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Abstract—Harm claim threshold policies will offer more flexi-
bility in radio regulations. By defining bounds on the acceptable
field strength over time and space, these policies will introduce
quantitative measures to inter-system coexistence questions. How-
ever, this requires tangible and sufficient means of proving claims
of interference through spectrum measurements. In this paper
we study drive test requirements in terms of necessary sample
set sizes and decorrelated sampling. We present order statistics
and extreme value theory as powerful mathematical tools for
describing necessary confidence intervals, and test their practical
viability with data from an extensive measurement campaign.
Furthermore, we discuss by means of example necessary exten-
sions to planning tools for wireless networks operating under
an interference threshold policy. Our results emphasize that
future regulations will need to be accompanied by a rigorous
specification of evidence collection requirements in order to
compensate for bias and correlation structure in the spectrum
data.

I. INTRODUCTION

Existing radio regulation often relies on qualitative and
subjective statements when it comes to specifying coexistence
rules such as interference tolerance levels between wireless
systems. For example, the ITU defines harmful interference
as “interference which endangers the functioning of a ra-
dionavigation service or of other safety services or seriously
degrades, obstructs, or repeatedly interrupts a radiocommu-
nication service” [1]. Such statements are problematic since
they are difficult to reason about objectively, and lack clarity
when it comes to the rights and responsibilities of wireless
operators regarding harmful interference. Because of this there
has recently been significant interest in reforming inter-system
interference policies in terms of interference limit policies.
Such policies aim to describe the radio environment a receiver
must be able to cope with and the limits to emissions of a
transmitter using objective and measurable criteria instead.

A key example of an interference limit policy is the harm
claim threshold approach [2] described in the 2012 PCAST
report on spectrum, and developed by an FCC TAC Working
Group in 2012. A harm claim threshold essentially consists
of a field strength profile defined over a frequency range,
associated with a percentage of locations and times where
the field strength must be exceeded at some confidence
level to qualify as harmful interference. The threshold, which
defines the interference a wireless operator needs to accept
from others, would be low within his own band, higher for

adjacent bands, and highest for bands far away in frequency.
Under a harm claim threshold policy, disputes on coexistence
issues would become a matter of conducting spectrum use
measurements to determine whether the parties involved cause
interference exceeding the given threshold.

While interference limit policies in general and the harm
claim threshold approach specifically are conceptually attrac-
tive and would seem to offer numerous benefits when com-
pared to current regulatory approaches, several open questions
remain on how they should be applied in practice. The key
design space for harm claim threshold consists of (1) the
field strength (or received interference power) threshold at a
given frequency range, (2) the percentage of locations and
times this threshold must be exceeded, and (3) the confidence
level at which the exceedance must be shown. Whereas those
parameters are ultimately a matter of policy, the design of
measurement campaigns to reliably and sufficiently substanti-
ate claims under harm claim threshold policies will necessarily
need to build on knowledge of the statistical principles and
practical constraints of extensive spectrum data collection. In
this paper we first discuss by means of data analysis and
simulations minimum requirements for the design of such
campaigns. After introducing mathematical tools from order
statistics and extreme value theory, we use data from a large
measurement campaign in the UK to assess their feasibility
and prediction capabilities in the process of deriving the
actual interference statistics. We found that high thresholds
require a substantial sampling density, and that bias from low
randomization of measurement locations significantly affects
the measurement results.

In the second part of the paper, we take the role of an
operator deploying a network subject to a harm claim threshold
policy. We discuss simulation requirements of relevant real-
world propagation effects (in particular correlated shadowing)
and quantify their effects on the convergence rate of the
presented estimators. We show that, due to sampling corre-
lations, significantly lower confidence is reached for the same
sampling set sizes, i.e., deployment studies will become more
complex. These results are highly relevant for the policy com-
munity, because they highlight the necessity for a discussion
on establishing best practice rules for measurement campaigns
for interference limit claims, and for operators wishing to
incorporate these policies into their network planning tools.
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II. A PRIMER ON ORDER STATISTICS

In order to reason statistically about the exceedance of a sig-
nal level threshold, we adopt the following simple probabilistic
model. Let X be a random variable, yielding the received
power or field strength at a randomly picked location, mea-
sured over a given range of frequencies. Denote then by FX(x)
the cumulative distribution function (CDF) of X . If FX were
somehow known, computing different statistics of interference
power for harm claim thresholds becomes trivial. For example,
1 − FX(−40 dBm) would yield the fraction of locations at
which the interference exceeds −40 dBm, whereas F−1

X (0.95)
would give the interference threshold that is exceeded only
at 5% of locations. Unfortunately in any realistic scenario
the “true” CDF FX(x) is unknown, and different properties
related to it must be estimated through measurements (in
case of, say, policy enforcement) or simulations (in case of
planning a network roll-out under given harm claim threshold
constraints). We shall focus in this and the following section
on the former problem, and discuss simulation-based inference
further below in Section IV.

We assume that we have conducted n measurements of
the interference power X , denoted by X1, . . . , Xn with the
purpose of establishing a claim on exceedance of a given
claim threshold. The order statistics of these measurements
would simply be the indexed measurement values sorted in
ascending order, and denoted by X(1) ≤ X(2) ≤ · · · ≤ X(n).
Thus X(1) = min{X1, . . . , Xn}, X(n) = max{X1, . . . , Xn},
with the rest of the order statistics carrying information about
the percentiles F−1

X (p) of X . Note that due to the limited
sample size, X(n) is not in general the true maximum of X ,
but some necessarily smaller value we may use to estimate
the true maximum. Similarly, for large enough sample we
use X(p×(n+1)) as the estimate for the pth percentile of
interference power. The probability distribution associated to
the inherent error of this estimate is called the sampling
distribution of the corresponding percentile.

Given the limited sampling size, we need to state the
uncertainty of X(p×(n+1)) for any claim. The measure of
the estimation error X(p×(n+1)) is, when used as a proxy
for F−1

X (p), given by the associated confidence interval.
Following the result of Conover [3], [4], for unknown FX the
confidence interval for the pth percentile can be constructed
from n measurements as follows. First, let Zp denote the pth
percentile of the standard normal distribution N(0, 1). Then
the upper limit of the 100(1−α)% confidence interval is given
by X(u), where

u = p(n+ 1) + Z1−α/2
√
np(1− p), (1)

and the lower limit by X(l), where

l = p(n+ 1)− Z1−α/2
√
np(1− p). (2)

If u or l turns out to be non-integer, the corresponding endpoint
of the confidence interval can be determined by interpolating
between the nearest adjacent order statistics. In addition to

Fig. 1. Example drive test data set used for studying the order statistics and
extreme values of received power profiles.

these two-sided confidence intervals we will need the one-
sided confidence intervals, giving only the upper or lower
bound for the error. These are obtained simply by replacing
Z1−α/2 by Z1−α in the corresponding formula above. These
upper and lower bounds yield a necessary extension to the
regulation policy, as they define the certainty level of the
measurement results, and thus the likelihood that the harm
claim threshold indeed has or has not been exceeded for
measurement results near the threshold. Most importantly, for
these bounds to hold, measurements must be gathered in a
manner that is unbiased in time and space, which must be
taken into account when specifying the allowable measurement
plans in the regulation.

III. ESTIMATING ORDER STATISTICS FROM DRIVE TESTS

We shall now apply the methods outlined in the previous
section to extensive drive test data set, and study in detail the
properties of both true extreme values of power levels in the
data set, as well as those of the different estimators for them
based on smaller subsets of the entire measurement data set.
These results can be directly used to shed light on adjacent
channel interference statistics for real-world wireless systems.

A. Measurement Data Set

As a basis for our study we use drive test data gathered
by CRFS on behalf of the UK regulator Ofcom as a part
of the “not-spot” study for coverage of mobile broadband.
The measurements were conducted using CRFS RFeye nodes,
which were set up on rooftop boxes of measurement vehicles
together with omnidirectional antennas. We refer the reader
to [5] for more details on the measurement campaign.

Since the majority of the geographic region covered by
the measurements is sparsely populated and thus with low
deployment density of wireless services, we limit the study
in this paper on a small region corresponding to the urban
downtown area of the city of Exeter. Further, we focus on
the UMTS downlink band, as this removes the impact of time
domain dynamics which are present in TDMA, OFDMA and
random access based systems. The resulting data set shown in
Figure 1 consists of over 35 000 samples, covering a square
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Fig. 2. The sampling distributions (histograms) for 95th and 99th percentiles and the maximum with 100 randomly selected measurement locations as well
as the underlying true values (red line).
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(a) 95th percentile.
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Fig. 3. The sampling distributions and true values for 95th and 99th percentiles and the maximum with 1000 randomly selected measurement locations.
Notice that the variability of the estimates has reduced significantly compared to the 100 measurement case shown in Figure 2.

of 2 km× 2 km. Reported powers are the sum over a selected
carrier of a local 3G operator. Such a data set would e.g. be
used for an interference claim for a service operating in an
adjacent band relative to the UMTS downlink frequencies.

B. Sampling Distributions and Confidence Intervals

We begin by studying the sampling distributions for the
different percentiles of the received power levels for differ-
ent number of measurement points. Figure 2 shows these
distributions for n = 100 measurements together with the
“true” values of these percentiles computed over the entire
data set. These plots were obtained by repeatedly selecting
random measurements from the entire data set, computing the
given percentage, and finally plotting the histogram of all the
percentage estimates obtained. We see that in all the cases the
sampling errors are substantial as can be expected for such a
small measurement count. However, we note that the sampling
errors increase rapidly as the percentile is increased, and in the
case of maximum (p = 1) the errors are significantly biased,
resulting in major underestimation of the maximum observable
interference level. From Figure 3 we see that increasing the
measurement count to n = 1000 significantly reduces the
errors for the 95th percentile and to some extent also for the

99th percentile. However, the estimates for the maximum are
still highly biased and variable.

Several important conclusions can be drawn from these
results. First is that regulating for the worst case interference
is untenable. The high estimation errors for the maximum
interference power would force carefully acting operators to
vastly restrict transmit powers, and make definite conclusions
in harm claim threshold disputes difficult to achieve due to
the high level of uncertainty. Second is that also for the
lower percentages, the number of measurements conducted
has major impact on the estimation accuracy. Further, the
choice of percentile in a harm claim threshold entitlement
has a significant impact on the number of measurements that
the holder has to make to demonstrate a harm claim at a
given confidence level. While such statements are qualitatively
trivial, we will now see that they can be quantified successfully
by using the appropriate confidence intervals for the estimates
as outlined in the previous section.

Figure 4 shows the convergence of the estimated received
power percentiles together with the one-sided and two-sided
confidence intervals. We see that while a relatively small
number of measurements suffices to obtain stable estimates
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(a) 95th percentile with 95% CI.
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(b) 99th percentile with 95% CI.

Fig. 4. The convergence of estimated order statistics and their confidence intervals for the UMTS data set.
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(a) Sampling along a drive path.
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(b) Randomized sampling.

Fig. 5. The convergence of order statistics with and without randomisation. In the latter case the convergence to true values is substantially slowed down
by spatial correlations in the data.

with bounded confidence intervals for the 95th percentile, for
the 99th percentile a much larger number of measurements
is needed to obtain finite confidence intervals to begin with,
and in any case convergence is very slow. Note that these
results are not contradicting those shown in Figures 2 and 3,
as the true underlying sampling distributions require the entire
data set for their estimation. We conclude that, for a given
number of measurements, regulators will need to be very
conservative and cautious on their expressiveness in terms of
high percentiles of interference levels.

C. Impact of Spatial Correlations

We conclude this section by highlighting the impact of the
used measurement plan on the results. Measured field strength
or received interference power values are highly correlated
spatially, resulting in measurements at nearby locations mainly
yielding redundant information on the region-wide statistics.
This makes is important to “spread out” the measurements
used to draw conclusions on harm claim threshold violations.

The confidence intervals used above were also derived assum-
ing uncorrelated data, which can only be achieved through
keeping the measurement points sufficiently far apart from
each other.

The impact of spatial correlations on the convergence of
the different statistics considered until now is illustrated in
Figure 5 for two extreme cases of measurement plans. First
we look at a non-randomized plan where 2000 measurements
are taken consecutively along a path covered by the drive tests.
Second is a completely randomized plan, in which the same
number of measurements are selected completely at random
among all the locations available in the data set. We see that
in the first case the convergence of all the estimates is very
slow, whereas in the second case all the percentiles except the
maximum converge quickly. This highlights the necessity of
randomization of the measurement locations: A mischievous
operator may select drive paths as to cover particularly high-
level emission regions (e.g. close to known base stations),
thereby ignoring the smoothing effects of lower power levels



at the coverage edges of a region. Similarly, measurement
campaigns only in low coverage areas will yield fundamentally
lower interference levels. Policy makers will thus need to
decide how to balance between results from heterogeneous
coverage regions.

IV. IMPACT OF MODEL ERRORS ON
NETWORK DESIGN WITH INTERFERENCE LIMITS

The discussion in the previous section focused on the
measurement-driven determination of interference limits for
already deployed systems. However, such approaches are not
feasible for the network deployment stage, where an operator
must decide on the feasibility of deploying a system under an
agreed upon harm claim threshold regime. In this section we
show through a simulation example that many of the features
seen in measurements, such as the high variability of maxi-
mum interference power and highest percentiles, are present
in the network planning problem as well. Lower percentiles
on the other hand result in more predictable behavior under
uncertainties in the propagation environment.

Our simulated network is composed of 13 UMTS base
stations in the previously discussed 2 km×2 km square region
in downtown Exeter. We have acquired transmitter locations
νTX,i and transmit powers PTX,i from a public database of UK
regulator Ofcom [6]. Base stations in the scenario transmit at
power levels between 40.6–60.3 dBm in the 2.1 GHz downlink
UMTS band. Whereas in reality the base stations are owned
by different operators and consequentially operate on different
carrier frequencies, noting that the transmitter information
reflects the initial rollout situation of UMTS in the UK,
we have decided to combine all operator base stations to
approximate a presumed intermediate network densification.

Received signal strength values PRX,j for the different
measurement locations γRX,j in the region are calculated for
a fixed receiver antenna height of hm = 1.5 m as

PRX,j = 10 log10

(∑
i
10(PTX,i−Li,j+χi,j)/10

)
, (3)

where Li,j is the mean pathloss at distance di,j = |νTX,i −
γRX,j | from the transmitter. For calculating Li,j we employ
the Okumara-Hata model [7] for urban areas.

For a single transmitter setup, the order statistics may
be easily derived analytically, assuming that the overall se-
lection of measurement locations is uniform. For multiple
transmitters, this approach is infeasible, because the com-
bined geometry of link distances will need to be taken into
account. Furthermore, local structures such as a buildings,
trees, etc. obstruct the individual propagation path and result
in deviations from the mean pathloss, modelled through a
correction term χi,j in (3). It is precisely this term through
which uncertainties in network planning under an interference
limit policy are captured. Large-scale measurement campaigns,
e.g. [8], have shown that this shadowing term is locally
correlated, i.e. nearby measurement locations are likely to be
similarly affected by obstacles. The authors in [9] provide an
extensive survey of models of these shadowing correlations,
and we recommend their paper for further discussion on the

topic. For space reasons we limit ourselves in this paper to only
the most popular model for shadowing, namely Gudmundson’s
exponential distance model [10]1, which defines the correla-
tion coefficient between any two locations γRX,j and γRX,k as
ρj,k = exp

(
−dj,k/(ln(20)× dc)

)
. The parameter dc is called

the decorrelation distance and describes the distance at which
the correlation approaches 0.5.

A. Simulation Results

We have developed a custom MATLAB toolchain to create
realizations from the correlated shadowing model and to
compute the aggregate power levels over the Exeter area. Each
simulation was repeated 5 000 times. Our results for different
percentile values are shown in Figure 6, where we compare
the uncorrelated shadowing and the correlated shadowing case
with a decorrelation distance of 50 m.

Figure 6a presents the results over the iterations of the
simulation for the uncorrelated case. We see that the per-
centiles exhibit low variations, e.g. the minimum and max-
imum deviate by only 0.5 dB, which means that already
very few iterations suffice in order to find tangible signal
strength thresholds. Only between 39–44 iterations (less than
1 percent) produced statistical outliers, i.e. values that were
either larger than ζu = Q3 + 1.5 × (Q3 − Q1) or smaller
than ζl = Q1 − 1.5 × (Q3 − Q1), where Q1 and Q3 are
the first and third quartile of the samples, respectively. These
results come as little surprise, because for multiple transmitters
the variability over repetitions of the simulations in each
measurement location solely originate from a sum of i.i.d.
lognormal variables. While there is no closed-form analytical
solution to describe this distribution, several approximations
thereof exist [11]. The maximum encountered value shows
a larger spread over the different runs, which complies with
our earlier discussion on its statistics. Furthermore, its long
right tail becomes apparent from the larger number of outliers
(approximately 2.5 percent).

Our simulations with correlated shadowing produce signif-
icantly different results, see Figure 6b. Whereas the median
values for the various percentiles approximate the uncorrelated
case, the spread of the outcomes is significantly larger. These
results originate from the decreased “randomness” of the shad-
owing process, where, due to the interdependencies of the local
shadowing terms, deviations from mean signal strength values
do not equally even out. We note that for high percentiles,
a significant bias of positive outliers becomes apparent, and
approximately 2% of all runs produced such irregular results.

Finally, we show the probability density functions (PDFs) of
realizations of the 90th percentile and the maximum value for
the uncorrelated and correlated case, respectively, in Figure 6c.
As discussed earlier, the uncorrelated case results in a strong
mode at the mean estimated percentile value, whereas the pdf
of the correlated case is significantly flatter and exhibits a
heavy right tail. We emphasize again that the uncertainties

1The authors in [9] suggest an earlier origin of this model, see their
discussion.
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(b) Correlated shadowing, dc = 50 m.
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Fig. 6. Simulation results for the correlated shadowing environment.

involved in these estimates need to be absorbed by the
network operator in their power budget. Thus, high degrees
of estimation error, will require high safety margins.

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied the use of rigorous statistical
methods for measurement and estimation problems related to
operating wireless systems under interference limit policies,
and in particular harm claim threshold policies. We have seen
that the percentiles involved in the definition of the harm claim
threshold play a crucial role in both reliability with which
harm claims can be verified or refuted through measurements,
as well as in the uncertainties in network planning an operator
must take into account when operating or deploying a wireless
system. For enforcement, a policy must specify not only
the harm claim threshold itself, but the confidence at which
exceedances must be measured to occur. Further, since the
confidence intervals are always derived under simplifying
assumptions, additional safety margins are needed to account
for deviations from these assumptions.

Random sampling would in theory be a powerful tool for
conducting measurements on harm claim threshold violations.
This is needed to overcome the impact of spatial correla-
tions in interference as seen in Section 3. Since conducting
measurements at randomly chosen locations is logistically
difficult, alternative requirements need to be implemented. One
option would be to use stratified sampling to obtain a simple
and practical measurement plan design that has most of the
benefits of the random design. In this approach the drive test is
overprovisioned to obtain larger number of measurements than
would be needed in the completely random case, after which
the measurement data is culled to retain only measurements
that are separated by a certain minimum distance. We plan to
advance our research to study the feasibility of this approach.

Finally, we note that the shadowing effects in wireless prop-
agation are still ill-understood. Designing a wireless network
under the harm claim threshold approach requires extensive
simulations because of the uncertainties in radio propagation
and in particular the correlation statistics of shadow fading.
Again, if the percentile in the policy is chosen to be too
high, the uncertainty associated with the simulation results

will force the network operator to vastly reduce the transmit
powers of their network, potentially severely hampering the
deployment of new services. However, this paper is not to
be misunderstood as arguing against the use of interference
limit policies. On the contrary, the authors believe that with
careful design, a more efficient spectrum allocation and a more
flexible policy environment will be created. A further study
into the required policy tools under real-world constraints, e.g.
the measurement campaigns setups, will be highly beneficial
for the community.
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