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Abstract—We consider utility maximization in a multi-cell dependent prices to the interference caused by the SUs, and
network under a total transmit power constraint, e.g. given by it is shown that subject to these prices, selfish SUs playing a
a cognitive radio geo-location database. The network utility in non-cooperative game converge to a Nash Equilibrium where
the downlink is maximized by allocating transmit powers in the sum interference constraint is satisfied. An alterpativ
the network, while meeting the network-wide transmit power . . ) ; :
constraint. Distributed algorithms for allocating downlink trans- ~ formulation is considered in [5], where the sum rate of the
mit power are discussed, which involve exchange of prices that SUs is maximized, subject to an outage-ratio of PU receivers
reflect interference between cells. Using primal decomposition, we Similarly, in [6], the weighted sum rate maximization of
present an online algorithm which guarantees that the network Multiple-Input Multiple-Output (MIMO) SUs is discussed
power constraint is met at all times. To this end, each cell . . . A
adjusts its power level while taking into account the interference S‘,Jbl?Ct to a total interference constraln.t. The gpproasbn&- .
prices received from neighboring cells. Depending on the pricing distributed—the master problem of distributing the trartsmi
information, a transmitter may reduce its power so that it can be power to the SU transmitters is performed in a centralized
used by some other transmitter. Distributed optimization enabled manner, whereas the MIMO covariance optimization at the
by the exchange of interference prices among cells results in g5 s performed in a distributed manner with interference

an efficient distribution of total power among the transmitters. . biect to th traints i by th ¢
Simulation results illustrate that exchange of prices can yield a prices, subject to the power constraints given by the master

significant gain over non-cooperative and partially cooperative 30|Uti0n_- o _
power allocation approaches in indoor small multi-cell networks. Consider a CR power distribution problem where there is a

secondary cellular network/LSA licensee, which is pravidi
coverage in a limited geographic region, and is given a total

Foreseen shortages in spectrum for wireless services hgamsmit power constraint. The power has to be dynamically
paved the way for new paradigms that can enable an efficielgtributed among transmitters in different cells. Thipastic-
utilization of the spectrum, while adhering to existingukg ularly important in uplink transmission of secondary cklfu
tions and policies. Cognitive Radio (CR) has been proposedtworks, but applies equally well in downlink, when the
to improve spectrum utilization and enhance the efficiericy total power constraint given to a network is smaller than
spectrum sharing systems. It does so by allowing Second#ing total maximum transmit power. Scaling behavior of CR
Users (SUs) to opportunistically access the frequency banetworks with constraints on SU average total power and
originally allocated to the Primary User (PU), when or wherpeak power has been considered in [8], without algorithmic
PU is inactive, or otherwise in a manner that does not disturbonsiderations. A total power constraint as such, is smda
the PUs. a total interference constraint, and the algorithms of [Bl]—

In CR system based on Geo-Location DataBase (GLDByould apply for the power distribution problem, with suil@b
see e.g. [1], a GLDB gives a SU the right to use a pamodifications. Our approach differs from [6], in that we faeis
of spectrum in a geographical location, constrained by aacompletely distributed solution to the primal problem end
maximum transmit power. Similarly, in recently proposedetwork-wide constraint on total transmit power. Moregver
Licensed Shared Access (LSA) [2], incumbents would gramte consider coupled utility functions, as well as coupled
licensees exclusive access to spectrum, subject to sendoastraints, whereas in [7] only the (interference) caists
conditions related to incumbent protection. A GLDB is are coupled.
possible solution for realizing such protection. Moreovar In this paper, we address CR power distribution problem
a GLDB CR system it is possible (and in an LSA system it im a secondary cellular network. The system consists of
likely) that the secondary user (or LSA licensee) is a caetlulmultiple interfering cells, each consisting of multiple bie
network consisting of multiple transmitters. In such casles Stations (MSs) and a single Base Station (BS). Network
distribution of transmission power among these transmsitteutility maximization is considered subject to a networldai
needs to be decided. This can be done, e.g., by a GLIdal power constraint. To the best of our understandinig, th
controlling thepower densityof a secondary network [3]. problem has not been addressed in the literature—nor has

Different approaches for controlling the average or peakcompletely distributed algorithm been presented for powe
interference power caused by multiple SUs to PUs have bedistribution problem in the simpler scenario of secondary
considered in [4]-[7]. In [4], the PU determines networétst transmitter-receiver pairs, or for the related total ifgrence
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power problem. We propose distributed pricing based algGaussian noise power, and

rithms for allocating power to SUs, such that the network

utility is maximized while the constraint on sum power of SUs L= pihjy l€L, (6)
is met. Both primal and dual decomposition based algorithms J#i

are kc1:on3|dere}d. . ) foll _ ) denotes the interference experienced by KISThe utility
The rest of paper is organized as follows: Section Il dggnchion for the users should be selected according to the

scribes the system model and formulation of optimizatigf formance metric to be maximized. In this paper, we con-
problem. Section Il introduces the primal and dual decoa;nposider Proportional Fair (PF)-Rate utility function [10]hiE

tion concepts and discusses in detail distributed netwovkep leads to fairness in sharing common resources (i.e., poacr a

control algorithms for power distribution in CR Networks ey ling weights) among the MSs of each cell. The PF-Rate
Section IV shows simulation results for a CR network in Bility function is

WINNER office building [9], followed by a discussion on

the performance of the proposed approaches. We conclude in w (p,w;)21n {wz 1n[1+’n(P)}} lel;, (7)

Section V.

which is the logarithm of the normalized Shannon rate (in

nats/s/Hz), while treating interference as noise. Thisalog

We consider a set of £ {1,...,I} low-power BSs rithmic form of the utility allows to improve the situation

deployed in a geographical area, communicating with theif those users that are experiencing low data-rates (due to

MSs (users) using common bandwidth B. The set of MSs high co-channel interference). The aim is to find the power

Il. SYSTEM MODEL AND PROBLEM FORMULATION

the system isC £ {1,..., L}, where BSi serves the set of allocation of all BSs, such that the network utility is maidet
MSs £, C £, with L; = |£;|, and {L£, : i € T} denotes a under the total network power constraiR,... The network
partition of L. level optimization problem is given by
The sum of transmit powers of all BSs is constrained by the o
total network powerP.x, i.€., >, c 7 Pi < Pmax, Where the maximize  >_; c 7 Us (p, Wi)
transmit powers of BSs are denoted by the set {p;}Z_,, p.W ®)
with the (per BS) constrainPin < p; < Ppax. Thus, for subjectto >, . 7pi < Puax,
BS i, the local constraint set is pi € Pi, w; €W, Viel.
P £ {pi €ERy : Puin £ pi < Prax }, (1) This is a non-convex problem, for geneiit, as the SINRs

of receivers are coupled. However, it is convex for the PF-

Rate utility that is considered here [11]. In what followse w

discuss decomposition methods that lead to pricing alyost

fO{ finding a solution of (8) in a distributed way. Note that
I . i

9n frequency selective channels, this model would natyrall

generalize to the multichannel version of the power aliocat
Sep w =1 } problem, which is non-convex [12].

. € L; Y

Cw>0,1 € L; 2)

Intra-cell scheduling decisions of BSare reflected by the
scheduling weightsv; = {wl}leﬁi, wherew; is the fraction
of orthogonal resources that BSallocates for MSI € L.
We assume that each BS distributes all its resources an®n
MSs, so that the local constraint set is

W; = {Wl S Rii
IIl. DISTRIBUTED NETWORK POWER CONTROL

The aim is to maximize the sum-utility o ) )
To formulate a distributed solution to (8), primal and dual

Usum (P, W) = ZUi (p,w;) (3) decomposition methods can be used, in conjunction with
i€l pricing algorithms for distributed optimization ovprand' W.

of the downlink multi-cell system, wher®v = {w;}!_, is a

- . ) .~ A. Primal Decomposition
set comprising of scheduling weights of all MSs. Héfgis I posit

the sum-utility of the MSs served by BS The primal decomposition [13] is an appropriate decom-
position procedure in this case, as it can be seen that fix-

Ui (p,wi)=Y_ w (p, W), (4) ing power vector decouples the problem intdndependent
le L, scheduling weight optimization sub-problems, one per BS.

where v, is the utility function of a MSI served by BSi. Thus, the optimization problem (8) can be separated into a
The Signal-to-Interference plus Noise power Ratio (SINR)t tWo level optimization procedure. At a lower level, with

MS [ (served by BS) experiences in reception is given by fixed, we have the decoupled scheduling weight optimization
sub-problems/i € 7,

_ DPihig _
Y(p) = I+ No Le L () maximize U; (w;)
whereh;; is the channel power gain between B&nd MS/, Wi 9)

which is assumed to be frequency flag is the additive white subjectto w; € W,



which is a convex problem and can be solved at each BS. Faratively. Compared to distributed power control, theeity
updating the coupling variablp, we have a master problemin solving (8) comes from the global constraint. It can bensee
Vi € Z, that for the PF-rate utility function, the secondary proide
maximize U; (p) (i.e. qptimiz_ation ovewv;) can be sim_plified, sipce _closed form
p (10) solution exists. For the PF-rate utility function in freqoyg
flat static channels, the optimal scheduling weight alliocat
subjectto >, 7pi < Pmax, i € Pi. is Round Robin allocation, where all MSs get an equal share of

Optimization overp couples the cells in utility function as resources. Therefore, the scheduling weigi{sare constant

well as in constraints. When not considering the networkewidvhile the optimization over transmit powegsis done in an
power constraint, the problem is a conventional distridutdterative manner. To do this, we devise a distributed versio

power control problem [14]. We use a pricing algorithm t®f the coordinate descent method on the constraint surface,

solve the optimization ovep in a distributed way. As the following the approach given in [15], where thenorm is

utility function U; is continuous, this problem can be solvedised when selecting the descent direction.

by an iterative descent method as discussed next. An updating BSi € 7 receives the power priceiSr;; } i,

. o and the{D,},; from all interfering BSs. With the prices

B. Components of Gradient and Pricing available{, itjc:}ejlréulates its power benefits and constringdx,

Consider the network utility in the master problem whickyhich gives a complete information of how its transmit power

can be written as can influence the network utility. WithD,},.; available for

Usurm (P|W) = U; (p|w;) + Zj;&in (plw;). (11) all interferi.n_g BSs, it selects a B$" that can increase the
network utility the most,
Differentiating with respect t@; we have

p, — Vam(PIW) _ OU: (p|wi) S 9U; (PIW)) (15 J = arg max D; (16)

Op; Op; —~  Op;

JFu

Let us define the following terms gower benefiandpower If the utility increaseD;- is larger than the own-cell in-
price, respectively: creaseD;, it sends a message to that BS to increase its

r Z OUlw) gy o power by a step-sizé times the difference in gradients.

" Op: ’ To meet the total power constraint, the BSeduces its
U, (plws) ‘ o (13) power by the same amount. To avoid excessive changes in
T =g, Vi €L, j#u the initialization stage, we also set a maximum absolute-ste

With the PF-rate utility function, the power benefit becomes>iZ€ dmax- This is followed by a power price, anf); update
step, where BS updates itsD; and power pricgm;; }i»; that

T = Z 1 n(p) l, (14) corresponds to the new power profile and sends them to all
27, L+ )] [1+7(p)] p interfering BSs. With this power update procedure, the netw
power constraint is always respected in all iterations,cWwhi
makes it suitable for an online implementation. We consider
asynchronous and periodic updates, so that each BS has a set
of unique update times;[n], wheren is the iteration index.
T — Z 1 P)* i . (15) Each BS updates the power, prices, andonly once in an
7 S o 145 (P)] [1+v(p)] pihj. iteration. A summary of the proposed Distributed Network
o ) ~ Power Control (DNPC) algorithm based on Primal decomposi-
By the exchange of power prices, the BSs can cooperativgly, (DNPC-Primal) is given as Algorithm 1. Note that for the
maximize the network ut|I|ty_ over their respective powens ipg_Rate utility function, the gradients may be unboundesl. A
a distributed way. Base statiancalculates the benefiti; for \ye assume that the powers of BSs with active users are larger
its own use, andr;;, to exchange it with each neighbgr  than a minimum poweP,., < Puas, gradients are bounded,
To calculate the benefits and prices terms, theiBfeds t0 anq the algorithm can be proven to converge. Moreover, this

know: 1) current SINRg~ },c., of the MSs served by, and  |imitation does not change the convexity of the domain.
the corresponding own cell channel gaif¥s; ;};c.,; 2) the

cross channel gains between its served MSs and the integferi

BSs {h]},l}j;&i?leﬁi; and 3) its own transmit powep,. It is C. Dual Decomposition

assumed that the channel gains are calculated by periodic

transmission of orthogonal pilot signals by the BSs, wherea To apply the dual decomposition to problem (8), additional

the prices are exchanged over a backhaul links that connemtxiliary variables and corresponding equality constsaieed

the BSs. to be introduced. This is essential because of the specificana
To find the solution of (8) in a distributed manner, thef the problem, where the coupling exists in both objective

master problem and the secondary problems need to be solftgtttions and the system wide constraints [16]. To this end,

This reflects the increase in utility/; per unit increase in
power p;. Likewise, the power pricer;; indicates the effect
of the power of BSi on the utility of BSj, and is given by




Algorithm 1 DNPC-Primal Algorithm Algorithm 2 DNPC-Dual Algorithm
1: At ¢;[n], calculateD; using received interference prices 1: Initialize p; ; =0, V4,5, A=0

220t D; > Dj; Vj#i 2: At t[n], each BS € 7 updates its power according to (25)
1 is in local optimum and communicates the solution to all interfering BSg ¢
else 3: Each BS: updates its consistency pricég;; }:»; accord-

3: Select BS according tg* = argmax;»; D;. Reduce ing to the iterate in (23)
power byd" = min(d(D; — D;),dmax) and send power 4: ) is updated using (22)
increment message to BS 5. Repeat until convergence ar= Maxlters.

4: BS j* updates its power t@;-[n + 1] = Pj«[n| + ¢’
end

5: BS i updates interference prices to interfergrg ¢
6: BS i updates and announces itg
7: Repeat until convergence ar= Maxlters. pij(n+1) = pij(n) —a(p; —pij) Vi, j. (23)

A similar iterative procedure can be employed for solving)(1
as well, where BS would step in direction of gradient (pro-

we can formalize the problem as jected on local constraint set) to increase the objectiv py
maximize S iez Ui 0i {pig }is) andp;;. The gradient can be expressed as
{pz‘, {Pz} 7,}1 z
. JSiF# S . (17) Vs N VI)?SL = Ty + ZjeI,j;éi Hji (24)
SUbJeCt toziezpi < Pmaxa Dij = Py, VZ, J va Si = Ti5 — Hij vj € Iv] 7& i?

pi € Pi, pij € Py, Vi, j . . .
wherer;;, and;; are defined in (14) and (15), respectively.

Note thatp;; here is an auxiliary variable that can be inter-l-hus, the gradient projection update rule for BS 7 is given
preted as perception of BSon the power of BSj, which

b
is equal to the actual power of B$ at equilibrium. The y
equivalent form in terms of Lagrangian is given by pi(n+1)= [pi(n)+ BVy,silp, (25)
- iq 1) = [p;; 8 ]
maximize _; ¢ 7 Ui (pi, {pij }j#i) + A Pmax — )2 c 7 Pi) pij (n+1) [p” (n) + BV, 81]7%" Vs

{pi, {pij}jritiez +Ei,jeI,j¢iui.j(pj — pij) where [e] ,. denotes the projection on séf, and 5 is the
scaling factor for the gradient. Therefore, in a given itiera
each BS € 7 updates not only the consistency priges and

(18) A, but also its own powep;, and auxiliary powergp;;} ;.

where) can be referred to as the power price in this case, anfi€ algorithm is summarized as Distributed Network Power

11158 are the consistency prices for alj. Next, we decompose Control with Dual decomposition (DNPC-Dual) in Algo-

the Lagrangian intaZ sub-problems, one for each BS. Thdithm 2. Note that\ updates are based on global knowledge

sub-problem for BS can be expressed as of the transmit powers, and thus this algorithm is not fully
decentralized.

subject top; € Py, pij € Pj, V4, 7,

maximize s;
Di, {pij } i (19) IV. NUMERICAL RESULTS
subject top; € Py, pij € P, In this section, we analyze the performance of the proposed
wheres; can be viewed as surplusfunction that takes into algorithms and compare them with various cooperative and
account the pricing terms, and is given by non-cooperative approaches. The simulation scenarioes pr

N sented first, followed by the discussion of results.

si = Ui (pi, {pij i) — Api + (Zj €T.j#i Nji) Pi(20)
=2 e1.jzi MijPij

Then, the master dual problem can be stated as:

A. Simulation Scenario

We consider a small cell network scenario, comprising of
multiple low power BSs, serving a number of MSs deployed in
minimize g (X, {g;}ji) a multistory building. Figure 1 shows the simulation scemar
I\ i} 1) with an illustration of the BS locations inside the buildifidhe
propagation characteristics inside the buildings are reade
according to a WINNER A1 office model [9]. The average
which can be easily solved by the gradient method, using tpath loss is
following iterates for updating the dual variables:

subject tox > 0,

PL [dB] = A log,,(d) + B + C log;, (Q) + D Ly, (26)

+
AMn+1)= [An) —a | Pnax — Zpi , (22) Where d [m] is thg distance_between the transmitter and
ieT receiver, f. [GHz] is the carrier frequency of the system,



TABLE Il
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ CONVERGENCEOF DNPC ALGORITHMS
C @ Converged Instances (%) Iterations (mean)
c DNPC-Primal 99.70 70.20
3 DNPC-Dual 99.10 8.93 x10°
J DNPC-Primal(w/o Pri) 100 7.63
[ ] [ ]

«-—————10m
power prices, i.eDNPC-Primal (w/o Pri) In this case, for all
Fig. 1. Layout of the WINNER office building. The dots in the figu BSSZ’ th_eDi comprlsgs of the benefit terms Only' NOte that it
represent small-cell BSs. is a partially cooperative scheme, as eachiB&ports itsD; to
all BSsj # i. On the other hand, in fully cooperative DNPC-
TABLE | i ; RO i R
WINNER Il PATH LOSS MODEL Primal, each BS receives botH D; }_Héz, and prices(7;; }j+i
e _ e from all BSs. The maximum power increase (or decrease) step-
ulidin imensions [m . . . "
Room gimensions [m[] . 10 ><><10 sgeémax is set to1% of thg current BS transmit power. L_|ke—
Corridor width [m] 5 wise, the dual decomposition (DNPC-Dual) is also considlere
Room height [m] with o = 0.45 and 8 = 1. It is observed to be extremely

3
BS antenna height [m] 2 . . .
MS antenna height [m] 1 sensitive to the step-size related parameters involvedl f@an

Number of floors 3 most cases it requires a large number of iterations to cgever
é”te,””e; patterns GHal QZm”i directional It can be seen that a substantial gain of the orded.5fk

arrier rrequency Z . . . .- .
Line-of-sight in same room/corridor in terms .of median network utility can be ach|eV(_ad over
Path loss coefficients A =18.7, B =146.8, C =20 the baseline Equal Power case by both DNPC-Primal and
Inner wall loss [dB] 5 (per wall) DNPC-Dual algorithms. Some loss is observed for the DNPC-

Primal (w/o Pri), which makes sense as the decisions on power
changes are made by considering the partial informatien (i.

L., [dB] identifies the (discrete) loss that is produced by wal@MY 7 terms). In Fig. 2, the corresponding user data-rates
are shown with zoom on lower end of the CDF of user data-

(and windows), and) is the number of walls between trans- . - i . .
mitter and receiver (see Table | for more details). Detafls &At€S: which highlights the benefit of PF-Rate utility, asah

other system parameters are given in Table Il. Each MS selel§ Seen that data-rates of MSs experiencing low SINRs are

a single BS as a serving BS on the basis of received powerfigreased significantly. o _
the downlink. It is assumed that a backhaul connection exist 10 Study the convergence characteristics for DNPC-Primal,

between the BSs, over which the exchange of prices ta DNPC-Dual, we use a formal convergence criterion that
place. the difference between achieved network utility and the-opt

mal utility is less tharb%. It should be noted that the slight
B. Performance Analysis discrepancy observed in Fig. 3 between the rates achieved

The performance of the proposed DNPC algorithms th?&' DNPC-Primal and DNPC-Dual is due to this stopping

solve the optimization problem given by (8) is compareaﬂter'on’t as It 'j‘ notthvery strict. Neverfth[()all\(les(s:,g h?f rbee
for different cases, that entail varying degrees of codpmra chosen to speed-up the convergence ot b -bual to some
xtent. From Fig. 3, we observe 100% improvement over

among cells. For comparison, the (Cumulative Distributio@ ) )
9 P ( aseline case at 10%-tile of CDF of user data-rates. Morgove

Functions) CDFs of network utility are illustrated in Fig, 2 < ob din al t all network inst
for 1000 random network instances generated accordingeto nvergence IS observed in aimost afl network Ins ancesqmo
1an 99% with suitable update step-size parameters) fdr bot

simulation parameters. To analyze the gain from pricing e , L . . .
. : ; .y algorithms, albeit with a very high number of iterations for
change, the baseline non-cooperative case consideEgli ' ; : . .
g b NPC-Dual. Therefore, the maximum number of iterations is

Power, where the total network power is distributed equall -
P d et to Maxlters= 40 x 103. The convergence statistics are

among the BSs. ized in Table llI
The DNPC-Primal algorithm is also considered witho M manzed in fabie il

V. CONCLUSIONS

TABLE Il

SIMULATION PARAMETERS In this paper, we proposed distributed pricing algorithms
Number of BSs 12 based on decomposition methods, for network utility max-
Number of MSs 12 imization in CR networks under network-wide power con-
Maximum Transmit PowerR,a.x) [dBm] 20 . Pri ld L . d desi li |
Minimum Transmit Power Poay) [dBm] 10 straint. Primal decomposition is used to design an onlige-a
Noise figure [dB] 9 rithm for PF-Rate maximization, while meeting the network-
Thermal noise [dBm/Hz] —174 wide power constraint. Numerical simulations carried aut i
Shadow fading correlation 0.5

a practical small cell CR network scenario show that the

Shadow fading standard deviation [dB] 3 :
proposed approach performs better than the non-cooperativ
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