulator, a 32-bit logic unit that performs bitwise 
operations (OR, AND, XOR) and a 32-bit shift unit for bitwise 
logical and arithmetic shifts. All ALU operations including 
additions and multiplications excluding division, which is 
emulated in software, execute in a single cycle. 

In the FPGA, the 32-bit multiplier is implemented using the 
FPGA internal embedded 9-bit multipliers. Using the 
hardwired FPGA multipliers instead of coding our own reduces 
the total logic elements count by 20%. The drawback is that 
several 9-bit embedded multipliers need to be cascaded 
together to perform 32-bit wide multiplications which increases 
latency and reduces the processor top clock speed thus 
affecting performance. For example, in the current 
implementation, increasing the multiplication width from 16-
bits to 32-bits reduced the processor speed by almost half from 
100 MHz to little bit over 50 MHz. Considering that the 
average percentage of integer multiply operations in the 
embedded benchmarks is less than one percent excluding the 
susan.smoothing benchmark which exhibit an exceptionally 
high percentage of integer multiplication, the 32-bit multiplier 
can be replaced with a smaller pipelined version that performs 
a 32-bit multiplication over two or more cycles, provided that 
the introduced delay does not decrease overall program latency. 
Using a smaller pipelined multiplier can also be advantageous 
when implemented in an ASIC, where a reduction in the total 
number of gate count will help reduce power consumption as 
well as die size. 

B. Instruction Decoder 

The second largest block is the instruction decoder and its 
main function is to extract relevant fields, e.g. addresses of the 
source and destination registers, from newly fetched 
instructions. The decoder is also responsible for generating the 
control signals needed to read from and write to the register file 
and the data memory. The register file as well as memory 
addresses and write control signals are buffered for two cycles 
to account for the delay between the decode stage, when the 
values are generated, and the memory-access stage, when the 
results are written to the register file or data memory. The 
decoder is also responsible for detecting control instructions, 
calculating the branch target address using a dedicated 32-bit 
adder and forwarding it to the instruction fetch unit to update 
the program counter for the next fetch cycle. For each 
conditional branch instruction, a branch recovery address is 
also calculated and temporarily stored in a register in case the 
processor needs to recover from a mispredicted branch. 



C. Branch Prediction 

All branch instructions, except for the indirect jump 
instructions which store the target address in a general purpose 
register, are executed during the decode stage. A branch 
predictor allows conditional branches to be dispatched before 
they are executed to prevent stalling the pipeline. Fig. 3 
compares IPC results for a single-issue processor using a static 
branch predictor with two prediction heuristics, always taken 
and always no-taken, a processor without a branch predictor 
(no-pred) and a processor with a perfect predictor (perfect). 
The results in Fig. 3 reveal that not using any branch predictors 
degrades IPC by as much as 10%. On the other hand, a simple 
static predictor can boost average IPC to within 5% of the IPC 
of a perfect predictor. Comparing the static predictor two 
prediction heuristics shows that the always taken heuristic 
performed better than the always not-taken heuristic by an 
average of 2%.  

Upgrading from a static branch predictor to a 2-bit 
saturating history counter bimodal dynamic predictor had little 
impact on performance. A dynamic branch predictor with a 4K 
fully-associative entry history table improved IPC marginally 
by as little as 2% to 6%. However, a 4K history table which use 
more logic and consume more power than the entire processor 
core. A more realistic and smaller history table size of 64 or 
128 entries achieves only a 2% to 4% improvement in IPC, 
respectively, which we believe is too small of an improvement 
to justify the added logic and complexity. For example, 
bimodal predictors require an additional pipeline stage be 
inserted between the decode stage and execute stage to access 
the branch history table. Inserting pipeline stages between the 
decoded stage and execute stage increases the number of 
speculative instructions that has to be flushed out from the 
pipeline if a branch outcome is mispredicted which wastes 
energy. 

D. Register File 

The register file contains 32 general purpose registers each 
32-bit wide with one write port and two read ports. The 
difficulty in implementing multi-port register files is that FPGA 
embedded random access memory (RAM) modules have only 
two ports that can be configured as read ports or write ports 
[FPGA REF]. Adding three or more ports requires the design 
of a custom RAM module which cannot be done in an FPGA 
though might be feasible but very costly in an ASIC 
implementation. Therefore, register files is the most critical 
bottleneck to increasing the width of a processor pipeline.  

The alternative is to use a technique to emulate multi-read 
and multi-write memories using standard two-port RAM 
modules [9]. Most of the techniques listed in [9] can be 
implemented on an FPGA. However, in our case the replication 
method is found to use the least amount of FPGA resources to 
emulate a three-port memory and, therefore, is the method that 
we used to implement the register file. The drawback of the 
replication method, as its name implies, is that it requires at 
least double the number of logical bits to physically implement 
a three-port memory. On the plus side, the register file uses a 
small number of logical bits even after replication (2K bits of  
total RAM organized as 32 registers each 32-bit wide), which 
can easily fit in a single FPGA embedded RAM block. 

E. Result Bypass  

When a true dependency, also known as read-after-write 
dependency, exists between two consecutive instructions, 
results must be made available to the decode stage as soon as 
instruction execution is complete. Otherwise, program 
execution has to be stalled for at least one cycle until the result 
is written back to the register file or data memory before it can 
be retrieved by the decoder. The solution is to forward the 
result directly to the decode stage while, simultaneously, 
writing it back to the destination register or memory location. 
This technique is known as result bypass and is usually 
implemented using a MUX and logic comparators. An 
alternative solution to the bypass technique is to use the write-
through built-in feature that exists in some embedded 
memories [3]. Using the write-through feature, the new data 
can be written to a memory location and read from the same 
memory location at the exact same clock edge which eliminates 
the external bypass logic entirely. Although, the write-though 
feature uses some additional logic, the biggest advantage is that  
the logic itself is transparent to the user and the data can be 
seamlessly written to and read from the same memory location 
without any additional effort by the processor. In the target 
Cyclone FPGA the write-though feature in the register file 
added less than 10% overhead in logic elements, which is 
almost equal the number of logic elements that the traditional 
MUX and comparators solution uses. 

F. FPGA Implementation 

The base scalar processor is coded in Verilog and 
implemented on an Altera Cyclone-IV E 22K using Altera 
QuartusII web edition toolset version 13.0 [3]. Compilation 
options used are shown in Table II. A subset of the MiBench 
benchmarks is simulated using Modelsim-Altera before the 
final implementation in hardware using a commercial 
development board. Compiled benchmarks are downloaded and 
stored in the internal program memory during the initialization 
phase of the FPGA and then executed until completion. The 
built-in JTAG interface in the FPGA serves as a programming 
and communication link between the host system and the 
FPGA through the Quartus-II toolset. All logic memories are 
implemented using the inferred RAM techniques to make the 
code portable between different FPGA vendors as well as 
between FPGA and ASIC implementation. 

TABLE II.  COMPILATION OPTIONS  FOR QUARTUS-II WEB EDITION 

Option Value 

Target device EP4CE22F17C7 

Core voltage 1.2 V 

Logic elements 22320 

User IOs 154 

Memory bits 608,256 

Optimization technique Balanced 

Synthesis Timing driven 

Physical synthesis effort level Normal 

Fitter Auto Fit 



 

TABLE III.  SUMMARY OF SINGLE-ISSUE PROCESSOR FPGA RESOURCE 

UTILIZATION 

Resource Base Processor 

Logic elements (LE) 

(LUT / registers) 

1,673 

( 1,642 / 347 ) 

Logic RAM (bits) 2K 

Physical RAM block (M9K) 2 

Embedded 9-bit multipliers 8 

Speed MHz 60 MHz 

Dynamic power 0.48 mW/MHz 

Coremark/MHz 2.51 

 

Table III shows a summary of the FPGA resources used by 
the base scalar processor. The total number of FPGA logic 
elements (LE) is around 1.6K which corresponds to 7% of the 
total logic elements in the Cyclone IV-E 22K FPGA. The total 
number of RAM bits reported in Table III does not include 
program and data memory which can be configured by the end 
user independently from the processor core. The 3-port register 
file uses only 3% the total number of embedded memories 
(M9K) in the FPGA. The 32-bit wide fixed point multiplier 
uses eight 9-bit embedded multipliers cascaded together which 
limits the processor speed to 60 MHz. If the multiplier width is 
reduced to 16-bits, the processor speed can be increased to 100 
MHz. However, a 16-bit multiplier has to be pipelined to 
perform 32-bit multiplications which may potentially reduce 
performance. 

The average dynamic power dissipation of the single-issue 
processor is around 29 milliWatts when operated at 60 MHz 
which gives a power rating of 0.48 milliWatts/MHz. Most of 
the processor power, 48% to be exact, is consumed by the 
FPGA routing resources. The ALU consumes 32% of the total 
power and the decoder and register file each consume 10%. 
Using the PowerFilm solar panel as a power source delivering 
a max of 20 milliWatts, the processor can be operated at a max 
speed of roughly 40 MHz. Dynamic power estimates were 
generated using Altera PowerPlay tool which is part of 
Quartus-II. Signal activity results generated by Modelsim gate 
level simulation were fed to PowerPlay to give an accurate 
power estimates. 

IV. DUAL-ISSUE SCALAR PROCESSOR 

The base single-issue processor average performance is 
around 0.83 instructions per cycle as shown in Fig. 3. Even 
under ideal conditions when branches are predicted perfectly, 
the average performance does not exceed 0.87 instructions per 
cycle. In order to boost the performance of the single-issue 
processor beyond the scalar level, the pipeline needs to be 
widened to increase the flow of instructions coming into the 
processor. In [7], the authors show that the MiBench 
benchmarks have the potential to achieve an IPC of at least two 
instructions per cycle when a “high-end” processor, the 4-issue 
superscalar Compaq Alpha 21264, is used. However, 
superscalar processors use power intensive techniques and, 
therefore, are not well suited to be used in power sensitive 
embedded applications. 

Instead we use simple scalar techniques to resolve 
instructions scheduling conflicts (both software conflicts like 
true-dependencies and hardware conflicts like resource 
allocation), which can be quite challenging especially when the 
number of parallel instructions is higher than two. Also, the 
inter-dependency between instructions within the same cycle as 
well as resource limitation can add additional complexity. For 
these reasons, we restrict the pipeline width to two instructions. 
In this section we evaluate some of the implementation 
challenges of a dual-issue scalar processor and propose a 
simple solution to each challenge. The order in which the items 
are listed is irrelevant and does not represent the challenge 
severity level. 

A. Register file 

Decoding and executing two instructions simultaneously 
each cycle requires two writes and four reads to the register 
file, which is double the number of ports used in the single-
issue implementation. The replication method can still be used 
but the implementation becomes more complex [9]. A six ports 
logical memory implemented with two ports modules requires 
a total of 4K bits of physical RAM in addition to a small 
amount of logic for module selection and a multiplexer which 
combined together use less than 1% of the Cyclone-IV E 22K 
FPGA total logic elements. Four embedded memory blocks are 
used to implement the six port register file which represents 6% 
of the total number of available memory blocks in the target 
FPGA. 

A single 32-bit register is used to track which memory 
module contains the latest data for each register. The 32-bit 
decoded value of the second write address is accumulated into 
the 32-bit register every clock cycle. Simultaneously, the 32-bit 
decoded value of each read address is compared with the 
content of the 32-bit register to generate four separate control 
signals. Each control signal is further buffered for one clock 
cycle to select between two outputs. This technique uses a 
minimal amount of logic and has a very short latency compared 
to previous replication techniques that store register tags in a 
separate register file and thus require an additional pipeline 
stage to access data from the register file [12]. 

Fig. 4.  A six-port register file (2W-4R) showing only two read ports 



Previous multi-port memory duplication methods [12] track 
the location of the register by generating a 2-bit tag every time 
data is written to the register. The tag indicates the memory 
module number the register data is located in and is usually 
stored in a separate register file with 32 entries each 2 bits 
wide. When data is read from the register the tag is retrieved 
and the corresponding RAM module is accessed. This method 
uses one RAM module per read port. However, because tags 
are stored in a separate register file, an additional pipeline stage 
is needed to retrieve the tag information before data can be read 
from the RAM module. Also, this method requires a four-to-
one 32-bit multiplexer per read port. 

In comparison to the previous duplication method, our 
method uses double the amount of RAM but does not require 
an additional pipeline stage for register reads. Also, our method 
uses just one two-to-one 32-bit multiplexer per read port which 
eliminates half the propagation latency introduced by the 
multiplexers. The speed up in our method is a result of 
reducing the width of the register tag from 2-bit to 1-bit which 
allows the replacement of the additional 32x2-bit tag register 
file with a simple 32-bit register. Each bit in the 32-bit tag 
register represents a single register in the processor. If the 
processor has more than 32 registers than the tag register need 
to be increased to accommodate the extra registers. Registers 
stored in the second set of RAM modules (RAM1-0, RAM1-1, 
RAM1-2 and RAM1-3) are marked with a logic one (‘1’ bit) in 
the tag register. Writes to the first set of RAM modules 
(RAM0-0, RAM0-1, RAM0-2 and RAM0-3) need to clear the 
corresponding bit in the tag register which is accomplished 
with a logic ‘XOR” gate. A logic ‘OR’ gate accumulates 
previous writes tags and updates the tag register with the new 
values. Reads are executed by checking the value of the 
corresponding bit in the tag register. If the corresponding bit in 
the tag register is set then datum is read from the second RAM 
module and vise versa. Fig. 4 shows only two read ports, 
however, the logic is identical for each read port. 

B. True-dependency stalls 

In the base scalar processor true dependencies exist only 
between two consecutive instructions in different pipeline 
stages.  Forwarding the result from the execution stage to the 
decode stage resolves the problem and avoids stalling the 
pipeline. In a dual-issue processor, true dependencies can 
potentially exist between instructions within the same cycle. In 
this case, the pipeline has to be stalled for at least one clock 
cycle until the first instruction executes and its result is 
forwarded to the next instruction. Fig. 5 shows an example of 
true-dependency between two instructions issued in parallel. 
Although, instruction fetching is halted for a single cycle, in the 
next two consecutive cycles only a single instruction is issued 
which reduces the IPC performance during these cycles by 
half. A solution is to issue instructions I2 in parallel with I1 to 
fill up the empty fetch slot and maintain the flow of 
instructions coming to the decoder. This means that in the 
following cycle, I3 is re-fetched in parallel with the new 
instruction I4. This whole process is equivalent to sliding 
instructions by a single slot which can be easily achieved by 
incrementing the program counter by one instruction instead of 
the regular two instructions increment. 

I0: add reg2, reg3, 0x01 (reg2 = reg3+0x01) 

I1: add reg4, reg2, 0x02 (reg4 = reg2+0x2) 

 

Pipeline Stages 
Cycles  

(each column represents a single clock cycle) 

Fetch I0:I1 I2:I3 bubble     … … … 

Decode  I0:I1 I1 I2:I3 … … 

Execute   I0 I1 I2:I3 … 

Memory Access    I0 I1 I2:I3 

Pipeline Stages Cycles  

Fetch I0:I1 I2:I3 I3:I4     … … … 

Decode  I0:I1 I1:I2 I3:I4 … … 

Execute   I0 I1:I2 I3:I4 … 

Memory Access    I0 I1:I2 I3:I4 

Fig. 5.  Example of a true dependency between instructions within the same 

cycle and a proposed solution to reduce the number of empty instruction slots 

created by the true dependency. 

C. Branch Misprediction 

Recovering from a mispredicted branch decision is a 
difficult challenge in a dual-issue pipeline because a the 
instruction slot that a branch instruction is located in affects the 
calculation of the recovery address as well as the selection of 
instructions to be flushed out from the pipeline. In order to 
simplify the logic and limit the number of resources used, a 
branch instruction is decoded only when it is in the first 
instruction slot. This guarantees that the instruction in the 
second slot is always going to be the delay slot instruction. 
Delay slots are a feature of RISC architectures which requires 
that the instruction that immediately follows a branch 
instruction be executed before the branch is taken. Therefore, 
when a branch instruction is detected in the decoder second 
instruction slot, an exception is triggered and the issue of the 
branch instruction is delayed until it is moved to the first slot. 

 

I0: nop 

I1: beqz reg0, addr 

I2: add  reg0, 0x01  (delay slot instruction) 

 

Pipeline Stages 
Cycles  

(each column represents a single clock cycle) 

Fetch I0:I1 I2:I3 I2:I3     … … … 

Decode  I0:I1 I1:I2 … … … 

Execute   I0 I1:I2 … … 

Memory Access    I0 I1:I2 … 

Pipeline Stages Cycles 

Fetch I0:I1 I8:I9 I2:I3     … … … 

Decode  I0:I1 I1 I1:I2 … … 

Execute   I0 bubble I1:I2 … 

Memory Access    I0 bubble I1:I2 

Fig. 6.  Example of a branch instruction located in the second slot and the 

corresponding delay slot instruction (I2) present in (top) and not present 

(bottom) in the fetch unit. 



Fig. 7. IPC results for a dual-issue processor relative to the IPC of a single-issue processor using a static branch predictor with an always taken heuristic under 

different ALU configurations. The ideal case is for a processor with unlimited hardware resources and perfect branch prediction. 
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Although the branch instruction issue is delayed for one 
clock cycle, the fetching of the branch target address still gets 
executed unless the branch delay slot instruction is not present 
in the fetch unit. Otherwise, the delay slot instruction is fetched 
and is issued in the following cycle together with the branch 
instruction. The technique used to align branches to the first 
instruction slot is identical to the technique used to resolve 
true-dependency between instructions discussed earlier which 
consists of sliding instructions over by one slot. As a result, the 
true-dependency stall resolution logic can be reused as is to 
align branches to the first decoder slot with some minor 
additional logic, just a single two input logic gate, for detecting 
branch instructions when they are present in the decoder 
second slot. 

In the previous discussion it is assumed that the delay slot 
instruction is already fetched and ready for decoding. In some 
cases the delay slot instruction might not be present in the fetch 
unit and has to be explicitly fetched; for example when a 
branch instruction is decoded in the previous cycle and the 
target address of that branch instruction is loaded into the fetch 
unit instead of the current branch delay slot instruction as 
shown in Fig. 6 example. If this condition occurs then the 
issuing of the branch instruction as well as the fetching of the 
branch target address are delayed for an additional cycle until 
the delay slot instruction is fetched and loaded into the decoder 
unit (Fig. 6 bottom). 

The decision to delay the issue of branch instructions until 
they are located in the first decoder slot wastes only a single 
decoder slot and only when the delay slot instruction I2 is 
present in the fetch unit (Fig. 6 top example). Otherwise, if the 
delay slot instruction I2 is not present in the fetch unit (Fig. 6 
bottom example) then both approaches (issue branch 
instructions from the second decoder slot or delay them until 
they are moved to the first slot) achieve similar performance 
because the branch instruction is delayed anyway until the 
delay slot instruction is fetched regardless of which slot the 
branch is present in when it is decoded. 

D. Hardware Dependencies 

In order to process two instructions per cycle most of the 
processor resources need to be duplicated. However, we know 
from previous instruction distribution analysis (Fig. 1) that 
some of the operations like for example multiplication appears 
very infrequently in the benchmarks. Therefore, adding two 
multipliers will not affect performance for the majority of the 
benchmarks, whereas it will increase gate count dramatically as 
well as the max power budget. From the point of view of 
energy efficiency, idling resources can be turned off to reduce 
energy waste. However, if we need to limit the increase in total 
gate count we must determine which processor resources are 
the most critical to performance and just duplicate these 
resources. We limit our investigation to the ALU because the 
ALU is the biggest block in the processor in terms of logic 
elements at 60%. We conducted a thorough quantitative 
analysis to determine which ALU resource must be duplicated 
by selectively duplicating one resource at a time and comparing 
the IPC results to the results of a dual-issue processor with a 
single ALU (1-ALU  case in Fig. 7) to see if there is any 
improvement in performance. Results are shown in Fig. 7 and 
discussed below. 

E. Results 

The average increase in IPC for a dual-issue processor is 
around 40%. Some benchmarks like rijndael and sha 
experienced more than 70% improvement in IPC. The higher 
than average performance of these benchmarks is a result of the 
small number of control instructions contained in them which 
means that the basic block size is larger and, consequently, the 
number of instructions that can be issued in parallel is much 
higher than in the rest of the benchmarks. Because the dual-
issue processor lacks advanced superscalar techniques to issue 
instructions out-of-order it can only extract instruction level 
parallelism from within basic blocks boundaries. Compiler 
assisted techniques that increase the size of basic blocks like 
loop unrolling can increase performance even further. 



The worst performing benchmark, adpcm, still managed to 
achieve at least a 20% gain in IPC. The adpcm benchmark 
happens to have the highest percentage of control instructions 
of all the benchmarks. Benchmarks with a high percentage of 
control instructions might benefit from using a high 
performance branch predictor like the bimodal predictor. 
However, we did not evaluate the performance of the bimodal 
branch predictor in the dual-issue implementation because 
using a branch history buffer requires the insertion of an 
additional pipeline stage between the decode stage and execute 
stage which increases the number of speculative instructions 
that needs to be flushed out from the pipeline following a 
mispredicted branch.  

Earlier we mentioned that duplicating resources 
unnecessarily especially ALU functions will increase the max 
power budget and total gate count without benefiting 
performance. The more effective approach is to only duplicate 
the resources that affect performance the most. First, we notice 
that the average drop in IPC for a single ALU configuration is 
around 2%, which is unexpectedly low. For some benchmarks, 
like susan.corner, rijndael, adpcm and jpeg, the IPC loss is 
higher than 5%. Increasing the number of adders to two helped 
these benchmarks, excluding rijndael, recover all the lost 
performance. The rijndael benchmark benefited the most from 
duplicating the logic unit but only managed to recover half the 
IPC loss. The remaining IPC loss is tied to other ALU 
functions like the comparator and shifter. Although, duplicating 
these ALU functions benefited the rijndael benchmark they 
had no impact on the IPC of the remaining benchmarks. 

The ideal case shown in Fig. 7 is for a dual-issue processor 
with unlimited resources and perfect branch prediction. For 
most benchmarks, the IPC performance of a dual-issue 
processor with a single ALU unit is within 5% to 8% the IPC 
performance of an ideal processor. This gap can be reduced to 
less than 2% if a second 32-bit adder is added. Adding a second 
logic unit has no impact on performance for the majority of the 
benchmarks. In the case of the rijndael benchmarks the 
improvement in IPC did not exceed 3% which does not justify 
the additional resources. 

F. FPGA Implementation 

Table IV shows a summary of the resources used to 
implement the dual-issue processor on the target FPGA. The 
first column shows the results for the single-issue processor 
copied from Table II. The total number of FPGA logical 
elements increased by almost 30%. The total number of logic 
bits used by the register file doubled from 2-Kbits to 8-Kbits 
which requires the use of eight separate embedded memory 
blocks (M9K). The number of embedded 9-bit multipliers 
remains the same because only a single ALU functional unit is 
used. Speed also remains the same which is determined by the 
multiplier latency similar to the single-issue implementation. 

The Coremark result for the dual-issue processor shows a 
40% improvement in performance over the single-issue 
processor. It should be noted that the Coremark results should 
be considered in combination with other factors such as power 
consumption in order to determine the real advantage of the 
new architecture. The power consumption increased by almost 

20% from 0.48 milliWatts/MHz to 0.57 milliWatts/MHz. 
Using the PowerFilm solar panel introduced earlier as a power 
source, the dual-issue processor can operate at a max speed of 
35 MHz which is roughly 12% lower than the max speed of the 
single-issue processor using the same power source. Even with 
12% reduction in speed, the Coremark/MHz performance 
increased by almost 40% compared to the single-issue 
processor which is twice the increase in power consumption. 
Therefore, we expect a comparable sizable increase in energy 
efficiency. 

TABLE IV.  SUMMARY OF DUAL-ISSUE PROCESSOR FPGA RESOURCE 

UTILIZATION 

Resource Single issue Dual Issue Change 

Total logic elements 1673 2215 +30% 

LUT 1642 2169  

Registers 347 419  

Logic RAM (bits) 2K 4K +100% 

Physical RAM blocks (M9K) 2 8 +200% 

Embedded 9-bit multipliers 8 8  

Speed (MHz) 60 60  

Dynamic power 

(mWatt/MHz) 
0.48 0.57 +18% 

Coremark/MHz 2.5 3.4 +40% 

V. RELATED WORK 

The majority of academic research in the area of embedded 
processor architecture focuses on superscalar techniques, with 
some of the work specifically targeting FPGA implementation 
[9] and [10]. A number of other works investigated the use of 
single scalar cores in multi-chip processors targeting standard-
cell implementations [11] as well as FPGA [13]. Some research 
looked into specific aspect of the architecture, for example 
static branch prediction [11] or the design of the register file 
[12], etc. Other works investigated the design of embedded 
processors targeting a specific application like biomedical [14] 
or smart grid [15]. For example, the authors in [14] studied the 
performance impact of several static and dynamic branch 
predictors for biomedical applications. The branch predictors 
that they studied are similar to the ones we evaluated although 
targeting different applications. Their conclusion is identical to 
ours; it shows that the static predictor with the taken heuristic 
provides the best return compared to other predictors even the 
more advanced dynamic history based predictors. 

On the key components in the implementation of the 
processor is the register file which uses non-standard memories 
with multiple read and write ports. A novel implementation of 
the register file was introduced. There are an extensive amount 
of prior work on the implementation of the register file or 
reorder buffer in case of superscalar processors. [12] gives a 
brief introduction to the different techniques. In [16], the 
authors combined several of these techniques to optimize the 
implementation of a 12-read and 6-write port register file. 
However, their technique similar to most previous techniques 
requires an additional pipeline stage to read data from the 
register file. We introduced a novel memory replication 
technique that requires no additional pipeline stages and uses 



the least amount of logic compared to all other published 
techniques though it uses more physical memory.  

Commercial processors optimized for low power embedded 
applications, e.g. ARM Cortex-M series [3] with the exception 
of the ARM Cortex-M7 which is a 6-stage superscalar 
processor, are mostly single-issue scalar processors. Higher end 
embedded processors capable of dual-issue, e.g. Cortex-R or 
Cortex-A series, consume substantially more power and are 
unsuitable for battery operated applications. High-end 
superscalar processors are exclusively used in products which 
prioritize performance over power. Whereas low-end single 
issue scalar processors are usually reserved for low-cost and 
low-power devices such as industrial sensors that tend to be 
powered by either small embedded batteries that last for several 
years or energy harvesting power sources such as the 
PowerFilm solar panel introduced earlier which requires less 
maintenance than battery operated sensors.  

Also, most FPGA vendors provide have their own soft 
processor cores optimized for their own platforms. Altera 
NIOS-II is a family of 32-bit soft processor cores that comes in 
three different types: economy, standard and fast [4]. The 
economy soft core is a basic sequential microcontroller with a 6 
cycles-per-instruction performance. The standard soft core is 
five-stage processor with static branch prediction and optional 
support for tightly coupled memories. The fast soft core is 
Altera highest end processor core and is a six-stage processor 
with dynamic branch prediction. The power consumption of the 
NIOS-II fast core is around 1.65 milliWatts/MHz [4], [17] and 
it’s highest Coremark/MHz performance is 1.60 [5]. Our dual-
issue soft processor core is roughly three times more power 
efficient, 0.57 compared to 1.65 milliWatts/MHz, than a NIOS-
II core and delivers twice as much performance, 3.4 compared 
to 1.60 Coremark/MHz. 

We are not aware of any multi-issue commercial processor 
that specifically targets the ultra-low power embedded market 
segment. In fact all the multi-issue processors surveyed are 
uniquely geared towards the high end of the embedded market 
where performance matters more than power consumption. Our 
research pushes the limit of processor performance without the 
use of superscalar techniques in order to achieve the highest 
energy efficiency possible. In this paper we specifically explore 
the impact of doubling the pipeline width on IPC performance 
while using simple hardware techniques to resolve conflicts in 
instruction scheduling 

VI. CONCLUSION 

A single-issue scalar processor can operate on a very low 
power budget but its performance is constrained. A multi-issue 
superscalar processor can deliver multiple fold increase in 
performance but is power intensive. To address this problem, a 
dual-issue scalar processor capable of processing up to two 
instructions simultaneously every cycle is introduced. The 
processor delivers an average 40% higher IPC than a single-
issue processor while consuming less than 20% more power. 
Applications that contain a large amount of instruction-level 
parallelism are particularly suitable for the dual-issue processor 
and experience up to 60% improvement in IPC. The dual-issue 
processor is implemented on a low cost FPGA using less than 

10% of the total logic elements which leaves plenty of 
resources to implement additional functions. Compared to 
Altera NIOS-II soft processor core, the proposed dual-issue 
processor is three times more power efficient and it can deliver 
twice the performance. The proposed processor is an ideal 
candidate for embedded industrial devices that are powered by 
green sources of energy like solar panels. Power supplied by a 
36.5 x 64 mm small solar panel is enough to operate the dual-
issue processor at a max speed of 35 MHz and deliver a 
Coremark/MHz performance of 3.4 which is 30% higher than 
the Coremark/MHz performance of the single-issue scalar 
processor. 
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