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Abstract—This paper studies the effect of the different pricing
games played by the primary user (PU) operators on the profit of
both the PU networks and the cognitive base station (CBS). We
show that the price achieved by the PU operators in the collusion
game (called the Pareto point) is the maximum price that can
be achieved in the competitive game when the substitutability
parameter is higher than zero. However, for negative values
of the substitutability parameter, the Pareto point represents
the minimum price that can be offered by the PU operators.
Moreover, the effect of the collusion game on the profit of the
CBS has also been investigated, and the simulations show that
the worst case for the CBS in terms of profit is not associated
with the highest price that can be offered by the PU networks.

Index Terms—Femtocell, cognitive radio, Nash equilibrium,
Pareto point, collusion games, Stackelberg games.

I. INTRODUCTION

Cognitive radio networks have been proposed as a solution
to enhance spectrum and energy efficiencies by extending the
bandwidth choices of the radio and thus lessen the need for
increasing the power to satisfy network capacity requirements
[1]. The concept of cognitive radio hinges on the existence of
primary users (PU’s) and secondary users (SU’s). The PU’s are
authorized to utilize the spectrum whereas the SU’s are not.
So the SU’s should sense the spectrum and check for spectrum
holes in a trial to maximize its quality of service (QoS) while
minimizing interference with the PU’s [2]. This is the general
scenario for cognitive radio networks.

Several scenarios for the implementation of cognitive radios
have been investigated in the research community. One of
these scenarios is the one studied in [3, 4] in which there
are different operators serving their own users and competing
(or colluding) to serve the secondary users to maximize their
profits.

Another possible scenario for cognitive radio networks is
the so called trading mechanism [5]. In this scenario, the PU
networks have surplus spectrum (i.e. the PU networks are not
using the whole spectrum to serve their users) which can be
sold to the SU networks to gain more revenue for the PU
operators. Of course, this will result in service degradation for
the PU networks. The existence of several PU networks in the
same area of the SU network will trigger price competition

among the PU networks in an attempt to sell more spectrum
to the SU network. A cognitive base station (CBS) is supposed
to purchase spectrum from the PU networks.

In [6], the authors presented a game-theoretical model
for the price competition between the PU networks to sell
spectrum to a two-tier cognitive radio network (i.e. the CBS
with its users, and the femtocell base stations (FBS’s) with
their users). The price competition game has been modelled as
a three-stage Stackelberg game. Stackelberg game is a multi-
stage game in which two types of players are involved, namely,
leaders and followers. The followers takes their moves based
on the moves of the leaders[6]. Here, the leaders are the PU
networks, and the followers are the CBS and the FBS’s. Each
of these players is trying to maximize its profit by considering
the moves of the other players. The price competition between
the PU networks is just the first stage of the Stackelberg
game, and the Nash equilibrium is the solution of that stage.
The authors presented an algorithm to find the Stackelberg
equilibrium solution which depends basically on finding the
solution of each stage and using this solution as an input to
the next stage. However, the authors in [6] did not provide any
stability analysis for their algorithm. Stability is necessary for
any dynamic algorithm to ensure that the Nash equilibrium can
be reached in the steady state [5]. Furthermore, the effect of
the collusion established (and maintained) by the PU networks
on their profits and the profit of the CBS has not been studied
for this scenario.

In this paper, we compare the collusion game to the price-
competition game for the scenario presented in [6] in terms of
the PU’s and the CBS profit. Before doing so, we perform the
stability analysis for the Stackelberg algorithm and find the
conditions for this algorithm to be stable for the general case
of L PU networks. The optimum step size for the algorithm in
terms of the speed of convergence is also determined. We also
study the effect of the substitutability parameter and the energy
efficiency of the macrocell SU’s (MSU’s) and the FBS’s on
the resultant Nash and Pareto prices. Furthermore, we prove
that Pareto price is not the price that will result in the highest
profit for PU’s as argued in [5].

The remainder of this paper is organized as follows. In
Section II, the system model is illustrated. The stability
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analysis is presented in Section III. The equations of the Pareto
price and the Nash equilibrium price are derived, compared,
and the effect of some parameters on both of them is discussed
in Section IV. The simulation results and discussions are
provided in Section V, and Section VI contains the conclusion
and recommendations.

II. SYSTEM MODEL

As shown in Fig. 1, there exist L PU networks, and K SU’s
(K1 FBS’s and K2 MSU’s, where K1 +K2 = K) in the SU
network. Each PU network offers a price cl to the CBS and
each user sends its energy efficiency ηk to the CBS. Each FBS
serves one femtocell SU (FSU). The energy efficiency of each
user (MSU or FSU) is defined as [6]

ηk =
log2

(
1 +

h2
kpk
σ2

)
pa + pk

, (1)

where pk and hk are the energy-efficient power allocation of
user k and the channel gain from that user (MSU or FSU) to
its base station (CBS or FBS), respectively, pa is the additional
power consumption due to transmission, and σ2 is the noise
power assuming an additive white Gaussian noise (AWGN)
with zero mean. It is assumed here that the price information
sent by each PU is given per unit bandwidth. So the CBS
knows what the maximum spectrum bandwidth that can be
purchased from PU networks is, and it will inform the FBS’s
to use that bandwidth to calculate the energy efficiency of
the transmission of their FSU’s. Next, the CBS will allocate
the spectrum band with the lowest price to the user with the
highest energy efficiency to maximize its revenue. This is done
by setting the spectrum allocation index xlk of that user to 1.
It is important to note here that the energy-efficient power
allocation is the transmit power of each user (MSU or FSU)
that maximizes its energy efficiency.

Fig. 1: The general system model.

We assume a static environment in which the channel
conditions of users do not change over the trading period. The
CBS purchases the spectrum bands that maximize its revenue
from the spectrum offered by L PU operators. Then, the CBS

uses that spectrum to serve the MSU’s and FBS’s according to
their energy efficiencies to maximize its profit (i.e. the cheapest
spectrum band is allocated to the MSU/FBS with the highest
energy efficiency).

Each spectrum band purchased by the CBS from a PU
network is allocated only to one MSU/FBS. Each FBS serves
only one user at each time slot. We assume that the number of
SU’s that can access the CBS at each time slot is equal to the
number of bands offered by the PU networks (K = L). The
FBS’s are connected to the CBS via broadband connection
(e.g. digital subscriber line (DSL)).

III. STABILITY ANLYSIS FOR THE STACKELBERG
ALGORIOTHM

In this section, the stability of the Stackelberg algorithm
proposed in [6] is analyzed, the stability conditions are derived,
and the optimal step size is determined. First of all, we
start this section by revising the Stackelberg algorithm and
presenting the equations upon which the work in the rest of
this paper will be based.

A. The Stackelberg Algorithm

As mentioned in the previous section, the algorithm starts with
the users sending their energy efficiencies and the PU networks
sending their offers (prices/bandwidth) to the CBS. The CBS
determines the spectrum demand from each PU network that
will maximize its profit. The CBS profit (PCBS) and the
spectrum demand (w) can be calculated as follows [5, 6]

PCBS(w) =

L∑
l=1

wlKηl−
1

2

{
L∑
l=1

w2
l+2v

∑
q 6=l

wlwq

}
−

L∑
l=1

clwl

(2)

wl =
N(Kηl − cl)− v

∑
q 6=l(Kηq − cq)

M
, (3)

where Kηl =
∑K
k=1 ζkxlkηk is the revenue of the CBS from

spectrum band l, N = v(L− 2)+ 1, and M = (1− v)(v(L−
1)+1); ζk is the cost paid by the k’th user (MSU/FBS) to the
CBS, xlk is the spectrum allocation index which when equal
to 1, indicates that the spectrum band purchased from PU l
is allocated to the user k; v ∈ [−1, 1] is the substitutability
parameter. When v is larger than 0, this means the CBS can
switch between the spectrum bands of different PU networks;
when it is equal to 0, this means that the CBS can not switch
among the spectrum because of the large penalty set by the
PU operator on doing so [5]. When v is lower than 0, this
means the purchased band is complementary (i.e. the CBS
should purchase another band to make use of this band, for
example when the CBS purchases the downlink band, it needs
to purchase the uplink band also [5]).

So now, the CBS has determined its spectrum demand from
each PU network. Using the spectrum demand, each PU can
find its profit and the amount by which the offered price



should be modified which is simply the derivative of the profit
multiplied by some weighting factor. The profit of each PU and
its derivative are determined as in Eq.’s (4) and (5) respectively
[6]

PPUl(c) = aηsl(Bl − wl) + clwl

= aηsl

{
Bl −

N(Kηl − cl)− v
∑
q 6=l(Kηq − cq)

M

}

+ cl

{
N(Kηl − cl)− v

∑
q 6=l(Kηq − cq)

M

}
(4)

∂PPUl(c)

∂cl
=
N(aηsl +Kηl − 2cl)− v

∑
q 6=l(Kηq − cq)

M
(5)

where ηsl is the spectrum efficiency of the l’th PU, and a is
the cost paid by the PU’s to the PU network, and Bl is the
total bandwidth licensed to the PU network l.

The self-mapping function proposed in [6] to modify the
PU’s prices is as follows

cl(t+ 1) = cl(t) + µ
∂PPUl(c)

∂cl
, (6)

where µ denotes the iterative step size of the price. The
algorithm will terminate when the difference between prices
from two consecutive iterations is lower than a certain value.
The closer this values is to 0, the lower the error in the resultant
optimum price.

B. Stability of the Self-Mapping Function

In order to examine the stability of the algorithm, it is neces-
sary to check whether the self-mapping function converges or
not. This can be done by finding the Jacobean matrix of the
self-mapping function and determining its eigenvalues. If all
of the eigenvalues of the Jacobean matrix are inside the unit
circle, this means that the self-mapping function is stable and
thus, the algorithm is stable [5]. The Jacobean matrix of the
self-mapping function for L PU networks is defined as follows

J =


∂c1(t+1)
∂c1(t)

∂c1(t+1)
∂c2(t)

· · · ∂c1(t+1)
∂cL(t)

∂c2(t+1)
∂c1(t)

∂c2(t+1)
∂c2(t)

· · · ∂c2(t+1)
∂cL(t)

...
...

. . .
...

∂cL(t+1)
∂c1(t)

∂cL(t+1)
∂c2(t)

· · · ∂cL(t+1)
∂cL(t)

 . (7)

By differentiating all the self-mapping functions in (6) with
respect to all prices {cl}Ll=1, the resultant Jacobean matrix can
be written as

J =


1− 2µN

M
µv
M · · · µv

M
µv
M 1− 2µN

M · · · µv
M

...
...

. . .
...

µv
M

µv
M · · · 1− 2µN

M

 . (8)

This matrix is a special case of the Touplitz circulant matrix
[7], where the values around the diagonal are identical. The
eigenvalues of an L × L circulant matrix can be found as
follows [8]

λm = ρ0 + ρL−1ωm + ρL−2ω
2
m + . . .+ ρ1ω

L−1
m , (9)

where m = 0, . . . , L − 1, ωm = exp
(
j2πm
L

)
, ρ0 is the value

in the diagonal, and ρL−1, . . . , ρ1 are the values around the
diagonal which are identical in our case . Let ρ denotes the
coefficient outside the diagonal then, (9) becomes

λm = ρ0 + ρ

L−1∑
n=1

exp
(
j2πmn
L

)
. (10)

The summation in Eq. (10) can be simplified further

L−1∑
n=1

exp
(
j2πmn
L

)
= −1 +

L−1∑
n=0

exp
(
j2πmn
L

)
=


L− 1, m = 0;
−1 + 1−exp(j2πm)

1−exp
(
j2πm
L

) , m 6= 0.

=

{
L− 1, m = 0;
−1, m 6= 0.

(11)

Now, we have λ0 = ρ0+ρ[L−1] and L−1 eigenvalues λm =
ρ0 − ρ. Substituting the values of ρ0 and ρ and simplifying,
the eigenvalues become

λ0 = 1− µ

[
2N + v(L− 1)

M

]
= 1− µ

[
v(L− 3) + 2

M

]
,

λm = 1− µ

[
2N − v
M

]
,m = 1 . . . L− 1.

(12)

To find the stability conditions, the inequality |λ| < 1 should
be solved for both terms in (12). By solving the inequality, the
stability conditions are as follows

0 < µ < min

(
2M

2N − v
,

2M

N − v + 1

)
. (13)

Fig. 2 shows v against the upper limit in (13). We can notice
that the stability range of the Stackelberg algorithm tends to
shrink when v is increasing with the increase of L. This means
that maintaining a low value of v will give the PU networks a
wider range of iterative step sizes to choose from while staying
in the stable region.

Lemma 1: The optimal step size for the Stackelberg algo-
rithm in terms of convergence speed is µ = M

2N .
Proof: We start by taking two consecutive prices, c1 and

c2 = c1 + µ
∂PPUl (c1)

∂cl
. Using (5) and substituting c2, the

derivative of the second price can be expressed as in (14)
at the top of the next page.



∂PPUl(c2)

∂cl
=

N

(
aηsl +Kηl − 2

[
c1 + µ

∂PPUl (c1)

∂cl

])
− v

∑
q 6=l(Kηq − cq)

M

=

N

(
aηsl +Kηl − 2

[
c1 + µ

[
N(aηsl+Kηl−2c1)−v

∑
q 6=l(Kηq−cq)

M

]])
− v

∑
q 6=l(Kηq − cq)

M
(14)

Fig. 2: The substitutabilty parameter (v) against the upper limit of
Eq. (13) for different values of L.

To find µ, the equation to be solved is given by

∂PPUl(c2)

∂cl
= ε, (15)

where ε is a small number. Solving (15) for µ and observing
as ε → 0, we find that µ → M

2N . Reaching zero at this step
indicates that the prices has reached any other value of ε > 0
before this step. This means that at any other value of ε higher
than zero, the lowest number of steps to reach ε is achievable
at µ = M

2N . Hence, the optimal iterative step size is

µ =
M

2N
. (16)

IV. THE COLLUSION GAME AND THE MAXIMUM PRICE
FOR PU NETWORKS

In this section, the equations for Nash equilibrium and Pareto
point are presented, and we compare between the two equa-
tions in terms of the effect of the substitutability parameter
and energy efficiency on each of them.

A. Nash and Pareto Prices

The Nash price is the price that maximizes the profit of each
PU network. Therefore, to find the Nash price, all what we

need is to solve ∂PPUl (c)

∂cl
= 0 for each PU network. At the

equilibrium, all the prices are almost the same. Assuming all
the users has the same energy efficiency, and substituting cl
instead of cq in (5), the equation to be solved to find the Nash
price becomes

N(aηsl+Kηl−2cl)−v(L−1)Kηl+v(L−1)cl = 0. (17)

Solving (17) for cl, the Nash price for any number L of PUs
can be written as

cNash =
N(aηsl +Kηl(1− v))

2 + v(L− 3)
. (18)

An important point to notice here is that the Nash price
decreases with the increase of the number of PU networks. The
rationale behind this decrease in price is that when the number
of PU networks increases, the competition among them will
increase because the spectrum demand will be distributed over
a larger number of operators. So each PU network now needs
to take into account a larger number of other moves, and this
will cause the price to be more conservative with the increase
of L.

For the Pareto case, the sum of the profits of all PU
operators should be maximized. Hence, we need to solve
∂
∑L
l=1 PPUl (c)

∂cl
= 0. Again, at the Pareto point, all the prices

are the same, so after differentiating the sum, we substitute
cl instead of cq . After differentiating and solving for cl, the
Pareto price is written as

cPareto =
aηsl +Kηl

2
. (19)

Note that the Pareto price does not depend on the substi-
tutability parameter or the number of PU networks; rather,
it depends on the energy efficiency of the secondary users
(which means more spectrum demand is expected) and the
spectrum efficiency of the transmission of primary users
(which means more revenue is expected from primary users).
The substitutability parameter has no effect on the Pareto
point, but it helps the PU operators to reach the Pareto point in
the competition game by decreasing it (when it is positive). On
the other hand, the energy efficiency changes the Pareto point.
That is, when the energy efficiency of the SU’s increases, they
are expected to use the spectrum more extensively. Thus, the
spectrum demand of the CBS is expected to increase and hence
the increase in the maximum price that can be offered by the
PU operators.



B. The Maximum Pricing (Pareto Superior)

Before discussing the maximum achievable price for PU
networks, it should be noticed here that we are interested in
the positive values of (18) since it is a price (i.e. L ≥ 2 for
v ∈ [−1, 1]). To understand the relation between Nash and
Pareto prices, we take the difference between Eq.’s (18) and
(19) and investigate when this difference is higher than zero

cNash − cPareto > 0. (20)

Substituting and simplifying, the inequality in (20) becomes

v(1− 2L)Kηl + v(L− 1)aηsl > 0. (21)

When the inequality in (21) is satisfied, the Nash price will
be higher than the Pareto price. At first, we need to point out
that the condition cl > aηsl should be satisfied in order for
the PU network to prefer selling the spectrum to the CBS [6].
But Kηl should be higher than cl for the CBS to prefer buying
the spectrum from the PU network. Hence, Kηl > aηsl. The
term 1− 2L is absolutely larger than L− 1 but is negative for
L ≥ 2. This means that when the substitutability parameter v
is higher than zero, the Pareto price is always higher than the
Nash price. On the contrary, when v is lower than zero, the
Nash price is always higher than the Pareto price.

Based on the aforementioned discussion, the Nash price is
always higher than Pareto price when v is negative, but what
does it mean when v is negative? To understand, we need
to know more about competitive pricing. The type of game
played here is called Bertrand game [9], in which the firm
(PU the operator in our case) determines the price and the
user (the CBS in our case) determines the spectrum demand.
Such a game is usually preferred by the firms when the good
is a complement [10] which is, as illustrated at the beginning
of Section III, the case of v being negative. To demonstrate the
meaning of complement spectrum, we re-evoke the example
given in [5] with some modifications to make it suitable for
our scenario. When the CBS needs two spectrum bands, one
for the uplink and the other one for the downlink, each one
of these bands is considered a complement (i.e. it can not be
used alone). A practical example of this case is LTE-FDD [11]
which needs two separate bands for the uplink and downlink
channels. On the other hand, LTE-TDD can use the same band
for the two channels.

V. SIMULATION RESULTS AND DISCUSSION

In the simulations, the number of PU networks is 2, the
spectral efficiency of PU transmission=2 bits/s/Hz, the energy
efficiency of SU transmission is 22.1444 bits/Hz/Joule, the
additional circuit power consumption is 0.1W, and the cost
paid by the PU to its operator and by the SU to the CBS is
set to 1. It is assumed here that the number of users is equal
to the number of the PU networks (i.e., L = K).

A. Nash and Pareto Prices

The profit of PU networks versus the Nash price is shown in
Fig. 3 for different (postitive) values of v. The values pointed

by the circles have been found using (19). It is obvious that the
Pareto point achieves the highest profit for the PU operators.

Fig. 3: The profit of PUs versus Nash price for different values of
the substitutability parameter (v).

The approach of the Nash price to the Pareto point with
the decrease of the (positive) value of v is shown in Fig. 4.
Here, the Pareto point is the highest price, while for negative
values of v, Pareto is the lowest price that can be offered by
the PU’s. This is shown in Fig. 5.

Fig. 4: The convergence of Nash price to Pareto price with the
decrease of the (positive) value of v.

B. CBS Profit

Fig. 6 shows the maximum profit (per spectrum demand)
that can be achieved by the CBS against the substitutability
parameter v for different numbers of the PU networks. The
first note is that the minimum (maximum) profit the CBS can
achieve depends on the number of PU networks. This is the
worst case for the CBS in terms of profit. The important note



Fig. 5: The superiority of Nash price to Pareto price with the decrease
of the (negative) value of v.

here is that, the worst case is not associated with negative
substitutability parameter (which corresponds to highest PU
price). This is due to the structure of the utility function used
to represent the profit of the CBS. Returning to Equation
(2), it can be noticed that when v is negative, the third term
becomes positive and add to the profit. This means that, when
the penalty is put by the PU networks on spectrum switching,
the profit of CBS is expected to increase! The rationale behind
this attitude of the quadratic utility function at negative values
of v is related to what is called risk aversion. In a nutshell, the
utility function in (2) takes into account not only the profit of
CBS, but also the preferences of CBS. The term multiplied by
v indicates that the CBS would prefer to get lower (certain)
profit by staying at the same spectrum instead of getting a
higher (uncertain) profit by switching to another spectrum
which may cause additional unexpected costs to CBS. When
the penalty is increased, the CBS is more inclined to stay in
the same spectrum which, according to the structure of its
utility function, is preferred by the CBS.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this paper, the stability conditions for the Stackelberg
algorithm for the scenario of heterogeneous cognitive network
with femtocells was derived. Furthermore, the effect of the
collusion game established and maintained by the PU opera-
tors on the profit of both the PU networks and the CBS has
been investigated. It was found that the collusion price (Pareto
price) does not represent the highest price that can be offered
by the PU operators. The worst case for the CBS has been
also investigated, and the simulations shows the minimum
(maximum) profit achieved by the CBS is not associated with
the highest price that can be offered by the PU networks.
Depending on the aforementioned results, it is recommended
that any deployment for a cognitive radio network, which
depends on spectrum trading to provide (or to enhance) the

Fig. 6: The profit of CBS versus spectrum demand for different
positive and negative values of v.

services to its users, to choose TDD deployment, because it
is more flexible and reduces the number of spectrum bands
required to maintain the service. Moreover, the CBS should
be designed such that it can (automatically) reduce the number
of spectrum bands/channels required to be purchased from the
PU networks by using the available spectrum more efficiently.
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