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Abstract—In this paper we report the preliminary results from
the large-scale spectrum measurement campaign based study to
find out correlations between spectrum use and socio-economical
data. We use two large spectrum usage datasets that have been
collected from metropolitan London and Paris, and correlate the
spectrum usage of GSM, UMTS, and 2.4 GHz ISM band against
the local population density and location type in those cities.
We show that although the spectrum usage, measured in duty
cycle and average received power in bands, in general shows the
correlation with the population density, one has to also consider
the type of the city area as an extra parameter. One of the key
surprising findings is that that there are also areas, where the
spectrum usage is uncorrelated, or even negatively correlated,
with the increasing population density. This shows that spectrum
usage models need to be more detailed than just population
density conditioned. Moreover, the measurement campaign and
found correlations show that one can derive useful information on
the network structure and conduct useful test driving campaigns
with a surprisingly small amount of data points.

I. INTRODUCTION

The trend towards enabling a cooperative or secondary use
of spectrum has raised the necessity to acquire stronger under-
standing of the current spectrum usage. Exploiting the spec-
trum usage patterns in the most widely used frequency bands
can provide useful knowledge for the design and deployment
strategies of secondary networks, developing attractive and
sustainable cooperation schemes, and for spectrum modeling.

The characterization of spectrum occupancy is a complex
and difficult task due mainly to its highly dynamic nature.
Therefore, the existence of a potential interaction between
spectrum usage and population will be particularly interesting
and useful, especially because of the fact that population
densities are generally well known and reasonably static with
respect to time. Also capability to predict better the needed
capacity and deployment strategy would be important not
only for industry, but could enable also academia to build
better synthetic models for research purposes. Although the
hypothesis that the population density should correspond with
the spectrum usage level is quite common, there is only very
limited amount of publicly available research that is based on
experimental data.

In the present paper we analyze the correlations between the
data gathered by two large spectrum measurement campaigns
and the underlying population densities. More specifically, this

work reports the initial analysis of the partial spatial data,
acquired from our measurement campaigns, from metropolitan
London and Paris. In both cities we have selected measurement
locations so that they cover different population densities
and land-use types (urban business core area, residential, and
suburban). Our analysis goal is twofold: first, to study the
correlations between received power measurements and popu-
lation densities in diverse environments as a preliminary step
in understanding the structure of wireless services, spectrum
utilization, and socio-economical data. Second, we want to
understand if socioeconomical data, or population density
alone, could be used as an indicator for required number of
spectrum measurement points and type of network deploy-
ments that are needed to satisfy demand. The spectrum usage
has been studied during the last decade by different academic
and research groups. Most of the campaigns have been geo-
graphically limited with severely constrained spatiotemporal
resolution. One of the seminal multisite measurement was
done my McHenry et al. [1]. Other notable measurement
campaigns include, e.g. [2]–[11]. In the cellular bands an
early primary user study was conducted by Willkom et al.
[6], and the alter work by Paul et al. [12] is also an important
contribution. One of the rare similar recent works, but based on
anonymized cellular call data is by Becker et al. [13]. One of
the key contributions of our measurement campaign is that we
are looking the typical situation at the city areas having highly
calibrated measurement platforms measuring data roughly at
the human head height, and having high spatial-resolution with
large number of radio samples in each location. Thus the
underlying radio data is high quality, and this is then combined
with the socioeconomical data; in the case of this paper we
limit ourselves to consider only population density and rough
land area use.

This study builds upon our earlier work on understanding
the spatial dynamics of radio propagation in different envi-
ronments, consisting of studies where we considered different
neighborhoods in the same city [10] and cities across different
countries [11], [14]. For this type of work, the consistency of
the measurement equipment is critical, thus special attention
was paid during all the measurements in order to allow com-
parison of the captured measurements later on. Furthermore, in
[15] we have considered the correlations between population
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(a) Residential Area, London (b) Business Area, Paris

Fig. 1. Two of the measurement locations in London and Paris.

densities and the cellular network usage in Germany at a
countrywide level. Although a completely different data set
is used here, it is of a great interest to observe that some
conclusions drawn in [15] are reinforced here.

The remainder of the paper is organized as follows. In
Section II we describe in detail the measurement campaign
as far as the equipment, setup and measurement sites are con-
cerned. Section III presents the mathematical tools and metrics
involved in the present work. In Section IV we illustrate and
discuss the results. Finally, the paper is concluded in Section
V.

II. MEASUREMENT CONFIGURATION
SETTINGS AND LOCATIONS

In this work we focus on studying the dynamics of spectrum
usage in different neighborhoods by deploying two portable
spectrum analyzers, built in a big blue casing, as these are
depicted in Figure 1.

The spectrum analyzers were located at street level with the
receiver antenna height at 1.75 m, approximately at the same
height at which a mobile device is held during usage. For a
more detailed description of the measurement campaign the
interested reader is referred to [10]. In this work, we present
results collected by two mobile measurement platforms that
captured a large number of samples during the day in the
GSM 900, GSM 1800, UMTS, and WLAN bands.

For each measurement point metadata was also recorded,
containing precise time and localization information, as well
as images of the neighborhood. The localization information
allows us later on to associate measurement files with the
corresponding population count and socioeconomical data of
the area under study.

The used measurement platforms are identical and carefully
calibrated in order to guarantee that the measurement results
from different locations can be compared. The measurement
configuration is a trade-off process; there is no single con-
figuration that suffices to capture all different aspects of the
radio environment at the highest precision. The selection of the
configuration parameters influences the characteristics of the
radio environment that shall be captured, for example, whether

frequency resolution shall be favored over time resolution.
Here we discuss briefly about the important parameters and
the selections we made:

• Frequency spans: We selected to cover the four particular
frequency bands, namely GSM 900, GSM 1800, UMTS,
and 2.4 GHz ISM-band that most notably includes
WLAN (Wi-Fi) traffic as these are the four most used
bands regarding today’s wireless services. This selection
allowed us to achieve a time resolution of a few seconds.
If we targeted for a larger frequency span, the achieved
time resolution would be significantly lower.

• Resolution Bandwith: 100 kHz, as this is very close to
typical channels in use nowadays. We find this to be a
fair compromise between accumulated noise and required
resolution for this comparative analysis.

• Detector: RMS (Root-Mean-Square) as it is the most
appropriate type for energy measurements.

• Cables losses were measured. We were consistently using
identical cables of fixed size and length, so that they
could be swapped during the measurement campaign –
if needed – without altering the sensitivity of the system.

• Sensitivity: The spectrum analyzers we used calculate
the frequency dependent gains automatically reporting di-
rectly the compensated RMS value. The overall achieved
sensitivity was calculated to be -95.0 dBm/100 kHz. In
post-processing we slightly increased the threshold to
-99.0 dBm/100 kHz in order to account for any additional
small discrepancies.

• Spectrum Analyzer: Rohde & Schwarz FSL6
• Antenna: AOR DA3200, supporting to the total range of

25 MHz-3000 MHz

A list and description of the measurement locations is
illustrated in Table I.

The population data has been obtained from the Global Popu-
lation Dataset LandScan (2006)TM [16]. The dataset comprises
a collection of GIS raster maps that is, in essence, population
data given on a latitude/longitude grid. The dataset has a
spatial resolution of 30 arc seconds, which corresponds to a



TABLE I
MEASUREMENT LOCATIONS, DESCRIPTIONS AND DETAILS.

Date Location City Description Measurement
locations

Measurement
duration [h]

Wed, Oct 13, 2010 Issy-les
Moulineaux

Paris At the heart of the Val de
Seine business district

68 5.5

Sat, July 02, 2011 Oxford
Street

London London’s main Shopping Area 35 6

Sat, July 02, 2011 Trafalgar
Square

London Touristic and Night-life Area 22 3

Mon, July 04, 2011 Residential
Area

London De Beauvoir, District of Lon-
don in

28 10

Wed, July 06, 2011 Suburban
Area

London Woodford, North East London
suburb

26 4

cell size of approximately 1 km×1 km near the equator and
finer elsewhere. The given values in the data set are population
counts per grid cell. For obtaining a one to one correspondence
between the measurement locations and the population counts,
we match each measurement location to the nearest cell center
of the population grid. Although a higher resolution population
density data could have been useful for us, our sensitivity
analysis indicates that the current resolution is enough for our
modeling purposes.

Due to the fact that our measurement locations have a
higher spatial density compared to the population data, some
of the measurement points correspond to the same entry of
the population database. This mapping means that we might
report sometimes lower correlations than the real underlying
population vs. spectrum usage, however the error is not a
serious and we, in fact, prefer to be conservative in our
correlation estimation. In this first approach of analysis we
did not conduct any filtering on our measurement data, but
leave that for our future work.

III. MATHEMATICAL TOOLS AND METRICS

A. Correlation Metrics

We evaluate the correlation between two random variables
X and Y by means of the Pearson’s correlation coefficient

rXY =
E
[(
X − E(X)

)(
Y − E(Y )

)]
σXσY

, (1)

where E is the expectation value operator, and σX , σY are
the standard deviations of X and Y , respectively.

The Spearman’s correlation coefficient is a measure of the
rank correlation of two random variables X and Y and is
equivalent to the Pearson’s correlation coefficient between the
ranked variables. Therefore, similarly to Pearson’s correlation,
the Spearman’s rank correlation ranges also from +1 to -1. If
the random variable values Xi and Yi are converted to ranks xi
and yi, then the Spearman’s correlation coefficient is defined
as

ρXY =

∑
i

(
xi − E[x]

)(
yi − E[y]

)√∑
i

(
xi − E[x]

)2(
yi − E[y]

)2 . (2)

Fig. 2. The different traffic metrics on captured sample data in Oxford Street.
The Duty Cycle is 0.89 %

The Spearman’s correlation is a measure of monotone asso-
ciation between two random variables, that is, if Y tends to
increase with X the Spearman’s correlation is positive and if Y
tends to decrease when X increases the Spearman’s correlation
is negative. A perfect Spearman’s correlation of +1 (or -1)
indicates an increasing (or decreasing) monotonic relationship
between X and Y .

B. Metric Selection

For the energy measurements we captured, we had to decide
which metrics are more appropriate for the purposes of the
present analysis, namely for correlating them with the popu-
lation information. We considered three potential quantities:
the mean value of the measured power at a location in decibel
scale, the median of the measured power in decibel scale, and
the duty cycle. The three metrics are depicted in Figure 2 for
an arbitrary measurement location.

In order to obtain the mean value in dBm we convert the
measured power values from dBm to Watts, we calculate the
mean value and then convert the resulting value back to dBm.



TABLE II
CELLULAR BANDS

Location Band rXY ρXY

Oxford Street GSM DL 900 −0.10 −0.16

Oxford Street GSM UL 900 −0.38 −0.48

Oxford Street GSM DL 1800 −0.19 −0.38

Trafalgar Square GSM UL 900 −0.44 −0.39

Issy-les Moulineaux GSM DL 1800 −0.16 −0.13

Issy-les Moulineaux UMTS DL −0.41 −0.38

Oxford Street UMTS DL −0.07 −0.32

Although the mean value is the most widely used metric when
results from more than one experiments or measurements need
to be combined to a single value, in our case its usage would
not be a sensible choice due to the outlier values (i.e., very
high received powers) that add a long tail to the probability
density function of the measured power. This effect is mainly
a result of the multipath component, which is dominant in
urban environments. As illustrated in Figure 2, as a result of
the long tail, the mean value in dB is not a suitable quantity
to represent the plotted density function.

The median, however, is known to work well on samples
with skewed tails and, unlike the mean, its robustness does not
suffer from the existense of outliers. We have also a benefit
of having a very large number of measurement points.

The same holds for the duty cycle, which can be defined as
follows

DC =
∑ On

On + Off
, On > −95 dBm/100 kHz, (3)

and basically renders any measurement as zero or one based
on a selected threshold (used threshold was -95dBm/100kHz).
Therefore, it treats all the outliers in the same way as all
measurements that fall above the threshold.

IV. RESULTS

A. Urban High Terminal Density Environments

We start our analysis by focusing on data that was collected
from metropolitan core areas, meaning with this those city
center areas that have a very high population density during
the business hours. We call these areas high terminal density
domains. It is important to note this distinction, the underlying
population density in the population databases is not as high
as the real transient (terminal) population density. This is due
to the fact as that areas of the city attract large number of
business and touristy usage that is not properly coded into
population data which is normally based on registered living
(home) address data.

In the Oxford Street (Table II), the GSM 900 downlink (DL)
shows weak negative correlations, while the uplink exhibits
even stronger negative correlations. The capture of the uplink
channel depends on the exact location of the measurement
equipment and as our setup was at the street level, the
activity of the people passing by the box was captured.
Similar correlations were also estimated at a different urban

location, namely the Trafalgar square, with the Pearson’s and
Spearman’s coefficients being -0.44 and -0.39 respectively.

In the GSM 1800 band, in Oxford Street, slightly larger
correlations were found. It is interesting to observe that the
Spearman’s coefficient is larger in both bands, GSM 900
and GSM 1800, as it is not practically affected by outliers,
which are typical in high terminal density environments,
where multipath components become dominant. We also report
results from the Issy-les Moulineaux district in Paris, where the
GSM 1800 downlink band shows similarly weak correlations
as well.

The UMTS bands show similar negative correlations be-
tween the population density data and the duty cycle. Specif-
ically, in Paris the Pearson’s and Spearman’s correlations are
-0.41 and -0.38 respectively. Also, in the Oxford street, the
Spearman’s coefficient was found negative, with a value of
-0.32.

We should note that as the measurement setup was immo-
bile, during the measurement period the multipath dynamics
were also captured [17]. The multipath components are time
and location specific since they are caused by physical objects
in the environment, such as cars moving on the street. We
will discuss more extensively the effects of the multipath
component in Section IV. For the moment, we would like to
mark that it is indeed interesting that even in this case some
correlation trends remain visible. Of course, additional work
needs to be conducted toward this direction in the future in
order to investigate more precisely the extent to which the
multipath components affect correlations.

As discussed in the beginning of the section, the real
peak hour terminal density is likely to be much higher than
underlying (living) population density. This will cause bias in
the calculated correlation, which is likely to induce negative
component to the correlation. However, there can be also other
reasons that contribute to the negative correlations. One of
them is that the core urban areas lack capacity. One should
note that in order to satisfy the high capacity requirements,
providers tend to decrease the dimensions of the cells. More
cells in an area means that each cell can potentially interfere
with more cells. Consequently, each cell needs to be more
power-confined, and lower transmission levels are allowed.
In our results this trend is visible to some extent since the
measured power seems to exhibit a negative correlation with
the population counts.

These results for urban areas are also in agreement with
the findings reported in [15], where the correlations between
population and cellular traffic in Germany were investigated.
It was also reported that within city areas the cellular traffic
load and the population densities were not correlated, although
correlations existed at a country-wide scale.

B. Residential Environments

In this subsection we look at residential/suburban areas,
and more specifically a residential district within London and
a suburban area at the city outskirts. For the suburban area
we found that there is a strong positive correlation between



population and activity of primary users. Results are shown
in Table III. For example, for the GSM 900 downlink we
estimated coefficients of 0.83 and 0.87 for the Pearson’s and
Spearman’s correlation, respectively. This a clear indicator of
a strong positive correlation between the population and the
duty cycle.

TABLE III
RESIDENTIAL AREAS

Location Band rXY ρXY

Residential GSM DL 900 0.23 0.16

Suburban GSM DL 900 0.83 0.87

Residential GSM DL 1800 0.26 0.20

Suburban GSM DL 1800 0.77 0.73

Residential UMTS DL 0.23 0.06

Suburban UMTS DL −0.21 −0.16

Similar results we observe for the GSM 1800 band (with
statistically high coefficients of 0.77 and 0.73). The UMTS
band though gave us small negative correlations. This can be
explained by the demands of UMTS technologies being small
in such areas at the time the measurements were conducted.
Moreover, the GSM 900 is being refarmed for UMTS activity
(see [10]), so the typical UMTS band does not have enough
activity for correlations to be found.

The strong positive correlations in the suburban environment
reveals information about the structure of the cellular network
deployments, with the most straightforward speculation being
that only a few base stations provide coverage over the whole
area. This is of course expected as due to the relatively low
capacity demands in such areas, the primary problem for the
service provider is the coverage, and not the capacity. This
means that – in comparison to urban areas – fewer cells
can cover the same region by just increasing the transmitted
powers in the cells.

In the residential area in London (Table III) for the GSM
900 downlink (DL) we found weak positive correlations of
0.23 and 0.16 for Pearson’s and Spearman’s coefficients,
respectively. Similar results we observed also for the GSM
1800 downlink. The UMTS downlink band appears to have
very weak positive correlations. Compared to the other two

environments we discussed already, that is, the high terminal
density core areas and suburban ones, the residential area
seems to be somewhere in the middle of those two different
propagation environments (very dynamic against an almost
static one).

C. On the Propagation Dynamics in Metropolitan Core

In this section we want to note that the lack or small
correlation coefficients does not necessarily mean that cor-
relations do not exist. One should be careful and understand
the limitations of the measurement campaign. For example,
the limitations imposed by the propagation environment might
be such a factor, especially in the ’crowdy’ environments.
In Figure 3 we show the captured energy levels and their
corresponding Cumulative Distribution Functions (CDF) for
two measurement points in the Oxford street. We have selected
two measurement points that are only 150 meters apart.

Even in such short distances, the captured data of the two
points, reveal the vast differences as the dominant land usage
changes. Specifically, there are differences on the order of
-50 dBm between the points. This can be partially explained
from the cell sizes that are small but still such fluctuations
within the same measurement point, on the order of -40 dBm
reveal how harsh fluctuations the multipath components can
cause.

These fluctuations are caused by local reflectors, including
cars, traffic, people, and large windows, that influence the
calculation of the correlations by increasing the noise in the
captured measurement set.

In our earlier work, see [18], we have shown that is possible
to remove the effects of the multipath components during the
measurement period but this is a very time consuming process.
This can be also partially done in the post processing but we
leave this for future work.

For the suburban area, we have also selected two measure-
ment point that are about 150 m apart. In Figure 3 we show the
difference compared to the two locations on the Oxford street.
The two measurement points are almost identical, where only
small changes are found. As the data set has fewer of outliers,
in the form of multipath makes the correlations calculations
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TABLE IV
THE ESTIMATED CORRELATION COEFFICIENTS FOR A SMALL NUMBER OF SAMPLES

Location Band rXY Estimated rXY ρXY Estimated ρXY

Issy-les Moulineaux UMTS DL −0.41 −0.42 −0.38 −0.32

Suburban GSM DL 900 0.83 0.80 0.87 0.83

Oxford GSM DL 1800 −0.19 −0.20 −0.38 −0.40

an easier task (this is also expected as the environment around
the receiver is almost static during measurement).

D. Lightweight Correlations Calculations

As it was already discussed, the existence of correlations,
has a potential to reveal information about the underlying
network deployments. Even though more research is needed
on this topic, it is quite probable that this type of information
can be beneficial to secondary users and generally to the
research community on developing realistic models. The cell
size is a factor that put limits on the interference, as smaller
transmission levels are needed because many more cells are
now susceptible to the emitted power of secondary users.

One should also note that capability to calculate correlations
in near real-time, is something that would also drastically
reduce time and complexity needed by test drives. In this paper
we have effectively demonstrated a simple and lightweight
method for calculating correlation estimates based on energy
measurements. This is fast as we do not need large numbers of
samples, which relaxes requirements on the energy consump-
tion of the RF component, the memory size and the processing
power thus casting also possibility to use handheld devices for
this type of measurements.

As we have discussed in Section III, the median is not
significantly affected by outliers. We combine that simple
metric with a very small number of samples. So in our small
example one can just use just the median of the captured values
and estimate quite accurately the correlations just after 10
measurements that are collected within 3 minutes time-period.

In Table IV, we present the estimated values on a very small
number of samples. Interesting is that with a few samples the
correlation coefficients acquired are very close to the ones we
presented above. That renders of course simpler approaches
more tractable for such type of applications.

V. CONCLUSIONS

We have shown that there is a strong correlation with the
population density and spectrum usage in suburban regions.
This finding also corresponds well with studies done by using
call statistics from cellular networks, see Becker et al. [13] and
references therein. However, we report that the actual correla-
tion levels can be different between different regions especially
if one considers urban core areas against residential/suburban
areas. As discussed, this scaling difference is likely to be
partially caused by a natural bias in the population density
databases, by data having different usage patterns than voice
call services, and by the increased data usage that tends to
drive networks to their capacity limits. We are able to confirm

the claim of Becker et al. that mobile data can be used to
predict where people live, and we are doing this by using just
spectrum monitoring data instead of using actual call data.

One of the indications is that the spectrum monitoring
data is correlated with socio-economical data, but one has
to be careful in the analysis. Single parameter universal laws
do not seem to be easy to generate, but actually one needs
to consider multi-parameter information in order to generate
predictive models. We are currently working on extending our
analysis. This includes analyzing more data points, applying
spatial-statistical methods in the data analysis, and filtering
multipath components out of our spectrum data. Moreover,
we plan to correlate our datasets against other sociological
datasets. We consider also to study correlations between
spectrum measurements and call information data in the future
campaigns. The finding of correlation structures should be
useful for research community on testing their models and
making generic deployment scenarios. We are currently also
studying the possibility to provide later open access to our raw
data sets.
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