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Abstract—Antenna selection has arisen as an attractive strat-
egy in multi-antenna systems due to its reduced complexity
and cost. In this paper, the outage performance of a dis-
tributed transmit antenna selection scheme for dual-hop fixed-
gain amplify-and-forward relaying systems is investigated. Our

analysis considers a multi-antenna source, a multi-antenna relay,
and a single-antenna destination, in which selection combining
and maximal-ratio combining are employed at the relay and
destination receptions, respectively. Lower and upper bounds for
the outage probability of the proposed scheme are derived as
the sum of two terms, one term given in closed form and the
other term given in single integral form. Moreover, asymptotic
expressions for these bounds at high signal-to-noise ratio are
obtained in closed form. The results show that our scheme
presents full diversity order. More importantly, the underlying
distributed strategy is shown to perform closely to the costly
optimal centralized antenna selection.

I. INTRODUCTION

Multi-antenna relaying systems are expected to be widely

utilized in future wireless communication networks, since the

advantages offered by multiple-input multiple-output (MIMO)

and relaying techniques can be fully exploited. However, a

potential drawback of the use of multiple antennas is their

complex hardware and increased cost [1]. To alleviate this,

transmit antenna selection (TAS) has arisen as an alternative

low-cost low-complexity strategy to capture the advantages

of MIMO systems. Nevertheless, in order to provide the

knowledge necessary for the transmitter to select the best

antenna, the implementation of TAS schemes usually requires

feedback channels for acquiring the channel state information

(CSI) of all links. The required bits of feedback information

vary depending on the number of antennas at the nodes [1].

In this case, when the number of antennas increases, the

delay and complexity involved in the selection mechanism may

rapidly become prohibitive in practice.

Several works have shown and explored the advantages of

TAS schemes, but a substantial amount of CSI feedback has

been observed in most of them. For instance, the optimal TAS

strategy was studied in [2] for a dual-hop MIMO amplify-

and-forward (AF) relaying system, in which an exhaustive

search for the best antenna at the source and relay was

required. A different optimal TAS strategy was examined

in [3] assuming a variable-gain AF relay and Nakagami-m
fading. Two suboptimal TAS strategies were also analyzed

in [3], in which the feedback overhead was reduced at the

expense of system performance. More recently, a distributed

TAS scheme was proposed in [4] assuming a single-antenna

fixed-gain AF relay.

In this work, we generalize the scheme proposed in [4] by

considering a fixed-gain AF relay with multiple antennas in

both transmission and reception. Our scheme provides a low

and constant delay/feedback overhead, despite of the number

of transmit antennas. We derive lower and upper bounds for

the outage probability of the proposed scheme as the sum

of two terms, one term given in closed form and the other

term given in single integral form. Moreover, an asymptotic

expression for each of these bounds at high signal-to-noise

ratio (SNR) is obtained in closed form. It is noteworthy that

such analysis is considerably more intricate than that of the

scheme in [4]. Our results show that the proposed scheme

presents full diversity order. More importantly, its underlying

distributed strategy is shown to perform closely to the costly

optimal centralized TAS.

Throughout this paper, fZ (·) denotes the probability density

function (PDF) of a generic random variable Z , E [·] denotes

expectation, and Pr (·) denotes probability.

II. SYSTEM MODEL AND ANTENNA SELECTION SCHEME

A. System Model

Consider a dual-hop relaying system composed of one

source S with Nt antennas, one single-antenna destination D,

and one half-duplex fixed-gain AF relay R with Nrr receive

antennas and Nrt transmit antennas. A time-division multiple

access scheme is assumed and all the channels undergo flat

Rayleigh fading.

Before data transmission, the transmit antenna at S that

maximizes the end-to-end instantaneous SNR is chosen ac-

cording to the procedure to be described in the next subsection.

Afterwards, a conventional cooperative transmission takes

place in two time slots. In the first time slot, the signals

received by the multiple antennas at R are combined using

a selection combining (SC) scheme, and, in the second time

slot, the signals coming from the direct and relaying links1

1The relay employs a TAS scheme to forward to the destination the signal
received from the source. This will be described next.
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are combined at D using a maximal-ratio combining (MRC)

scheme. The end-to-end SNR from the ith antenna at S to D
(through the kth receive antenna and jth transmit antenna at

R) can be written as

γi,k,j = γSiD +
γSiRk

γRjD

γRjD + C
, (1)

where γSiD , PS

N0
|hSiD|2, γSiRk

, PS

N0
|hSiRk

|2, γRjD ,
PR

N0
|hRjD|2, and C = 1 + γ̄SiRk

, with γ̄SiRk
= E[γSiRk

].

In these expressions, |hSiD|2, |hSiRk
|2, and |hRjD|2 denote

the channel power gains of the links from the ith antenna at

S to D, from the ith antenna at S to the kth antenna at R,

and from the jth antenna at R to D, respectively; PS and

PR stand for the transmit powers at S and R, respectively;

and N0 denotes the additive white Gaussian noise (AWGN) at

each receiving terminal. We assume a homogeneous network,

in which E[γSiRk
] = γ̄SR, E[γSiD] = γ̄SD , and E[γRjD] =

γ̄RD , for any i = 1, . . . , Nt, any k = 1, . . . , Nrr, and any

j = 1, . . . , Nrt. The fixed-gain relaying factor is adjusted

according to [5] as G2 = E
[

PR

PS |hSiRk
|2+N0

]

.

B. Antenna Selection Strategy

The optimal selection criterion chooses the best transmit

antennas at S and R that maximize the end-to-end SNR, i.e.,

(i∗, k∗, j∗) = argmax
i,k,j

[γi,k,j ] . (2)

Note that the optimal scheme entails a large amount of delay

and feedback overhead due to the full system CSI required

for decision. To alleviate this, relying on the idea pioneeringly

proposed in [4], a suboptimal (yet efficient) distributed antenna

selection (DAS) scheme is presented next. In this scheme, the

local CSI available at S is exploited to its furthest extent in

order to assist the decision, incurring a negligible delay and

feedback overhead.

The DAS concept is motivated and supported by the fol-

lowing inequality involving the end-to-end SNR:

γi,k,j < γSiD + γSiRk
min

[γRjD

C
, 1
]

∆
=

∼
γ i. (3)

The DAS scheme is performed in two time slots [4]. In the first

time slot, D sends to R and S a 1-bit reverse pilot signaling.

Then, R and S use this bit to estimate their respective local

CSIs γRjD and γSiD. At this time, based on γRjD, the relay

selects its optimal antenna to transmit data, by applying the

selection rule j∗ = argmax
j

[
γRjD

]
. In the second time slot,

R compares its local CSI γRj∗D with C, yielding two cases:

- Case I: If γRj∗D ≥ C, R sends to S a 1-bit message “1”.

In this case, by using (3), γSiD and γSiRk
, which are available

at S, are sufficient to apply the selection rule max{
∼
γ i,k,j∗}.

- Case II: If γRj∗D < C, R sends to S a 1-bit message “0”.

In this case, by using (3), the application of max{
∼
γi,k,j∗}

would require the additional knowledge of γRj∗D, which is

unavailable at S. Therefore, somewhat arbitrarily, a suboptimal

decision will be employed that depends solely on the maxi-

mization of γSiD, which is available at S. All in all, the TAS

rule of the proposed DAS scheme is summarized as follows:

i∗ =







i = argmax
i

[

γSiD +max
k

[γSiRk
]

]

, if γRj∗D ≥ C

i = argmax
i

[γSiD] , if γRj∗D < C

(4)

It is noteworthy that the major advantage of DAS over other

antenna selection schemes is its reduced delay/feedback over-

head, requiring only a 2-bit pilot/feedback signaling, at the

expense of some additional hardware complexity at the source.

III. PERFORMANCE ANALYSIS

In this section, the outage probability for the proposed

scheme will be analyzed. Such a metric can be defined as

the probability that the end-to-end SNR falls below a given

threshold, commonly written in terms of a target spectral

efficiency ℜ0, being mathematically formulated as

PDAS
out =

Pr

(

γRj∗D≥C,

(

γSiD
+
γSiRk∗

γRj∗D

γRj∗D + C

)

<z,22ℜ0−1

)

︸ ︷︷ ︸

P1

+ Pr

(

γRj∗D<C,

(

γSiD+
γSiRk∗

γRj∗D

γRj∗D+C

)

<z

)

︸ ︷︷ ︸

P2

.

(5)

Since an exact closed-form expression for the above expres-

sion is mathematically intractable, lower and upper bounds

for the outage probability will be derived instead, based on

the following paramount relationships:

γSiRk

2
min

[γRjD

C
,1
]

≤
γSiRk

γRjD

γRjD+C
≤γSiRk

min
[γRjD

C
,1
]

. (6)

In order to evaluate the terms P1 and P2, we first derive a

lower bound P LB
1 for P1, using (6), as follows:

P1>Pr
(

γRj∗D ≥ C,
(

γSiD
+ γSiRk∗

min
[γRj∗D

C
, 1
])

<z
)

(a)
= Pr

(

γRj∗D≥C,max
i

(

γSiD+max
k

(γSiRk
)

)

<z

)

,P LB
1

= Pr
(
γRj∗D ≥ C

)
Pr

((

γSiD +max
k

(γSiRk
)

)

<z

)Nt

= Pr
(
γRj∗D ≥ C

)

×

(∫ z

0

fγSD
(x) Pr

((

x+max
k

(γSiRk
)

)

< z

)

dx

)Nt

= Pr
(
γRj∗D ≥ C

)

×







∫ z

0

1

γ̄SD

e
− x

γ̄SD

(

1− e
− z−x

γ̄SR

)Nrr

dx

︸ ︷︷ ︸

α







Nt

,

(7)

where in step (a) we applied the DAS rule given in (4) for

γRj∗D ≥ C. The term α can be rewritten using the binomial



theorem [6, Eq. (1.111)] as

α =

∫ z

0

1

γ̄SD

e
− x

γ̄SD

Nrr∑

j=0

(
Nrr

j

)

(−1)j e
−j z−x

γ̄SR dx

=

Nrr∑

j=0

(
Nrr

j

)

(−1)
j
e
−j z

γ̄SR

1

γ̄SD

∫ z

0

e
j x
γ̄SR

− x
γ̄SD dx

=

Nrr∑

j=0

(
Nrr

j

)

(−1)
j
e
−j z

γ̄SR





(

1−e
− z

γ̄SD
+ jz

γ̄SR

)

γ̄SR

jγ̄SD − γ̄SR



 .

(8)

Then, by substituting (8) in (7), a lower bound for P1 can be

derived in closed form as

P LB
1 =

(

1−
(

1−e
− C

γ̄RD

)Nrt

)

×





Nrr∑

j=0

(
Nrr

j

)

(−1)j





(

e
−j z

γ̄SR − e
− z

γ̄SD

)

γ̄SR

jγ̄SD − γ̄SR









Nt

.

(9)

In order to assess the asymptotic behavior of P LB
1 , a high-SNR

expression for the term α can be derived from its definition as

α =

∫ z

0

1

γ̄SD

e
− z−y

γ̄SD

(

1− e
− y

γ̄SR

)Nrr

dy

≃

(
1

γ̄SR

)Nrr 1

γ̄SD

zNrr+1

(Nrr + 1)
, (10)

which, when replaced in (7), yields a corresponding high-SNR

asymptotic lower bound for P1 as

P LB
1 ≃

(

1−
(

1−e
− C

γ̄RD

)Nrt

)((
1

γ̄SR

)Nrr 1

γ̄SD

zNrr+1

(Nrr+1)

)Nt

.

(11)

Using (6), it can be shown that an upper bound PUB
1 for P1

and its asymptote can be directly attained by replacing z with

2z into (9) and (11), respectively.

Similarly, a lower bound P LB
2 for P2 can be formulated as

P2>Pr
(

γRj∗D<C,
(

γSiD+γSiRk∗
min

[γRj∗D

C
,1
])

<z
)

=Pr
(

γRj∗D<C,
(

γSiD +
γSiRk∗

γRj∗D

C

)

<z
)

=P LB
2

=Pr

(

γRj∗D<C,

(

max
m

[γSmD]+max
k

[γSiRk
]
γRj∗D

C

)

<z

)

.

(12)

By using the principles of probability theory, P LB
2 can be

elaborated as

P LB
2

=

∫ C

0

fγRD
(x) Pr

((

max
m

[γSmD]+max
k

[γSiRk
]
x

C

)

<z

)

dx

=

∫ 1

0

CfγRD
(Cu) Pr

((

max
m

[γSmD]+max
k

[γSiRk
]u

)

<z

)

du

=

∫ 1

0

CfγRD
(Cu)

∫ z

0

fγSR
(y) Pr

((

max
m

[γSmD]+yu
)

<z
)

dydu

=

∫ 1

0

CfγRD
(Cu)

∫ z

0

1

u
fγSR

(v

u

)

Pr
(

max
m

[γSmD]<z−v
)

dvdu

=

∫ 1

0

CNrt

γ̄RD

e
− Cu

γ̄RD

(

1− e
− Cu

γ̄RD

)Nrt−1 Nrr

uγ̄SR

×

∫ z

0

e
− v

uγ̄SR

(

1− e
− v

uγ̄SR

)Nrr−1 (

1− e
− z−v

γ̄SD

)Nt

dv

︸ ︷︷ ︸

ϕ

du,

(13)

where the term ϕ can be calculated using the binomial theorem

[6, Eq. (1.111)] as

ϕ =

Nt∑

m=0

Nrr∑

j=0

(
Nt

m

)(
Nrr − 1

j

)

(−1)m(−1)j

×

(

e
− (1+j)z

uγ̄SR − e
− mz

γ̄SD

)

uγ̄SRγ̄SD

muγ̄SR − (1 + j)γ̄SD

. (14)

Then, by substituting (14) into (13), a lower bound for P2 can

be derived in single integral form as

P LB
2 =

∫ 1

0

CNrt

γ̄RD

e
− Cu

γ̄RD

(

1− e
− Cu

γ̄RD

)Nrt−1 Nrr

u

×

Nt∑

m=0

Nrr∑

j=0

(
Nt

m

)(
Nrr − 1

j

)

(−1)m(−1)j

×

(

e
− (1+j)z

uγ̄SR − e
− mz

γ̄SD

)

uγ̄SD

muγ̄SR − (1 + j)γ̄SD

du. (15)

In order to assess the asymptotic behavior of P LB
2 , we simplify

the term ϕ defined in (13) by using the binomial theorem [6,

Eq. (1.111)] and the MacLaurin series of exponential functions

[6, Eq. (1.211.1)], obtaining

ϕ =

Nrr∑

i=1

(
Nrr − 1

i− 1

)

(−1)i−1
∫ z

0

e
− iv

uγ̄SR

(
z − v

γ̄SD

)Nt

dv

=

Nrr∑

i=1

(
Nrr − 1

i− 1

)

(−1)i−1 e
− iz

uγ̄SR

(
1

γ̄SD

)Nt

×

∞∑

n=0

(
i

uγ̄SR

)n
zNt+n+1

n! (Nt + n+ 1)
. (16)

By substituting (16) into (13) and using again the binomial



theorem, P LB
2 can be rewritten as

P LB
2 = Nrt

Nrr

γ̄SR

(
1

γ̄SD

)Nt Nrr∑

i=1

(
Nrr − 1

i− 1

)

(−1)
i−1

×

Nrt∑

j=0

(
Nrt − 1

j − 1

)

(−1)
j−1

∞∑

n=0

×
zNt+n+1inγ̄−n

SR

n! (Nt + n+ 1)

∫ 1

0

C

γ̄RD

u−n−1e
− iz

uγ̄SR e
− jCu

γ̄RD du

︸ ︷︷ ︸

Φn

.

(17)

The behavior of Φn in the high-SNR regime is characterized

in Apps. A and B. In App. A, Φn is determined for n = 0,

yielding

Φ0 ≃







zNt+1

(Nt+1)

(

jCiz
γ̄SRγ̄RD

)n1

n1!2µ2

(

−ln
(

jiz
γ̄RD

)

+ψ(n1 + 1)−(−1)n1Γ
(

−n1,
jC
γ̄RD

))

, ifNrr=Nrt

zNt+1

(Nt+1)

(

jCiz
γ̄SRγ̄RD

)n1

n1!2µ2(

−ln
(

jiz
γ̄RD

)

−(−1)
n1 Γ

(

−n1,
jC
γ̄RD

))

, ifNrr < Nrt

zNt+1

(Nt+1)

(

jCiz
γ̄SRγ̄RD

)n1

n1!2µ2

(

−ln
(

jiz
γ̄RD

))

, ifNrr > Nrt,

(18)

where µ2 , γ̄RD/γ̄SR and n1 , min(Nrr, Nrt) − 1. In

App. B, Φn is determined for n > 0, in which two intervals

for n are established (1 ≤ n ≤ n1 and n > n1), yielding

Φn|
n1
1

≃







zNt+n1+1

n!(Nt+n+1)µ2

(
jCi

γ̄SRγ̄RD

)n1

(

(−1)n+1 1
(n1−n)!n1!

ln
(

jiz
γ̄RD

)

− (−1)n1−n

(n1−n)! Γ
(

−n1,
jC
γ̄RD

))

, if Nrr≤Nrt

zNt+n1+1

n!(Nt+n+1)µ2

(
jCi

γ̄SRγ̄RD

)n1

(

(−1)
n+1 1

(n1−n)!n1!
ln
(

jiz
γ̄RD

))

, if Nrr>Nrt

(19)

Φn|∞n1+1
≃







zNt+n1+1

n!(Nt+n+1)µ2

(
jCi

γ̄SRγ̄RD

)n1

(n−n1−1)!
n1!

(−1)
n1 , ifNrr = Nrt

0, otherwise.
(20)

As done before for the term P1, using (6), it can be shown

that an upper bound PUB
2 for P2 and its asymptote can be

directly attained by replacing z with 2z into (15) and (17).

Finally, by adding as in (5) the asymptotic bounds derived

for P1 and P2, corresponding asymptotic lower and upper

bounds for Pout are obtained, respectively, as

PDAS,LB
out ≃







P LB
1 + P LB

2 , ifNt = 1 and Nrr ≤ Nrt

P LB
2 , otherwise

(21)

PDAS,UB
out ≃







PUB
1 + PUB

2 , ifNt = 1 and Nrr ≤ Nrt

PUB
2 , otherwise.

(22)

Remarks:

1. Using (21), (22), and the asymptotic bounds for P1 and

P2, it can be shown that the proposed DAS scheme achieves

full diversity order, being equal to Nt +min(Nrr, Nrt).
2. As shown in (17), both lower and upper asymptotic

bounds for P2 are given in terms of an infinite series. In

order to observe the convergence of this series, two cases are

analyzed: (i) when Nrr 6= Nrt, only the first n1 + 1 terms

are taken into consideration, since the series is zero for terms

greater than n1; (ii) when Nrr = Nrt, similarly to [4], the

convergence is proved using the convergence test of [6, Eq.

(0.223)].

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, representative numerical results are pre-

sented and Monte Carlo simulations are run to support the

derived analytical bounds. In our plots, as a sample case, we

assume that the target spectral efficiency is ℜ0 = 1 bit/s/Hz

and that the path loss exponent is β = 4. We also assume that

the channel mean power is proportional to d−β , with d being

the distance between the transceivers. The distance between S
and D is normalized to unity, as in [4]2. Figs. 1 and 2 show

the outage probability for two major system configurations,

namely {Nt = 2, dSR = 0.7} and {Nt = 3, dSR = 0.8},

respectively. It is noteworthy that, in each case, the relay has

been placed at the position dSR that provides the best outage

performance, and such a position was previously established

through simulations. These prior simulation results have not

been presented here due to space limitations. From the figures,

note that the performed analysis for the exact and asymptotic

bounds is validated, and that the diversity order, determined as

Nt+min(Nrr, Nrt), is verified. For instance, using the system

configuration {Nt = 2, Nrr = 2, Nrt = 2} the diversity order

equals 4, which agrees with the asymptotes’s slope in Fig.

2. In addition, both figures compares the performance of the

proposed DAS and optimal TAS schemes, which can be seen

to be very similar.

V. APPENDIX A

HIGH-SNR EXPRESSION FOR THE TERM Φ0 IN (17)

Here we consider Φn for n = 0, which is defined in (17) as

Φ0 =
zNt+1

(Nt + 1)

C

γ̄RD

∫ 1

0

u−1e
− iz

uγ̄SR e
− jCu

γ̄RD du

︸ ︷︷ ︸

ρ0

.
(23)

The term ρ0 can be rewritten through the help of [6, Eq.

(3.471.9)], [6, Eq. (1.211.1)], and [6, Eq. (8.446)] as (24),

given at the top of the next page, in which Kn(·) denotes

2Again, as in [4], we assume a linear network topology, in which S and
R transmit with the same SNR P , and dSD = dSR + dRD , where dSD ,
dSR, and dRD represent the distance of the links S→D, S→R, and R→D,
respectively. The corresponding average link SNRs can be formulated as

γ̄SD = Pd
−β
SD

, γ̄SR = Pd
−β
SR

, and γ̄RD = Pd
−β
RD

.



ρ0 = 2K0

(

2

√

jCiz

γ̄SRγ̄RD

)

−

∫ ∞

1

u−1e
− jCu

γ̄RD

∞∑

l=0

(

− iz
uγ̄SR

)l

l!
du = − ln

jCiz

γ̄SRγ̄RD

∞∑

k1=0

(√
jCiz

γ̄SRγ̄RD

)2k1

k1!2
+

∞∑

k2=0

(√
jCiz

γ̄SRγ̄RD

)2k2

k2!2

× 2ψ(k2 + 1)−
∞∑

l=0

(

− iz
γ̄SR

)l

l!

(
jC

γ̄RD

)l

Γ

(

−l,
jC

γ̄RD

)

. (24)
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Fig. 1. Outage probability versus average SNR of the S→D link for different
AS schemes (dSR = 0.7, Nt = 2).
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Fig. 2. Outage probability versus average SNR of the S→D link for different
AS schemes (dSR = 0.8, Nt = 3).

the nth-order modified Bessel function of the second kind

[6, Eq.(8.446)], ψ(·) represents the Euler psi function [6, Eq.

(8.360)] and Γ(·) is the gamma function [6, Eq. (8.310.1)]. It

is important to mention that in order to conduct the high-SNR

analysis of the inner expression that defines Φ0 in (17), the

outer summations in i and j must be considered. To this end,

we define the variable λ0 as

λ0 =

Nrr∑

i=1

(
Nrr − 1

i− 1

)

(−1)
i−1

Nrt∑

j=1

(
Nrt − 1

j − 1

)

× (−1)
j−1

Φ0.

(25)

Plugging (24) into (23) and this into (25), λ0 can be rewrit-

ten as

λ0 =
zNt+1

(Nt + 1)

C

γ̄RD




−

∞∑

k1=0

(
Cz

γ̄SRγ̄RD

)k1

k1!2

Nrr∑

i=1

(
Nrr−1

i−1

)

ik1

× (−1)i−1
Nrt∑

j=1

(
Nrt−1

j−1

)

(−1)j−1jk1

(

ln

(
j

γ̄RD

)

+ln (iz)

)

+

∞∑

k2=0

(
Cz

γ̄SRγ̄RD

)k2

k2!2
ψ(k2 + 1)

Nrr∑

i=1

(
Nrr−1

i−1

)

(−1)
i−1

ik2

×

Nrt∑

j=1

(
Nrt−1

j−1

)

(−1)
j−1
jk2−

∞∑

l=0

(
−Cz

γ̄SRγ̄RD

)l

l!2

Nrr∑

i=1

(
Nrr−1

i−1

)

× (−1)i−1 il
Nrt∑

j=1

(
Nrt − 1

j − 1

)

(−1)j−1 jlΓ

(

−l,
jC

γ̄RD

)


 .

(26)

Observe that λ0 is composed by the sum of three terms,

corresponding to the summations in k1, k2, and l. Using the

fact that
∑b

a=1

(
b−1
a−1

)
(−1)

a−1
ac is null for c = 0, 1, 2, . . . , b− 2,

after a careful inspection it was attested that each term presents

a different behavior at high-SNR regime, and this will be

described next. The first term is non-null for values of k1
greater than min(Nrr, Nrt) − 1, the second term is non-null

for values of k2 greater than max(Nrr, Nrt) − 1, and the

third term is non-null for values of l greater than Nrr − 1.

Using this and preserving only the lowest-order terms so as

to derive a high-SNR expression, we arrive at three cases:

(i) if Nrr = Nrt, the three terms must be considered; (ii) if

Nrr < Nrt, the first and third terms must be considered; and

(iii) if Nrr > Nrt, only the first term must be considered. In

all the cases, the diversity order of λ0 is observed to be given

by n1 , min(Nrr, Nrt) − 1. By incorporating these results

into the definition of Φ0 given by (23) and (24), we finally

arrive at the high-SNR expression for Φ0 as given in (18).

VI. APPENDIX B



ρn
(b)
= 2γ̄

−n
2

SR

(
izγ̄RD

jC

)−n
2

Kn

(

2

√

jCiz

γ̄SRγ̄RD

)

−

∞∑

l=0

γ̄−n
SR

(

− iz
γ̄SR

)l

l!

∫ ∞

1

u−n−l−1e
− jCu

γ̄RD du

(c)
= 2̄γ

−n
2

SR

(
izγ̄RD

jC
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2

n−1∑
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(−1)m1 (n−m1−1)

m1!

(
jCiz

γ̄SRγ̄RD
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n
2

+ 2γ̄−n
SR

(
izγ̄RD
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2

(−1)n+1
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√
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1
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SR im1
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(
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(
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γ̄SRγ̄RD
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1

2
ψ(m2+1)−

1

2
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−
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. (28)

λn =
zNt+n+1

n! (Nt+n+1)

C

γ̄RD




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. (30)

HIGH-SNR EXPRESSION FOR THE TERM Φn IN (17), n > 0

We now consider Φn for n > 0, which is defined in (17) as

Φn =
zNt+n+1

n! (Nt+n+1)
γ̄−nSRi

n

∫ 1

0

C

γ̄RD

u−n−1e
− iz

uγ̄SR e
− jCu

γ̄RD du

︸ ︷︷ ︸

ρn

.

(27)

The term ρn can be rewritten as (28), given at the top of this

page, in which we have used [6, Eq. (3.471.9)] and [6, Eqs.

(8.446) and (3.381.3)] in steps (c) and (d), respectively. The

analysis that follows is similar to that in App. A. To this end,

we define the variable λn as

λn=

Nrr∑

i=1

(
Nrr−1

i−1

)

(−1)
i−1

Nrt∑

j=1

(
Nrt−1

j − 1

)

(−1)
j−1

Φn. (29)

Plugging (28) into (27) and this into (29), λn can be rewritten

as (30), given at the top of this page. Observe that, similarly to

λ0, λn is composed by the sum of three terms, corresponding

to the summations in m1, m2, and l. The first term is

non-null for values of m1 greater than max(Nrr, Nrt) − 1;

the second term is non-null for values of m2 greater than

min(Nrr, Nrt) − 1; and the third term is non-null for values

of l greater than Nrr − 1. Using this and preserving only the

lowest-order terms so as to derive a high-SNR expression, we

arrive at three cases: (a) if Nrr = Nrt, the three terms must

be considered; (b) if Nrr < Nrt, the second and third terms

must be considered; and (c) if Nrr > Nrt, only the second

term must be considered. In all the cases, the diversity order

of λn is observed to be given by n1 , min(Nrr, Nrt) − 1.

By incorporating these results into the definition of Φn given

by (27) and (28), we finally arrive at the high-SNR expression

for Φn as given in (19) and (20).
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