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Abstract—Wireless research infrastructure is a central tool
in performing applied research. It enables the verification and
demonstration of theoretical results in practice. Wireless research
infrastructure at the Centre for Wireless Communications (CWC)
has been built using second generation second generation wireless
open access research platform (WARPv2). The WARPv2s are
well suited for wireless research on both physical (PHY) and
medium access control (MAC) layers but they lack the capability
for handling network layer operations without an external PC. An
on-board operating system is needed for a stand-alone solution.

This paper describes Linux system porting to the WARPv2
board. The Linux system was combined with the radio com-
munication system to achieve a flexible MAC interface for
building custom protocols. The field-programmable gate array
(FPGA) hardware design was created for this combination and
needed software of the system was defined and implemented.
The developed system consists of the Linux side and the MAC
side which together implement all the layers of the open systems
interconnection (OSI) model. Both sides use a dedicated processor
core of the FPGA. Interprocessor communication between Linux
and MAC sides was implemented to enable Linux to control the
whole system.

Keywords—fpga, embedded system, porting Linux, development
board, wireless network

I. INTRODUCTION

The radio spectrum is a limited natural resource. Due
to increased traffic in wireless networks, there is a need to
use the radio spectrum more efficiently. Therefore, advanced
wireless networks, such as cognitive radio networks (CRNs),
are researched actively nowadays. The CRN is a radio sys-
tem employing technology that allows the system to obtain
knowledge of its operational environment and dynamically and
autonomously adjust its operational parameters according to
learning results it has obtained [1]. In order to test CRNs and
other advanced wireless networking theories in practice, a real
life test environment needs to exist.

The purpose of this work is to simplify management of
devices in a wireless test network and make it easier to
form the network. Therefore, the Linux operating system was
ported to the second generation wireless open access research
platform (WARPv2). The implementation is based on the
previous Linux porting project done in [2]. Nevertheless, new
porting was required because of updated hardware in our
wireless research infrastructure. The first generation WARP
uses Xilinx Virtex-2 field-programmable gate array (FPGA)
while the second generation platform uses Virtex-4 FPGA.

The WARPv2 is a FPGA based research platform for
wireless networks. It is developed by Rice University, USA.
Linux was chosen for this work because it is an open source
operating system, which means it is easy to modify for
different purposes. Moreover, Linux is well documented and
it has a wide software support. With Linux, the network layer
and the layers above can be managed. It would demands a
lot of work and knowledge to implement a network layer
without an operating system. Linux implements network layer
functionality very well. Hence, research scenarios are much
easier to implement. There is no need to concentrate on an
unrelevant low level functionality. It is possible to control all
the layers of the open systems interconnection (OSI) model
with the cooperation of Linux and the medium access control
(MAC) implementation of the WARPv2. This is mandatory
when researching advanced wireless networks. Furthermore,
Linux reduces the complexity of the system by controlling
the hardware resources of the system. It hides hardware from
software running the top of it by providing common services,
such as filesystems, networking, and interfaces to use hardware
via drivers. Linux also enables more powerful advanced wire-
less network researching because it makes developing software
for a platform much easier due to the higher abstraction level
than without the operating system (OS). There is also a lot
of ready-made software, which support researching efforts,
available for popular operating systems such as Linux. For
example, applications for monitoring and measuring the traffic
of the network are available. These are reasons why porting
an operating system to a research platform is an attractive idea
when researching advanced wireless networks.

The remaining structure of this paper is organised as
follows. The next section introduces the hardware platform
used in this work. The wireless open access research platform
(WARP) orthogonal frequency-division multiplexing (OFDM)
reference design is described in Section III. Sections IV and V
talk about hardware and software designs of the Linux porting.
The building process of the implemented system is described
in Section VI. Test results are shown in Section VII. The Final
section concludes the paper.
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II. HARDWARE PLATFORM

Wireless open access research platform (WARP) is a pro-
grammable wireless platform developed by Rice University,
USA. It is being actively used for research in many areas
like physical, MAC and network layer algorithms, routing,
and cognitive radios as can be seen in [3], [4] and [5].
The main purpose of WARP is to provide a scalable and
extensible platform for researching wireless networks. This
work concentrates on the second generation WARP platform.
This version is designed around a Xilinx Virtex-4 FPGA [6].
Figure 1 introduces the devices and input/output (I/O) ports of
WARP board version 2.2. [7]
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Fig. 1. WARP board overview.

III. THE WARP OFDM REFERENCE DESIGN

Rice University provides an OFDM references design for
the WARP board. This design implements a real-time network
stack on it; it includes the OFDM physical layer (PHY) and
customizable MAC interface. The purpose of the reference
design is to demonstrate the full MAC/PHY capabilities of the
WARP and provide a flexible base for additional applications.
As seen in Figure 2, the design consists of a multiple in
multiple out (MIMO) OFDM physical layer, a flexible MAC
interface including a basic application implementing a wireless
MAC protocol and low-level PHY control, and peripherals
such as timers and radio bridges. All processing including
hardware control, signal processing and the MAC protocol,
is executed in real-time. [7] The OFDM reference design
is shipped with a simple MAC application called csmamac.
The algorithm of csmamac is simple. If there is a packet to
send, the appilication sends it when the medium is idling and
waits for an acknowledgment from the destination. When there
is a packet received, the application checks if the packet is
addressed to itself and sends an acknowledgment to a sender
in that case. Otherwise, the packet is dropped. Moreover,
csmamac has a resend functionality; if an acknowledgment
is not received after fixed time, a packet is sent again. [7]

IV. HARDWARE DESIGN

The goal of this work was to port the Linux OS for the
WARPV2 board. The implementation is based on the previous
Linux porting project done in [2]. The purpose of the port was
to get control about all the layers of the OSI model. Therefore,
the functionality of the OFDM reference design version 16.1
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Fig. 2. The structure of the WARP OFDM reference design.

provided by Rice University was included in the final system.
The reference design provides implementations for the physi-
cal layer and the MAC functionality of the datalink layer of the
OSI model, so the role of Linux was to implement the Ethernet
part of the datalink layer and the network layer. The OSI model
implementation of the final Linux enriched second generation
wireless open-access research platform (LE-WARPv2) system
is illustrated in Figure 3.
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Fig. 3. The OSI model implementation.

The reference design contains the MAC functionality and
the OFDM physical layer. It is designed to use only one of
performance optimization with enhanced RISC performance
computing (PowerPC) 405 cores present in the FPGA of
the WARPV2 board. Therefore, the LE-WARPvV2 system was
divided into two parts, a MAC side and a Linux side, as seen
in Figure 4. The MAC side uses central processing unit (CPU)
0 and it runs a simple OS called Standalone OS provided
by Xilinx. Standalone OS offers low level software modules
used to access hardware specific functions in order to run
applications [8, p. 1]. The MAC side runs an application, which
implements the MAC functionality and controls the physical
layer. The Linux-side uses CPU 1. It has the Linux kernel
running on it with a set of utilities and application programs.



Linux supports PowerPC architecture and the particular
processor type used in the WARPv2 board. Therefore, main
tasks in the porting process was to create a suitable FPGA
hardware design for the combination of the Linux side and the
MAC side, implement a method for communication between
these sides, and configure the kernel to fit to the hardware
design. The Linux system was implemented by using Buildroot
for a root filesystem and cross-compilation toolchain genera-
tion, and Busybox for userspace utilities and applications.

Linux enriched design in second generation WARP
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Fig. 4. Functional overview of the Linux enriched WARP system.

In order to port Linux to the WARPv2 board, the FPGA
design has to contain necessary hardware. Linux requires at
least a processor, a system bus, main memory, and a storage
device for filesystems. However, the final goal in this work
was to implement a LE-WARPv2 system with the functionality
of the OFDM reference design version 16.1. Therefore, the
final FPGA hardware design is based on the OFDM reference
design. Hardware for Linux was added to this design. A
PowerPC 405 core was added as a processor dedicated to
Linux and processor local bus (plb) was added as a system
bus. All peripherals controlled by Linux were connected to
this system bus. Additionally, system advanced configuration
environment (SystemACE) and Ethernet MAC intellectuel
property (IP) cores were moved from the MAC side to the
Linux side by connecting them to the system bus of Linux.
SystemACE controls the usage of a CompactFlash (CF) card
and the filesystem of Linux is stored to CF card. Therefore, it
was important that Linux was able to control SystemACE.

The OFDM reference design does not use external dou-
ble data rate (DDR) memory of the WARP board because
the memory footprint of the MAC application is low and
because external memory is too slow for the requirements
of the physical layer. Thus, external memory was defined
as a main memory for Linux. There are several methods to
connect an external memory controller, multi-port memory
controller (MPMC), to a processor. For example, MPMC can
be connected directly to the processor or it can be connected
via plb. In this work, MPMC was connected to Linux core via
plb even using the direct connection would have offered better
performance. The plb based architecture has been chosen due
to simpler implementation and because performance provided
by it was sufficient.

Hardware of the OFDM reference design needed to be
modified to co-operate correctly with the hardware of the
Linux side. A new bus for the MAC side was added to improve
the performance of the MAC side. Memory for a heap and
a stack of the MAC side was connected to this bus. Other
peripherals of the MAC side remained intact.

Two mailboxes and shared memory was added to the final
design. Other ends of mailboxes were connected to the system

bus of the MAC side and other end to the system bus of Linux.
Shared memory was connected as well between the buses of
MAC and Linux sides. Simplified illustration of the final FPGA
hardware design can be seen in Figure 5.
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Fig. 5. Simplified FPGA hardware design.

A. Interprocessor communication

The communication between MAC and Linux sides was
implemented with mailboxes and a shared memory block.
Generally, the mailbox IP core implements a method to pass
messages between one or more senders and receivers. It
forms a transmission control protocol (TCP)/Internet protocol
(IP)-like message channel where messages are queued in by
senders and dequeued by receivers. Mailboxes support both
synchronous and asynchronous methods for the reception of
messages. In the synchronous method, polling is used to detect
new data on the mailbox, whereas the asynchronous method
uses interrupts.

The mailbox IP core provided by Xilinx uses two first
in first out (FIFO) buffers; one for transmit and one for
the reception. A buffer uses either distributed random access
memory (RAM) or block RAM (BRAM) and the size of it is
configurable. Mailboxes were used to inform other side about
new data in shared memory.

The final FPGA design included shared BRAM memory
and two mailboxes. One of the mailboxes was dedicated to
IP-traffic and one for controlling and logging traffic between
processor cores. The sizes of buffers of mailboxes were limited
to 16 kB and they used the synchronous method to pass
messages. Mailboxes were polled constantly to detect when
new data was available in the shared memory. The shared
memory was divided into fixed size slots, which held any large
data that was to be transferred. The structure of this mailbox-
based intercore communication solution is illustrated in Figure
6.
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Fig. 6. Intercore communication structure.

V. SOFTWARE DESIGN

Typically, software needed in the embedded system is
highly tied to hardware. This was the case in this work; the
kernel configuration depended on hardware, and drivers for
communication between cores could not be written until it
was known how the communication will be implemented at the
hardware level. Although it was known at the beginning that
there will be Linux running on top of the hardware. Therefore,
when designing hardware, it was taken care that either Linux
was supporting for chosen hardware solutions or it is possible
to create Linux support with a reasonable workload. There
was support in Linux for all IP cores used in the final FPGA
hardware design except interprocessor communication. Thus,
software design tasks were to configure the Linux kernel to
match the FPGA hardware design, build a root filesystem
and needed utilities and applications, and write drivers for
interprocessor communication.

A. Kernel configuration

The Linux kernel used in this paper is based on 2.6.28 from
Xilinx repository. Several patches and two custom drivers were
added to achieve stability and interprocessor communication.
The kernel was configured to support devices in the target
board. The configuration was done without modules to opti-
mize memory usage.

The PowerPC Linux uses device-tree to describe the hard-
ware system such that the kernel can configure itself during the
boot. Thus, the device-tree matching designed hardware had
to generate before the kernel compilation. The device-tree was
generated using the device-tree generator provided by Xilinx.
The created device-tree file was added to the kernel source tree
in order to build a working kernel image.

B. Communication between PowerPC cores

The communication interface was designed in order to
enable communication between Linux and MAC sides. Two
protocols using it was designed. One for handling communi-
cation between the Linux and the MAC sides and another for
logging and controlling purposes.

The wireless interface device driver sets up a standard
Linux Ethernet interface and send and receive packets to the
MAC side using a mailbox and shared BRAM memory. The
driver does not contain wireless extensions like wireless local
area network (WLAN) drivers do; Linux sees this interface
as a regular Ethernet interface. The driver probes mailboxes
during the kernel boot up, and when the correct mailbox is
found, it sets up the Ethernet interface. MAC and IP addresses

are set by using standard Linux tools. The MAC address is
sent to the MAC side in order to filter network packets by a
MAC application.

Buffering between Linux and the Ethernet driver is done in
the Xilinx platform studio (XPS) Locallink tri-mode Ethernet
MAC (TEMAC) IP core and the Xilinx kernel driver for that
IP core. The kernel driver is connected to the Linux IP stack.
Buffering between cores consists of shared memory. The driver
copies packets to the shared memory and notifies the MAC side
with a mailbox message. Similarly, when receiving packets
from the MAC side, packets are copied from shared memory
and delivered to the kernel. The kernel informs the MAC side
when it has copied a packet from the shared memory. On
the MAC side, packets received from Linux are copied to the
buffers of the PHY using direct memory access (DMA). Also
packets send to Linux are delivered from PHY buffers to the
shared memory using DMA.

The logging protocol is used to handle control communi-
cation and logging messages. The logging device driver is a
character type driver which provides mechanisms to write data
to the shared memory between Linux and MAC sides, and
notify other side via mailbox that there is data in the shared
memory. Two userspace applications were developed to use
implemented device drivers.

C. Root filesystem

Linux requires a root filesystem in order to use all its
services and features. The root filesystem is the filesystem
mounted at the base of the filesystem hierarchy; any other
filesystem is mounted under the root filesystem. A Linux
system has special requirements for the root filesystem. It has
to contain applications and utilities to boot a system, initialize
services such as networking, load device drivers, and mount
other filesystems. [9]

The root filesystem for Linux in the WARPv2 board was
created by using Buildroot [10]. It was used because it provides
a simple and efficient method to create a root filesystem with
a variety of userspace applications and libraries. Additionally,
Buildroot supports Busybox [11] which provides large number
of small versions of common utilities. Buildroot was also
used to generate the uClibc-based cross-compilation toolchain
required for compiling userspace applications.

D. Applications

There are numerous applications and utilities needed in the
embedded Linux system. In the custom Linux system, there is
not any package manager available which provides method
for installing application binaries. Therefore, all essential ap-
plications and utilities have to compile from source code to
match the target system. Busybox provides an efficient manner
to compile the most of the required applications and utilities.
Additionally, with Busybox, sizes of application binaries are
smaller than they are when compiled independently, because
Busybox uses stripped versions of applications and utilities.
Therefore Busybox is a reasonable choice for any embedded
Linux project.

Using Busybox does not remove the option to compile ad-
ditional applications or utilities and add them to the filesystem.
Therefore it was possible to add applications not supported by
Busybox to the system without issues. These applications were



compiled to PowerPC architecture using the cross-compiler
provided by Buildroot, and binaries were moved to the filesys-
tem of Linux.

The MAC application was modified to send and receive
Ethernet packets to Linux via implemented interface. This was
done by removing Ethernet MAC core references from the
source code, and replacing them so that payloads of outgoing
Ethernet packets were forwarded to the shared memory and
headers of these packets were forwarded to the mailbox. The
incoming Ethernet packets handling functionality was changed
so that the status of the mailbox was polled in order to notice
when new Ethernet packets will be available. Additionally, the
original MAC application code was improved by adding con-
trol command handling and data gathering functionalities for
logging purposes to the source code. These changes enabled
Linux to take control about the MAC layer and to get logging
data from the MAC side.

VI. BUILDING THE SYSTEM

All required software for the LE-WARPv2 system can be
installed in a single CF card. The system will bootup automati-
cally when the board is powered up and the CF card is mounted
to the board. When building a bootable system to a CF card, it
is required that the CF card has to have a boot partition as the
first partition on the card. It is mandatory that the boot partition
contains a valid Microsoft disk operating system (MSDOS)
filesystem, since it is the only filesystem type SystemACE
supports. The advanced configuration environment (ACE) file
containing hardware design, the Linux kernel and application
executables is stored to the boot partition. Other partitions
needed were ext2-type partition for Linux root filesystem and
FAT32-type partition for data such as log files. However, many
other filesystem types can be used as well.

The FPGA hardware design and MAC software was created
using Xilinx XPS tools. These tools produced a bitstream file
which contained the FPGA hardware design and the compiled
MAC application. The Linux kernel image is required to
combine with the bitstream file in order to produce a bootable
ACE file. The cross-compilation toolchain of Xilinx XPS is
not suitable for compiling the kernel due to lack of parts its
version of GNU C compiler (gcc). Therefore, Linux had to be
compiled with a toolchain which had a full support of gcc.
Crosstool-NG was used to compile the kernel. Before Linux
can be compiled for the WARPV2 board, the device-tree file
has to be generated and added to the kernel source tree. In
order to create the final ACE file, the Linux kernel image and
the bitstream file have to be combined. This was done using
SystemACE file generator (GenACE) script from Xilinx XPS.
Created ACE file contained all information about how to boot
up both CPUs from CF card, and it was copied to the boot
partition of the CF card.

The building process was mitigated by scripts. These
scripts automate the partioning of the CF card, producing the
the bitstream with MAC application, combining the bitstream
with the Linux kernel image, creating root filesystem, and
copying needed files to the CF card. A configurable master
script including all scripts listed earlier was also written to
provide user friendly interface for building the LE-WARPv2
system.

VII. TEST RESULTS

Several test cases were created to verify that the LE-
WARPV2 system behaves as planned. Test cases were di-
vided into two sections: hardware tests and performance tests.
Hardware tests aimed to verify that hardware of the LE-
WARPV2 system was properly configured and the performance
of hardware components was decent, whereas the purpose
of performance tests was to confirm that performance of the
whole system enabled demands of realtime operation.

Throughput between two WARPv2 boards was measured
using both the Linux enriched design and the OFDM reference
design. The carrier sensing medium access (CSMA) MAC
application was used in the measurement. The application was
modified before measurements, because it had programming
error which caused poor TCP throughput performance with the
OFDM reference design. Boards were connected with coaxial
cables and HP 8496B 60 dB attenuator instead of a wireless
link. This was done in order to get more reliable and com-
parable results. Measured throughput values were compared.
Measurement was done using user datagram protocol (UDP)
and TCP protocols. Iperf program version 2.0.5 was used as
measurement software.

Test results of UDP throughput are introduced in Figures
7 and 8. According to test results, the throughput performance
of the Linux enriched design when using UDP was similar to
the OFDM reference design. TCP results are shown in Table
I. Hence, the throughput performance of the Linux enriched
design is suitable for researching purposes.
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Fig. 7. UDP throughput.
TABLE 1. THROUGHPUT COMPARISON USING TCP
Design Transfer (Mbytes) Bandwidth (Mbit/s)
The OFDM reference design | 62.6 5.24
The Linux enriched design 48.7 4.09

A. FPGA resource usage analysis

Used FPGA resources in the OFDM reference design and
the Linux enriched design were compared. The Linux enriched
design uses only 10 percentage points more slices than the
OFDM reference design. The Linux enriched design demands
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Fig. 8. UDP packet loss.

86% of available slices of the FPGA. Therefore, the FPGA can
be considered as heavily utilized. The Linux side of the design
might be difficult to reduce without loosing features. However,
there is a lot of room for improving the MAC side design, since
some functionalities, such as packet detector, have more than
one implementation in the design.

VIII. CONCLUSION

LE-WARPvV2 extends the features of the WARPv2 board.
It provides a feature-rich platform for advanced wireless net-
works researching without a need to manage a full complexity
of the platform; Linux offers interfaces for applications to
use hardware of the WARPv2 board efficiently and it has
wide variety of tools and utilities available required in the ad-
vanced wireless networks research. Furthermore, Linux makes
possible to control the MAC layer of the WARPv2 board.
LE-WARPvV2 boards can be connected together in order to
form a network. This makes possible to form a environment
for advanced wireless networks researching. In other words,
LE-WARPvV2 enables the researchers of advanced wireless
networks to set up a wireless test network to test and verify
complex theoretical algorithms at different layers of OSI model
and find out the practical limitations of theoretical results.
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