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Abstract—Time series prediction has become more popular
in various kinds of applications such as weather prediction,
control engineering, financial analysis, industrial monitoring, etc.
To deal with real-world problems, we are often faced with missing
values in the data due to sensor malfunctions or human errors.
Traditionally, the missing values are simply omitted or replaced
by means of imputation methods. However, omitting those missing
values may cause temporal discontinuity. Imputation methods, on
the other hand, may alter the original time series. In this study,
we propose a novel forecasting method based on least squares
support vector machine (LSSVM). We employ the input patterns
with the temporal information which is defined as local time index
(LTI). Time series data as well as local time indexes are fed to
LSSVM for doing forecasting without imputation. We compare
the forecasting performance of our method with other imputation
methods. Experimental results show that the proposed method is
promising and is worth further investigations.

Keywords—Time series prediction, missing values,local time
index, least squares support vector machine (LSSVM)

I. INTRODUCTION

In general, a time series can be defined as a series of
observations taken successively every equally spaced time
interval. The primary goal of time series prediction is to
forecast the future trend of the data based on the historical
records. Therefore, it plays an important role in the decision
making for industrial monitoring, business metrics, electrical
grid control and various kinds of applications. We can roughly
categorize the time series problems as follows. If we want to
forecast one time step ahead into the future, which is the most
case of time series problems, it is called a one-step or single-
step prediction. On the other hand, if we make a prediction that
is multiple time step ahead into the future, it is called a multi-
step prediction. There are two approaches to make a multi-step
prediction, direct and iterative. The direct approach is to build
a model that forecasts multi-step ahead results directly while
the iterative approach is to make multiple one-step predictions
iteratively until it reaches the required step.

Recently, artificial intelligence is gaining popularity in the
time series prediction. Support vector machine (SVM) is one of
the most popular tools for time series prediction using artificial
intelligence. The major development of SVM was done by
Vapnik and his colleagues in the AT&T Bell Laboratories in
the 1970s. It was initially set for classification problems and
real-world applications such as optical character recognition. In
[1], support vector machine was extended to solve regression
problems. Support vector machine is free from local minimum
from which neural networks suffer. However, the computa-
tional burden of solving quadratic programming problems is

quite heavy. Least squares support vector machine (LSSVM)
was introduced in [2] which transfers the constraint problems
into a linear system. The LSSVM reduces the computational
costs but the sparsity of the support vectors is lost. The
weighed LSSVM was proposed [3] to offer an alternative
solution to the sparsity problem. In recent years, LSSVM is
adopted in different fields of applications, especially the time
series prediction and financial forecasting.

In many real-world cases, we are faced with missing values
in time series data. These missing values occurs due to sensor
malfunctions or human errors. Various ad hoc techniques have
been used to deal with missing values [4]. They include
deletion methods or techniques that attempt to fill in each
missing value with one single substitute. The ad hoc techniques
may result in biased estimations or incorrect standard errors
[5]. However, they are still very common in published re-
searches [6][7][8]. Multiple imputation [9][10] and maximum
likelihood [11] are two recommended modern missing data im-
putation techniques. Multiple imputation creates several copies
of original missing data and each of the copies is imputed
separately. Analyzing each copy yields multiple parameter
estimates and standard errors and they will be combined into
one final result. On the other hand, maximum likelihood uses
all the available data to generate estimates with the highest
probability. Multiple imputation and maximum likelihood tend
to produce similar results and choosing between them is sort
of personal preference.

Performing time series prediction with missing data is a dif-
ficult task. The temporal significance in time series prediction
makes it different from other forms of data analysis. Ignoring
those missing values destroys the continuity of a time series.
Replacing the missing values with imputation methods alters
the original time series and it may severely affect the prediction
performance. It is hard to evaluate how the predicted results are
affected by forecasting models or imputation methods. In this
paper, we develop an approach to solve the prediction problems
based on the structure of LSSVM. A series of local time
indexes are introduced before the training phase of LSSVM.
Time series data as well as local time indexes are fed to
LSSVM for doing forecasting without imputation. This paper
is organized as follows. In Section II, we give a general idea
of the time series data with missing values and what we want
to predict. In Section III, we describe how LSSVM works in
Section III-A and detail the local time index (LTI) approach
in Section III-B. In Section IV, we compare our methods with
other imputation techniques on several time series datasets. In
Section V, we summarize the results of our study and show
the directions of future works.
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II. PROBLEM STATEMENT

Let S̄i = {x̄i, ȳi}, where 1 ≤ i ≤ m is the time index, be
a series of multivariate data taken every equally spaced time
interval ∆t. That is, S̄1 was taken at t1, S̄2 was taken at t1+∆t,
. . . , and the final observation S̄m was taken at t1+(m−1)∆t.
In a simple multivariate case, each observation contains two
variables x̄ and ȳ where x̄ is the additional variable and ȳ is
the desired output. On the contrary, each observation contains
only one variable ȳ in a univariate case. In this paper, we only
consider the case with two variables as follows:

x̄i = {xi, ẋi}, (1)
ȳi = {yi, ẏi} (2)

where i = 1, . . . ,m and{
xi = null, ẋi = 0 if x̄i is missing ;
xi = x̄, ẋi = 1 otherwise (3){
yi = null, ẏi = 0 if ȳi is missing;
yi = ȳ, ẏi = 1 otherwise (4)

Note that x and y are available data, and ẋ and ẏ denote the
flags of available values. If x̄ and ȳ contains no missing values,
our goal is to find the function f such that

ŷt+q−1+s = f(xt, yt, xt+1, yt+1, . . . , xt+q−1, yt+q−1) (5)

where (xt, yt, xt+1, yt+1, . . . , xt+q−1, yt+q−1) is called the
input query, q is the query size, t is the time index, and s is
step size. If s = 1 in Eq. 5, f is called a single-step or one-step
forecasting model. If s > 1 in Eq. 5, f is called a multi-step
forecasting model. The direct approach predicts ŷt+q−1+s di-
rectly from (xt, yt, xt+1, yt+1, . . . , xt+q−1, yt+q−1) while the
iterative approach is to predict ŷt+q and then ŷt+q+1,ŷt+q+2,
. . . , ŷt+q−1+s iteratively.

III. PROPOSED METHOD

In this section we describe how least squares support
vector machine (LSSVM) is applied to time series prediction
with missing values. The basic idea is “Local Time Index”
(LTI) which ignores the missing values and adopts additional
temporal information into the training patterns.

In the case with no missing values, we can formulate the
training patterns P from Eq. 5 for the LSSVM as follows:

Pt = {Qt, Tt} (6)
Qt = (xt, yt, xt+1, yt+1, ..., xt+q−1, yt+q−1) (7)
Tt = yt+q−1+s (8)

where q is the query size, t is the time index from 1 to M =
m−q−s+1, and s is the step size. Therefore, m observations
generate M training patterns.

A. Least Squares Support Vector Machine

Given a set of time series patterns Pt = {Qt, Tt} in Eq. 6.
Our goal is to find the estimated function shown as follows:

T̂ = f(Q) = WTϕ(Q) + b (9)

We want tot minimize the error between T and T̂ and keep
W as small as possible. A large value of W will make this

model sensitive to the perturbations in the features which is not
favourable. Therefore, the objective function can be written as

min
1

2
∥W∥2 + C

2

M∑
i=1

e2i (10)

subject to Ti = WTϕ(Qi) + b+ ei (11)
for i = 1, ...,M

where ei is the error and C is the regulation parameter which
determines the rigorousness of this model. A large number of
C allows a small error while a small number of C allows a
large error in Eq. 10. An illustration of LSSVM is shown in
Figure 1. We reformulate the objective function and constraints

Q

Ti

ei

f(Q) = WT ϕ(Q) + b 

Figure 1. An illustration of LSSVM for time series prediction.

in Eq. 10 and Eq. 11 into Lagrangian formulation. There are
two reasons for doing the Lagrangian formulation [12]. The
first one is that constraints in Eq. 11 will be replaced by the
constraints on the Lagrange multiplier themselves which are
easier to handle. The second one is this reformulation will keep
the input patterns in the dot products between vectors. There-
fore, we introduce Lagrange multipliers αi where i = 1, ...,M ,
one for each constraint in Eq. 11. The constraint equations are
multiplied by the Lagrange multipliers and subtracted from the
objective function. This gives the following Lagrangian:

Lp(W, b, e, α) =

1

2
∥W∥2 + C

2

M∑
i=1

e2i +
M∑
i=1

αi(Ti −WTϕ(Qi)− b− ei)

(12)

Our goal is to minimize Eq. 12. The Lagrange multiplier
αi can be either positive or negative due to the equality
constraints of Karush-Kuhn-Tucker conditions [13][14]. By
making derivatives of Lp vanish, we have the conditions for
optimality:

∂Lp

∂W = W −
M∑
i=1

αiϕ(Qi) = 0

∂Lp

∂b = −
M∑
i=1

αi = 0

∂Lp

∂ei
= Cei − αi = 0

∂Lp

∂αi
= Ti −WTϕ(Qi)− b− ei = 0

(13)



These conditions can be written as the solution to the following
set of linear equations:[

K + I
C 1M

1TM 0

] [
Λ
b

]
=

[
Γ
0

]
(14)

where K is a M -by-M kernel matrix, kij = k(Qi, Qj) =
ϕT (Qi)ϕ(Qj), Γ = [T1 T2 ... TM ]T , Λ = [α1 α2 ... αM ]T

and 1M = [1 1 ... 1]T is a vector with M 1’s. After
calculating the Λ and b in Eq. 14, the estimated function

T̂j =
M∑
i=1

αik(Qi, Qj) + b can be found. Therefore, we can

make a prediction of Tj from the given input query Qj .

B. Local Time Index

Due to the introduction of missing values, we can not
formulate the training patterns as Eq. 6 without any imputation.
However, we do not want to manipulate the time series data
which may cause more problems due to the performance of
imputation methods. Ignoring the missing vales is the simplest
idea but doing this will break the continuity of the time series.
If we provide temporal information to those patterns with
missing values, the forecasting model can somehow extract
the temporal significance of certain time series data. This is
the intuition of our method. From Eq. 1 and Eq. 2, we have
m observed variables x̄ and ȳ:

x̄ = {x, ẋ}, (15)
ȳ = {y, ẏ} (16)

where x and y may contain null elements due to missing val-
ues. We ignore those missing values and extract the available
sets of values from x and y. The available set can be written
as follows:

Ax = {A1
x, A

2
x, ..., A

u
x},

tx = {t1x, t2x, ..., tux} (17)
Ay = {A1

y, A
2
y, ..., A

v
y},

ty = {t1y, t2y, ..., tvy} (18)

where x has u available elements in total, Au
x is the uth

available element in x and the corresponding global time index
is tux, tux > tu−1

x > ... > t1x. Similarly, y has v available
elements in total, Av

y is the vth available element in y and the
corresponding global time index is tvy , tvy > tv−1

y > ... > t1y .

We can now formulate the training patterns from the
available sets in Eq. 17 and Eq. 18. We take the formulation
of the ith training pattern for s-step prediction as an example.
Firstly, we set the jth = (v − i+ 1)th element (Aj

y) in Ay as
the training target, Ti. Secondly, we fetch the q elements in
Ay as the inputs from variable ȳ and we have to maintain the
time indexes of those elements smaller than tjy − s + 1. For
the additional variable x̄, we fetch the last q elements and we
also have to make sure that time indexes should be smaller than
tjy−s+1. After all the input elements are fetched, input query
Qi is done and we can obtain a sequence of corresponding
global time indexes GTIi (with the target time index). We
define the local time indexes Li as

tmin = min(GTIi),

Li = GTIi − tmin (19)

Finally, the ith generated pattern can be written as

Pi = {{Qi, Li}, Ti} (20)

After all the patterns are generated, we normalize L to the
range [0, 1] by the maximum local time index. The detailed
algorithm of local time index is described in Algorithm 1.
This algorithm can be extended to more than one additional
variable easily.

Algorithm 1 The algorithm of local time index with 2 vari-
ables x̄ and ȳ

Construct Ax from x̄;
Construct Ay from ȳ;
i = 1;
END = false;
while END == false do
Qi → ϕ, Ti → ϕ;
j = v − i+ 1 {fetch query for ȳ};
l = u− i+ 2 {fetch query for x̄};
Set the jth element in Ay as the training target Ti;
for k = 1→ q do

ydone = false;
while ydone == false do

if tj−k
y < (tjy − s+ 1) then
Qi ← (j − k)th element in Ay;
ydone = true;

else
j = j − 1;
ydone = false;

end if;
end while;
xdone = false;
while xdone == false do

if tl−k
x < (tjy − s+ 1) then
Qi ← (l − k)th element in Ax;
xdone = true;

else
l = l − 1;
xdone = false;

end if;
end while;

end for; {Qi is done!}
{Check stopping criterion!}
if size of Qi < 2q then

END = true;
else

Retrieve GTIi and calculate Li;
Pi = {{Qi, Li}, Ti};

end if;
i = i+ 1;

end while;

IV. EXPERIMENTAL RESULTS

In this section, we compare our proposed method (LTI)
with other imputation methods including mean, hot-deck and
auto-regression (AR) imputation. Mean imputation replaces the
missing values with the mean value of the other observations.
Hod-deck imputation replaces the missing values with other
similar observations. In the following experiments, we choose



the closest observation to the missing value as the candidate.
AR imputation is proposed in [15] and it uses auto-regression
model (p = 4) to fill in missing values. They are tested
on 3 generated datasets (sine function, sinc function, and
Mackey-Glass chaotic time series) and 4 benchmark datasets
(Poland electricity load, Sunspot, Jenkins-Box, and EUNITE
competition). The experiments are performed in the following
manner:

• Create a time series of data with R% missing rate at
random.

• Training Phase:

1) Reconstruct the training time series using a
imputation method (by mean, hot-deck and
AR imputation).

2) Train the LSSVM prediction model with the
reconstructed series.

3) For LTI, we generate the training patterns
using Algorithm 1 and send them to LSSVM.

• Testing Phase:

1) Construct the testing query using a imputation
method if it contains missing values.

2) For LTI, we generate the testing query in the
same way as in the training phase.

3) Feed the testing query into the trained model
and calculate the result.

The performance of each method is measured by the normal-
ized root mean squared error (NRMSE) defined below:

NRMSE =

√∑Nt
i=1(yi−ŷi)2

Nt

ymax − ymin
, (21)

where Nt is the number of testing data, yi is the actual output
value and ŷi is the estimated output value, for i = 1, 2, . . . , Nt.
Note that ymax and ymin are the maximum and minimum,
respectively, of yi in the whole dataset. The following experi-
ments are implemented in Matlab R2012b and executed on a
computer with AMD PhenomTMII X4 965 Processor 3.4 GHz
and 8 GB RAM.

A. Sine Function

The time series data of the Sine function is generated by
the following equation:

y = sin(t) (22)

where t ∈ [−10, 10) and the time interval of t is 0.02 and
we generate 1000 time series samples. The first 500 samples
are for training and the other 500 samples are for testing. The
query size q is 4, step size s is 1, and the parameters of LSSVM
are determined in the training phase and they are not changed
during the testing phase. The NRMSE and time consumption
of each method are shown in Table I. From this table, we can
see that LTI offers comparable or even better NRMSE values.
Furthermore, LTI runs much faster.

Table I. COMPARISON ON NRMSE AND TIME ON SINE FUNCTION

R mean hot-deck AR LTI
5% 0.0513 0.0024 0.0069 0.0021
10% 0.0743 0.0037 0.0094 0.0030
15% 0.0979 0.0050 0.0151 0.0042
20% 0.1171 0.0063 0.0357 0.0050
25% 0.1275 0.0071 0.0358 0.0053
50% 0.3145 0.0155 0.1156 0.0124

time (sec) 7.6230 5.2508 26.1742 1.7851

B. Sinc Function

The time series data of the Sinc function is generated by
the following equation.

y =

{
sin(t)

t
, if t ̸= 0;

1, if t = 0
(23)

where t ∈ [−10, 10) and the time interval of t is 0.02 and
we generate 1000 time series samples. The first 500 samples
are for training and the other 500 samples are for testing.
The query size q is 4, step size s is 1, and the parameters
of LSSVM are determined in the training phase and they are
not changed during the testing phase. The NRMSE and time
consumption of each method are shown in Table II. Again,

Table II. COMPARISON ON NRMSE AND TIME ON SINC FUNCTION

R mean hot-deck AR LTI
5% 0.0579 0.0132 0.0165 0.0112
10% 0.0537 0.0191 0.0239 0.0101
15% 0.0950 0.0109 0.0108 0.0073
20% 0.1061 0.0176 0.0226 0.0153
25% 0.1156 0.0188 0.0209 0.0094
50% 0.1065 0.0286 0.0373 0.0283

time (sec) 5.1152 4.8754 27.3818 1.7188

we can see that LTI offers comparable or even better NRMSE
values. Furthermore, LTI runs much faster.

C. Mackey-Glass Chaotic Time Series

The well-known Mackey-Glass time series [16] is gener-
ated by the following equation:

dy(t)

dt
=

0.2y(t− τ)

1 + y10(t− τ)
− 0.1y(t) (24)

where τ = 17, the initial condition y(0) = 1.2, and the
time step ∆t = 1. The data is sampled every 6 points and
we generate 1000 data points. The first 500 samples are for
training and the other 500 samples are for testing. The query
size q is 4, step size s is 1 and the parameters of LSSVM
are determined in the training phase and they are not changed
during the testing phase. The NRMSE and time consumption
of each method are shown in Table III. For this experiment,
LTI offers better NRMSE values in particular when R is low
to moderate. Still, LTI runs faster than the other methods.

D. Poland Electricity Load

This dataset [17] is a univariate time series data set which
records the electricity load of Poland in 1990’s. We use the first



Table III. COMPARISON ON NRMSE AND TIME ON MACKEY-GLASS
CHAOTIC TIME SERIES DATASET

R mean hot-deck AR LTI
5% 0.1166 0.0975 0.1016 0.0806
10% 0.1137 0.0968 0.0994 0.0825
15% 0.1333 0.1096 0.1314 0.1215
20% 0.1493 0.1157 0.1401 0.1126
25% 0.1597 0.1279 0.1551 0.1407
50% 0.2494 0.2166 0.2672 0.2080

time (sec) 6.8915 5.4388 27.1048 1.8945

1,000 observations for training and the next 500 observations
for testing. The query size q is 9, step size s is 1, and the
parameters of LSSVM are determined in the training phase and
they are not changed during the testing phase. The NRMSE
and time consumption of each method are shown in Table IV.
For this experiment, LTI runs much faster than the other

Table IV. COMPARISON ON NRMSE AND TIME ON POLAND
ELECTRICITY LOAD DATASET

R mean hot-deck AR LTI
5% 0.0872 0.0687 0.0680 0.0960

10% 0.0895 0.0708 0.0740 0.0875
15% 0.1053 0.0754 0.0773 0.0972
20% 0.1096 0.0817 0.0856 0.0960
25% 0.1204 0.0888 0.0976 0.1087
50% 0.2224 0.1190 0.1228 0.1217

time (sec) 74.1073 32.9217 153.2233 8.7230

methods.

E. Sunspot

This dataset [18] is a univariate time series data set which
records the yearly sunspot number from year 1700. The data
from year 1700 to 1920 are used for training and the data
from year 1920 to 1987 are used for testing. The query size
q is 10, step size s is 1, and the parameters of LSSVM are
determined in the training phase and they are not changed
during the testing phase. The NRMSE and time consumption
of each method are shown in Table V. As can be seen, LTI

Table V. COMPARISON ON NRMSE AND TIME ON SUNSPOT DATASET

R mean hot-deck AR LTI
5% 0.1383 0.1310 0.1294 0.1235
10% 0.1561 0.1485 0.1545 0.1345
15% 0.1572 0.1325 0.1547 0.1443
20% 0.1882 0.1702 0.1795 0.1518
25% 0.1862 0.1568 0.1597 0.1408
50% 0.2731 0.1778 0.2217 0.2278

time (sec) 1.2732 1.0918 1.8899 0.6014

not only offer good estimations but also runs faster than the
other methods.

F. Jenkins-Box Gas Furnace

This dataset [19] is a multivariate time series data set [20].
It consists of 296 pairs of examples {ai, bi} where ai is the
input gas rate and bi is the CO2 concentration from the gas
furnace. We use these two variables to predict future CO2

concentration. The data with time index from 1 to 250 are used
for training and those from 251 to 296 are used for testing.
The query size q is 6, step size s is 1, and the parameters
of LSSVM are determined in the training phase and they are
not changed during the testing phase. The NRMSE and time
consumption of each method are shown in Table VI. Again,

Table VI. COMPARISON ON NRMSE AND TIME ON JENKINS-BOX GAS
FURNACE DATASET

R mean hot-deck AR LTI
5% 0.1015 0.0639 0.1722 0.0583
10% 0.0999 0.0628 0.1578 0.0556
15% 0.1164 0.0673 0.1636 0.0589
20% 0.1054 0.0831 0.1663 0.0709
25% 0.1177 0.0896 0.1544 0.0621
50% 0.1586 0.1010 0.1828 0.1162

time (sec) 1.2422 1.2225 2.2252 0.5116

for this dataset, LTI not only offer better estimations but also
runs faster than the other methods.

V. CONCLUSION

We have presented a novel method to make prediction for
time series data with missing values. We introduce the local
time index to the training and testing patterns without using
any kind of imputation as other methods do. When making
prediction using LSSVM, the kernel function measures not
only the values between two patterns, but also the temporal
information we provide. The general performance of our
proposed method is good and the time complexity is low as
well. However, as other methods, over-fitting can be an issue
with our method. There are some directions for the future
research in this topic. One is to solve the over-fitting problem
by applying fuzzy logic on the local time index. Another one
is to provide extra weights to the LSSVM model based on the
temporal information.
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