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Abstract—Sensor network has become an increasingly attrac-
tive and advantageous subject recently. More and more demands
of data storage and data query have been raised in soft-defined
sensor network. Bonnet et al. [1] investigated the problem of
database in sensor network. In most of such scenes, data is stored
in server instead of local. For this reason, data security [2] is very
important. While encryption of outsourced data protects against
many privacy threats, it could not hide the access patterns of
the users. Protecting user information from leakage or attackers
while guaranteeing high efficiency of query is becoming an
important problem of concern. In this paper, we discuss secure
range query based on spatial index. We build the spatial index on
the client instead of the server to keep the information away from
the potential threat. While keeping a high efficiency of query, we
not only encrypt the data, but also hide the access patterns. That
will greatly reduce the risk of data leakage. We do simulations
and prove our design to be practicable and effective.

Index Terms—Sensor network; Database; Data Security;
Range Query; Spatial Data

I. INTRODUCTION

Cloud database [3] has been more and more frequently
used in soft-defined sensor networks recently. Outsourcing
data to cloud stores has become a popular strategy, as cloud
properties like scalability and flexibility allow for significant
costs savings.

However, remote data storage causes security risks. The
cloud infrastructures cannot always be completely trusted, due
to, for example, hacker and insider attacks. Users may not trust
that the server will use their data privately while they still
need to query from the cloud. While encryption of outsourced
data protects against many privacy threats in cloud scenarios,
it renders subsequent operations on data (i.e., data analysis)
extremely difficult. In some situations, for example in some
map applications, we need to retrieve geography data, or some
data with even higher dimensions. Conventional encryption
schemes, such as block ciphers [6], do not directly support
the sorts of comparisons, searches, and other manipulations
needed to handle queries without loss of privacy. Though many
studies have been done in secure range query [[7] [8] [9] [L1O]
[L1], they could not handle spatial data perfectly.

In this paper, we study secure range query based on spatial
index in order to solve these problems. Our system consists
of a server and a client. First we build an R-tree in the client
and an address translator to handle spatial data and ensure
security; then we build a hierarchical shelter in the server and a
levelmap in the client, and design shuffle algorithms to reduce
the information leakage.

The rest of this paper is organized as follows. We describe
the related work in Section II. System definition is presented in
Section III. In Section IV, we present the system architecture
and protocol. Evaluations and discussions are reported in
Section V and in Section VI we make a conclusion.

II. RELATED WORK

Spatial data is one of the most frequently used type of data
in sensor network. Spatial data objects often cover areas in
multi-dimensional spaces and are not well represented by point
locations. For example, map objects like countries, villages
etc. occupy regions of non-zero size in two dimensions. A
common operation on spatial data is a search for all objects in
an area, for example to find all countries that have land within
10 miles of a particular point. This kind of spatial search
occurs frequently in computer aided design and geography
data applications, and therefore it is important to be able to
retrieve objects efficiently according to their spatial location.

The R-tree [[15]] is a height-balanced tree used for indexing
multi-dimensional data. Each R-tree node contains several
entries. Each leaf node entry has the form (object-id,R) where
object-id is the objects identifier and R is the MBR of the
data object. Each internal node entry is of the form (ptr,R)
where prt is a pointer to a lower level node and R is its MBR.
R-trees support efficient range queries. R-tree variants, such
as the R+-tree, the R*-tree and the Rhat-tree [[16]] based on
ASPE [17], incorporate various enhancements.

In the other hand, data security is also very important
in soft-defined sensor network. Database is a common way
in soft-defined sensor network to store data in server and
accesses through the network. Although the individual data
records are encrypted, an untrusted server could still infer
information about them by observing multiple range and sort
operations. For example, the cloud could learn access patterns
and correlate them. Consequently, also the analysis operations
(queries) need to be privacy protected. Goldreich and Ostro-
vsky [12] investigated the problem of hiding access patterns
in the context of RAM machines. Their motivation was to
hide the program executed by a processor from an attacker
snooping on the traffic to main memory. Their model consists
of a physically shielded CPU that contains a key secret to the
outside world; the key is used to store the program encrypted
in memory. The CPU progressively fetches instructions from
the program and decrypts them using its internal (and also
shielded) registers. The execution is said to be oblivious (and
the RAM machined called an oblivious RAM ORAM) if the
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access patterns for any two inputs causing the same number of
accesses to RAM are indistinguishable. An elegant recent work
of Pinkas and Reinman [13] improves both the complexity and
constants of the Goldreich-Ostrovsky approach by leveraging
recent techniques such as Cuckoo Hashing and Randomized
Shell Sort. Boneh et al. presented Remote Oblivious Storage
which makes proceeding in parallel possible. However, these
solutions could not handle spatial data.

However these solutions could not ensure the data security
against the attackers who will learn information about the
content of the data from the pattern of query. In this paper,
we build an R-tree index based on oblivious storage [14] to
ensure data security in range queries to spatial data.

III. SYSTEM DEFINITIONS

There are two main parts in our system: a server and a
client. The server stores the large amount of data. The client
also has some storage capacity, though considerably less than
the server. We also define the attacker. Figure 1 provides a
high-level overview of the following security definitions.

A. Server and Client

We have a server S and a client C. The data stored in
the server is like (v, b). The client includes two parts. One is
address translator, and the other is query processor. The client
C responses the orders from the users, process queries to the
server, and returns the corresponding answer to the users. The
server S and the client C responses to the following messages:

B. User

The user U gives the order like Get_o(a) or Put_o(a, b). We
assume that the user U only sends a new order to the client
after it received an answer to the previous message.

TABLE I
MESSAGE IN OUR SYSTEM
S returns (v, b) if the id v exists in the
Get(v) server, or returns NU L L if there is no
Server such id.
S places entry (v, b) in its storage. If the
Put(v, b) id v already exists, S overwrites it.
S returns all entries (v, b) for some v,
GetRange(v1, v2) where v10v2.
S deletes all entries (v, b) for some v,
DelRange(v1, v2) where v1vv2.
Halt S halts
Client Get_o(a) Get all data in range a.
Put_o(a, b) Overwrites the data in range a to b.

C. Arttaker

We assume that the server is untrusted. The attacker may
have access to both the data stored at the server and the
messages exchanged between the client and the server.

We use a definition similar to semantic security where
the attacker cannot distinguish between the access patterns
of any two users. The attacker cannot tamper with the data
requested to and returned by the server, but would like to
learn information about the content of the data. Allowing the
attacker to tamper with the data is a straightforward extension
to our protocol similar to the one from [12] and we will
thus not focus on this case. (If identifiers are selected from
a large field to prevent repeats, adding a simple MAC to the
block corresponding to each identifier will allow detection of
tampering.)

IV. SECURE RANGE QUERY BASED ON SPATIAL
INDEX

A. Overview

Our system includes a server S and a client C. The client
C includes an address translator and a query processor.

Our server memory includes a flat main part and a hi-
erarchical shelter. We chose to represent the storage at the
server as a random-access memory with a key-value interface
similar to that provided by cloud storage services [3]] (e.g.,
Amazon S3 [4] and Windows Azure [5]). The customer
is charged based on the amount of storage used and the
number of requests performed. Most cloud services use a
hashing algorithm allowing O(1) data retrieval time. To avoid
ambiguity of terms, we use the term identifier-block pair (or
simply id-block pair) instead of key-value pair. We use the
notation v to denote an identifier and b to denote a certain
block.

Let c be the size of the identifiers (in bits) and B be the sum
of the size of a block and the size of an identifier. Note that,
in practice, B is much larger than c. For example, a common
value for B is 4 KB and c is 32 bits, resulting in B = 1024c.
There are M idblock pairs in the server storage, resulting in
a total of MB storage. The shelter is hierarchical and consists
of several levels labeled O, In, the size of each level growing
exponentially.

The data stored in the server is like (v, b), and the data input
by the user is like (a,b). Both b means the data we needed.
a means the coordinate in the multidimensional space, which
has the structure of (d1, d2...dn), where n means the number
of dimension and d1,d2 means the range in every dimension
respectively. For example, when n = 2, a = (d1,d2), where
dl = (z1,22), d2 = (y1,y2), means the area from z1 to x2
and y1 to y2.

The reason we use different data structure is based on two
aspects. Firstly, the simpler the data stored in the server is, the
better the performance will be. (v,b) is simpler than (a,b), and
will achieve higher performance. Secondary, storing a directly
in the server will cause risk of data leakage. Although we



Algorithm 1: Get_o(a)

Algorithm 3: Get(v)/Put(a)

Find data in the data in range a in R, let the result be v where v = (v1, v2).
foreach vn € v do

send a Get(v) to the query processor

return the result to the user

Algorithm 2: Put_o(a, b)

Find data in the data in range a in R, let the result be v where v = (v1, v2).
foreach vn € v do

send a Put(v) to the query processor

return the result to the user

could encrypt it, the risk still exists. Storing (v,b) instead of
(a,b) will significantly reduce the risk of data leakage.

B. Attack Translator

There is an address translator in the client, which includes
an R-tree R. When receiving messages from the users, the
address translator translates (a, b) to (v, b), that is translate a
to v. Unlike traditional R-tree, the leaf node of the R-tree
in the address translator do not stores the data b, but the
corresponding id v in the server. In other words, the R-tree
in the address translator stores (a,v). For these reasons, we
could store the whole R-tree in the client. The algorithm of
the address translator is below:

C. Client

The client stores in memory a map, called the LevelMap
L, mapping each identifier for which there is an entry in the
shelter to the level numbers in which the entry exists. The re-
verse is also stored in the map: a map from each level number
to all identifiers present in that level in the shelter. LevelMap
consists of any efficient search data structure. Here in our
system we use B+tree. In addition to identifierblock pairs, the
client maintains in memory the following information: a secret
key SK with |[SK| = k for encrypting blocks, the value s and
all si mentioned above, as well as a dummy counter d for the
main part and dummy counters di for each level that allow
the client to fetch the next dummy identifier by incrementing
these values (and thus preventing repeated accesses to the same
dummy identifier). We use PRPs to denote a length-preserving
pseudorandom permutation [18]] with domain and range being
the identifier space. For the rest of the paper, for simplicity,
we say that the client searches, requests, or puts an identifier v
from/to the server to mean that the client searches, requests, or
puts the permuted identifier v, permuted using a PRP seeded
with a client secret. The algorithm of the query processor is
below:

D. Shuffle

Figure 2 shows an overview of our shuffling algorithms:

« shuffle(): Shuffles a part of the server‘s memory in which
the identifiers have been permuted with the same PRP.

Let [ be the highest level in the LevelMap
if vL then
foreach ¢ € L do
if il then
|  Send a dummy request Get(PRPsi(di)), ignore the answer
end
else
| Send a request Get(PRPsi(di)), let b be the answer
end
end
Send a dummy request Get(PRPs(d)), ignore the answer
Call shelterInsert(v, b)
Let decryptSK(b) be the result and send it to the user
end
else
foreach : € L do
|  Send a dummy request Get(PRPsi(di)), ignore the answer
end
Send a dummy request Get(PRPs(d)), let b be the answer
Call shelterInsert(v, b)
Let decryptSK(b) be the result and send it to the user

end

Algorithm 4: shelterInsert(v, b)

Let b = encryptSK (decryptSK (b))
Send Put(PRPs1(v),b) to the server
while a level is full do
if full level = the last level of the hierarchy then
| Call shuffleMainPart()
end
else
| Call shuffleLevel()
end
end

Shelter Main Part
Level O Level 1 ... Leveln
Shuffle() Shuffle()
NP, M
shuffleLevel() shuffleMainPart()

Fig. 2. Shuffle Algorithms Overview.

« shuffleMainPart(): Incorporates a flat shelter into the main
part of storage and shuffles the latter.

« shuffleLevel(): Move a level i in the hierarchy of the
shelter into level i+1.

While shuffling, any request to an identifier in the shelter
will be blocked. Allowing concurrent accesses and shuffling
in-place are two goals in tension because it seems natural to
make a copy of the data on which to allow accesses to happen
while shuffling the original data in parallel. Our solution has
three main ideas:

1. During shuffling, the client builds a data structure called
the shuffleMap. The shuffleMap summarizes to what identifier
each identifier was mapped after a step of the shuffle and stores
it at the server. The shuffleMap allows the client to find a
requested identifier in a partially-shuffled memory efficiently.



Algorithm 5: shuffle()

Algorithm 7: shuffleLevel(z)

Logically split the memory in ranges of pairs containing data of size O(m)
Number the chunks with ¢ = 1, 2...C, where C = O(M B/m)
foreach chunk in Server memory do
Use GetRange() to get the chunk
Use DelRange() to delete the chunk
Add to each identifier the prefix “¢:”
Use Put() to put back the range at the server
end
for i = 0toC do
foreach chunk j in all chunks do
if chunk j is not already paired with an earlier chunk then
| Pair chunk j with chunk j* = j + 2°
end
Use GetRange(j : 0...0, 7 : 9...9”) and
GetRange(5* : 0...0,5% : 9...97) to copy both chunks to local
Use DelRange() to delete the copied chunks
Use PRP() to each identifier
Re-encrypt the blocks
Sort the pairs by the new identifier
foreach chunk in the first half of the pairs do
| Add a prefix ”j:”
end
foreach chunk in the second half of the pairs do
| Add a prefix "j*:”
end

end

end

foreach chunk in the Server memory do
| Remove the prefix

end

Algorithm 6: shuffleMainPart()

Create a new hierarchical shelter, the concurrent shelter, containing no pairs.
Make a copy of the current shelter at the server, denoted the copy shelter.
Shuffle the main part using shuffle().
Shuffle the original shelter using shuffle().
foreach item in Shelter do
if item is not a dummy then
| Update the item in the main part
end
else
|  Update a dummy in the main part
end

end

Shuffle the main part using shuffle().

Delete the copy shelter and the original shelter.
Let the concurrent shelter be the new shelter.

2. The client creates a new shelter called the concurrent
shelter where any concurrent requests must be stored to
prevent repetitions with the data accessed in the preceding
epoch, during the shuffle, and in the following epoch.

3. The client either only allows a maximum number of
concurrent requests during a shuffle or delays such requests,
both in order to ensure that shuffling ends before a new shuffle
must begin.

shuffle() splits the memory in portions that are O(m) in
size and thus fit in the client‘s memory, and shuffle pairs of
these portions at a time. After shuffle(), the client deletes
the shuffleMap(), except for the data corresponding to the last
iteration. The client will perform O((M B/m)log(M B/m))
requests, and it will Get/Put O(Mlog(M B/m)) pairs.
Once the last level of the hierarchy gets full, the client
uses shuffleMainPart() to shuffle the last level into the main
part. The shelter in shuffleMainPart() is the last level in the
hierarchy.

Shuffle Level ¢ using shuffle()
Shuffle Level ¢ 4+ 1 using shuffle()
foreach pair j in level i do
if there is a same(permuted) identifier j in level i 4+ 1 then
| Update the value in level 7 4+ 1 with the value from level %
end
else if pair j is not a dummy then
| Set the value of a dummy variable to contain their value.
end
end
Delete all contents from level 4.
Shuffle level ¢ + 1 using shuffle().

Algorithm 8: conc_get(v)/conc_put(v, b)

if the request is not concurrent with shuffleMainPart() then
| Simply perform get(v)/put(v) at the server and return any results.

end

else if this request accesses the original shelter then

if shuffleMainPart() is happening then
| Use the copy shelter

end

else

/IshuffleLevel() is happening

Finish the shuffle

Proceed with the request

end

end

else

Perform the request to the concurrent shelter

if the request to the main part comes in step 3 of algorithm 6 then
perform the dummy or permuted-v request directly to the main part as
in the unchanged algorithm;

end

else if starts between step 3-4 then

Use shuffleMap() to find the permuted identifier at the server and
request it

end
else if starts between step 4-6 then
Make the request to the main part using the last permutation used by
‘ the client in the shuffle at Step 3
end
else if starts between step 6-7 then
Use shuffleMap() to find the permuted identifier at the server and
request it

end

else

Make the request to the main part using the last permutation used by
the client in the shuffle at Step 6

end
end

E. Concurrent

We explain how requests to the main part are satisfied when
the main part is being shuffled considering that we cannot
make a copy of the main part because it would introduce
too much storage overhead as the following. Note that one
shuffle must finish before the next one needs to start. Since a
shelter can hold as many as O(m/c) pairs before it needs to
be shuffled into the main part, at most O(m/c) requests can
happen concurrently for the duration of shuffleMainPart().

V. EVALUATION AND DISCUSSION

In this section we present out experiments. We generated
three sets of data shown in Table II. We use a computer with
3.4GHz i7 CPU and 8GByte RAM. The size of each entry is
4096B. The first 32B contain the geography information and
the others contain the data.
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The numbers of entries of the data sets M are 16384, 65536
and 262144, costing 64MB, 256MB and 1GB of the server
memory. So the memory size of the client is m = v MDB,
that is 8KB, 16KB and 32KB respectively

We build an R-tree for each data set. The parameter
LC(LeafCapacity) means the maximum number of child that
a node can have. The size of the R-tree and LeafCapacity is
shown in Table III and Figure 3-a:

The results of the experiments show that the scale of R-
tree is small enough to store in the client. As the parameter
LeafCapacity increases, the size of R-tree decreases as well.
However, the speed of decrease will reduce to O as the size de-
creases. In consideration of performance, we set LeafCapacity
to 400.

We make three experiments, proceed 10000, 50000 and
100000 queries respectively. We do them 10 times each, and
let the average value be the result. The result is shown in
Figure 3-b:

The bottleneck of our system is the communication over-
head between the server and the client because the speed of R-
tree searching is much faster than communication. The mem-

TABLE II
SCALE OF DATA SET
Number of entries | Server Memory ClientMemory
214 = 16384 64MB 8KB
216 = 65536 256MB 16KB
218 — 262144 1GB 32KB
TABLE 111

R-TREE SCALE TEST

Leaf Capacity 16384 65536 262144

50 1875968B 7397376B 29659136B

100 1101824B 4358144B 17689184B

200 1011712B 3940352B 15593472B

400 851968B 3411968B 13688832B

800 57344B 806812B 12759040B
TABLE IV

NUMBER OF GET/PUT WHILE SHUFFLING

Number of items Number of Get/Put
210 =1024 11264

211 = 16384 196608

218 = 262144 3407872

65536

(b) System Runtime

262144

16384 65536 262144

(c) Waiting Time While Shuffling

Results of Experiments

ory of client is Bv/M, the time of get/put is O(logM ). In con-
sideration of shuffling, the time will be O(v/M /BlogM B),
which is different from the real result in the experiments. The
reason is that the server only allows at most O(m/c) requests
concurrently for the duration of shuffleMainPart().

We do statistics of the I/O time of Get/Put during shuffling.
The time statistics is presented in Table IV and the waiting
time is shown in Figure 3-c:

The result in Table III fits the theoretical hypothesis in
Algorithm 5. It also shows that when M B/m = 2", the
performance will be the best. The result shown in Figure 3-
c also shows that as the increase of the number of the items.
The waiting time while shuffling increases as well. This is due
to two reasons: in one hand, as it is shown in Table III, the
waiting time while shuffling increases as the increase of the
scale of data set. This makes the speed of shuffling lower, and
increases the waiting time. In the other hand, as the increase
of the scale, the shelter will be bigger, which will reduce the
time of shuffling and increase the concurrent request allowed.
This will also reduce the waiting time.

Moreover, we could learn from the experiments that when
M is a certain value, the larger the memory of the client m
is, the fast the algorithm becomes. How to make a balance
between speed and scale is a future direction of our research.

VI. CONCLUSION

In this paper we present our secure range query system
design based on spatial index. Our main contributions are:
First, we study the problem of secure range query of spatial
data. Second, we present our system design. We not only
encrypts the data, but also hide the query pattern to reduce
the information leakage while proceeding range query in
spatial data. Third, we implement the design and carry out
a performance evaluation of the system.
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