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Abstract—Cognitive Radio (CR) technology which uses in-
telligent signal processing at the physical layer of a wireless
system has been considered for coordinating better the spectral
resources. In this study, we investigate spectrum sensing methods
which utilize the frequency variability of the energy spectral
density which is introduced by the primary transmissions. The
variability is partly due to the transmitted spectrum shape and
party introduced by the frequency selective multipath channel.
The spectral variability is observed by dividing the sensing
frequency band into relatively narrow subbands and compar-
ing the subband energies. We compare the subband energy
based methods against the eigenvalue based sensing method,
which exploits the signal correlations introduced by the primary
transmission. Eigenvalue based sensing is known to be robust
against the inevitable noise uncertainty, which severely limits the
usability of energy detection for primaries with low SNR. Our
results demonstrate for the subband energy detection methods,
similar robustness against noise uncertainty as the eigenvalue
based methods have.

Index Terms—Cognitive radio, spectrum sensing, maximum
minimum energy detection, frequency selective channel.

I. INTRODUCTION

Cognitive radio (CR) is emerging as an attractive solution
to the challenge of spectral congestion in wireless commu-
nication systems. In CR networks, a secondary unlicensed
user (SU) is allowed to use the spectrum when the primary
licensed user (PU) system is idle [1], [2]. Hence, spectrum
sensing sensing is an important function irrespective of the
CR architecture and becomes critical in CR communication
systems.

Energy detection, which is commonly formulated as a
Neyman-Pearson type binary hypothesis testing problem, is
modelled by the chi-square, normal or gamma type statistical
distributions [1]–[5]. Energy detection is the most popular
sensing method thanks to its simple practical realization
and low computational complexity [3], [4]. Based on these
properties, many studies have been reported in the context
of Additive-White-Gaussian-Noise (AWGN), fading channels,
diversity techniques and collaborative detection [6]–[11].

In practice, sensing performance is affected by the re-
quirement of reliable operation with very low SNR of the
PU signal in the presence of significant uncertainty about

the actual noise power [12]. In many traditional energy de-
tector based spectrum sensing studies, the noise variance is
assumed to be known perfectly according to the previous
energy measurement [10], [11]. It is clear that the performance
of the traditional energy detector based sensing significantly
decreases under noise uncertainty.

Spectrum sensing methods which utilize the frequency vari-
ability of the energy spectral density (ESD) within the sensing
band have been investigated in [13]–[15]. Subbandwise energy
detection is utilized for evaluating the ESD variability, which
is assumed to be due to the frequency selective multipath
channel. When the channel is frequency selective and the noise
is AWGN, this sensing approach can effectively remove the
noise floor, resulting in the elimination of noise uncertainty
effects. The decision statistic is based on order statistics of
the differential ESD [13]. This method, which is here referred
to as differential Max-Min ED, was shown to be robust against
the noise uncertainty with low SNR.

In this paper, we develop a novel subband energy based
sensing method and investigate the performance and complex-
ity tradeoffs in noise uncertanty tolerant spectrum sensing.
More specifically, the contributions of this paper are listed
below:

• A conceptually and computationally simplified sensing
method based on subband energy differences (called
Max-Min ED) is developed.

• Max-Min ED and the differential method from [14]
are evaluated and compared in two different sensing
scenarios: (i) non-oversampled case, where the subband
energy differences are due to the frequency selective
channel only, and (ii) oversampled case, where the spec-
tral variability is due to both multipath channel and the
transmitted spectral shape.

• Max-Min ED methods are compared with Max/Min
eigenvalue based sensing in terms of detection perfor-
mance and computational complexity. It is demonstrated
that both Max-Min ED methods reach similar robustness
against noise uncertainty as the eigenvalue based methods
have.
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Fig. 1. Block diagram for the differential Max-Min energy detection and the proposed simplified variant (without the dotted boxes).

The remainder of the paper is organized as follows: Section
II formulates first the system model and the basic ED scheme
and then presents two sensing methods which are based on
the variation of the subband energies. First the differential
maximum-minimum energy based method from [14] is de-
scribed. Then a conceptually simpler scheme, utilizing just
the difference of maximum and minimum subband energies,
is described. Principles for computational complexity analysis
are briefly explained in Section III and numerical results for
detection performance and computational complexity are given
in Section IV. Closing remarks are given in Section V.

II. SYSTEM MODEL AND MAXIMUM - MINUMUM ENERGY
DETECTOR BASED SPECTRUM SENSING

A. System Model and Problem Formulation

Spectrum sensing is typically formulated by the following
binary hypothesis testing problem [1],

H0 : y(n) = w(n)

H1 : y(n) =

x(n)︷ ︸︸ ︷
s(n)⊗ h(n)+w(n)

(1)

where y[n] is the signal observed by the sensing receiver with
s[n] and w[n] denoting the PU information signal and the zero-
mean, complex, circularly symmetric, wide-sense stationary
white Gaussian noise, respectively. h[n] denotes the channel
impulse response and x[n] is the transmitted singnal. Hence,
it is evident that under hypothesis H0, the PU is considered
absent and y[n] consists only of w[n]. On the contrary, under
hypothesis H1 the PU information signal x[n] is present along
with w[n]. Based on this, the corresponding test statistic for
the energy detector is expressed as, T (y) = 1

N

∑N−1
n=0

∣∣y[n]∣∣2,
with N denoting the length of the observation sequence, also
referred to as sample complexity.

The decisions of the test statistics can be assumed as
the Gaussian distribution due to large number of samples,
which has been shown extensively to be a rather tractable and
accurate assumption [12], [16]–[18]. To this end, the following
formulation is straightforwardly obtained,

T (y)|H0
∼ N

(
σ2
w,
σ4
w

N

)
(2)

and
T (y)|H1

∼ N
(
σ2
x + σ2

w,
(σ2
x + σ2

w)
2

N

)
(3)

where σ2
x and σ2

w denote the variance of the PU information
signal and AWGN process, respectively. Based on this and

given that the instantaneous signal-to-noise ratio (SNR) is ξ =
σ2
x/σ

2
w, the corresponding false alarm probability (PFA) and

detection probability (PD) can be expressed as:

PFA = Pr(T (y) > γ|H0) = Q

(
γ − σ2

w

σ2
w/
√
N

)
(4)

and

PD = Pr(T (y) > γ|H1) = Q

(
γ − σ2

w(1 + ξ)

σ2
w(1 + ξ)/

√
N

)
(5)

respectively, where Q(·) is the standard Gaussian comple-
mentary cumulative distribution function and γ denotes the
predefined energy threshold.

The variance of the PU information signal is practically
unknown and thus the value of γ is typically determined by
the assumed noise variance and targeted false alarm probability
as γ = σ2

w

(
1 +Q−1(PFA)/

√
N
)

.
In practice, the estimation of exact noise variance is not pos-

sible. The detection and false alarm probabilities as functions
of the SNR depend critically on the accuracy of noise variance
estimate. In practice, the noise variance can be expected to be
in the range σ2

w ∈ [(1/ρ)σ2
n, ρσ

2
n] where ρ > 1 is a parameter

that quantizes the size of the uncertainty. The noise uncertainty
is usually expressed in dB units as x = 10log10ρ. In the
presence of noise uncertainty, the expressions for PFA and
PD are modified as follows [12]

PFA = max
σ2
w∈[ 1ρσ2

n,ρσ
2
n]
Q

(
γ − σ2

w

σ2
w/
√
N

)

= Q

 γ − ρσ2
n√

(ρσ2
n)

2

 (6)

PD = min
σ2
w∈[ 1ρσ2

n,ρσ
2
n]
Q

(
γ − σ2

w(1 + ξ)

σ2
w(1 + ξ)/

√
N

)

= Q

 γ − σ2
n((1/ρ) + ξ)√

(σ2
n((1/ρ) + ξ))

2
/N

 (7)

B. Maximum Minumum Energy Detector Based Spectrum
Sensing with or without Differentiation

This differential approach, which is seen in Fig. 1 can be
separated to the following steps [13]–[15]:
• Estimating the energies across a number of subbands over

the total sensing frequency band.



• Ordering the calculated subband energies.
• Performing differentiation process for the ordered sub-

band energies.
• Finding the maximum and minimum of the energy dif-

ferentials.
• Comparing the test statistic with the threshold which is

calculated according to Neyman-Person test.
1) Energy Spectral Density Approximation: The first task

is to perform the NFFT -point FFT operation on rectangularly
windowed sets of NFFT samples. The subband signals can be
expressed as:

Ym[k] =

 Wm[k] H0

Sm[k]Hk +Wm[k] H1

 (8)

where Sm[k] is the transmitted signal by primary users as
it is present at the mth FFT output sample in subband k,
and Wm[k] is the corresponding channel noise sample. The
subband width is assumed to be small enough such that
the channel appears as flat fading within each subband and
the channel frequency response can be modeled through the
subband gains Hk. When the AWGN only is present, the white
noise is modeled as a zero-mean Gaussian random variable
with variance σ2

w, i.e., Wm[k] ∼ N(0, σ2
w). Sm[k] ∼ N(0, σ2

k)
where, σ2

k is the variance (power) at subband k. The subband

ED process can be summarized as Uk = 1
Lt

Lt∑
m=1
|Ym [k]|2 with

Lt = N/NFFT . At this point, with the aid of the central limit
theorem, we are able to make the following approximations:

Uk =


N
(
σ2
w,

2
Lt
σ4
w

)
H0

N
(
|Hk|2σ2

k + σ2
w,

2
Lt

(
|Hk|2σ2

k + σ2
w

)2)
H1

(9)

2) Ordering: The second stage includes placing the sub-
band energies the order of their magnitude. This step does
not effect the statistical properties of of the ordered sequence,
denoted as Ûk. Thus the probability distribution of Ûk follows
(9).

3) Differentiation: The ordered subband energy sequence is
differentiated such that Dk = Ûk+1 − Ûk. This operation can
be thought of as subtracting two normally distributed random
variables as shown in (9). Hence:

Dk ≈


N
(
0, 4

Lt
σ4
w

)
H0

N
(
E[Ûk]− E[Ûk−1],

4
Lt

(
|Hk|2σ2

k + σ2
w

)2)
H1

(10)

Under H0, this results in having a normal distribution with
a zero mean and a variance which has twice the value of
variance mentioned in (9). If the PU has white spectrum, all
the subband energies follow the same statistics also under H1,
and the mean becomes zero. This indicates that the method is
not sensitive to the noise uncertainty.

4) Threshold Calculation and Decision Device: The deci-
sion stage comes after determining the maximum and min-
imum of the differences of the ordered subband energy se-
quence. At this stage of the algorithm, this difference between
the maximum and minimum is compared with a predetermined
threshold. This threshold can be obtained from the target
PFA using the Neyman-Pearson test [19] with zero mean and
double variance compared to the basic ED. According to this
test, when Dmax −Dmin > γ, the signal is assumed to be
present, otherwise it is expected that there is only noise in the
band of interest.

We propose to consider also a simplified approach which, in
the same way as the described differential scheme, utilizes the
variations of the power spectrum for primary user detection.
However, we remove the ordering and differentiation stages.
Then the algorithm simply searches the maximum and mini-
mum of the subband energies and uses their difference as the
decision statistic. The test statistic follows the distribution of
(10) under H0. Under H1, the variance is the same as in (10)
but the mean becomes E[Umax]− E[Umin].

III. COMPUTATIONAL COMPLEXITY ANALYSIS OF
MAX-MIN ENERGY BASED SENSING

The computational complexity is one of the most crucial
parameters of spectrum sensing algorithms. Especially, com-
plexity effects the sensing time directly and this means that the
signal can be missed due to the high computational complexity.
Numerical results of the traditional eigenvalue and presented
Max-Min based spectrum sensing algorithms will be discussed
in detail in the next section.

The main complexity of the proposed scheme comes due to
the following stages:
• NFFT -point Discrete fourier transform (DFT) introduces
O(NFFT log(NFFT )) operations.

• Finding of the Max & min energy values is needed and
the complexity is O(NFFT ).

In the differential version, also the ordering and differences
of NFFT values are required, with complexity O(NFFT ).

IV. NUMERICAL RESULTS

The detection probabilities for basic energy detector (ED),
traditional Max/Min eigenvalue based detector [20], Max-Min
ED with differentiator, and the proposed simplified Max-Min
ED are evaluated using simulations with three different chan-
nel models (Indoor, ITU-R Vehicular A and SUI-1 channels
[21]). The 1 dB noise uncertainty case is considered as the
worst-case scenario in terms of noise variance estimation.
In all the addressed cases, the time record length is 10240
complex samples and 1000 Monte Carlo simulations are
applied to evaluate the detection probability reliably. The target
false alarm probability is PFA = 0.1. Non-oversampled and
2x-oversampled signal models are used under 20 MHz sensing
bandwidth to see the effects of correlations (in the eigenvalue
based detector case) or the PSD variability (in the Max-Min
ED cases). In the non-oversampled case, the correlations and
PSD variability are introduced by the multipath channel only,



whereas in the oversampled case, they are introduced both
by the channel and the shape of the transmitted spectrum.
The PU signal is here modeled using filtered white Gaussian
noise, using an FIR filter designed with Kaiser window. We
use NFFT = {8, 32} for Max-Min ED methods. In eigenvalue
based sensing, the smoothing factor L = 16, which means
that the sample covariance matrix size is 16x16 in the non-
oversampled case and 32x32 in the oversampled case [20].
The Vehicular A channel has 6 taps and its maximum delay
spreads is about 2.5 µs. The Indoor channel model has 16
taps and 80 ns delay spread. SUI-1 channel model which has
3 Ricean fading taps and 0.9 µs delay spread is used as the
third channel model [21].

The simulated detection probabilities for the spectrum sens-
ing methods under consideration are shown in Figures 2 - 7.
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Fig. 2. Simulated detection probabilities using eigenvalue based an Max-
Min energy based detectors without oversampling with 8 and 32 subchannels
under Indoor channel. Theoretical performance of energy detector without
noise uncertainty and with 1 dB noise uncertainty included as reference.

From the simulation results, we can observed that the
Max-Min ED methods are able to overcome the problem of
noise uncertainty in all the oversampled cases. Regarding the
non-oversampled cases, these methods perform well with the
Indoor and Vehicular A channels, whereas the performance
with SUI-1 channel is inferior to ED with 1 dB noise
uncertainty. The simplified Max-Min ED is competitive in
detection performance with the differential Max-Min ED, with
slightly improved performance in all the cases. The detection
performance of the Max-Min ED methods is rather similar
to that of the Max/Min eigenvalue detector. Further, it can
be seen that 8 subchannels (8-point FFT) is sufficient in
all the oversampled cases and also in the non-oversampled
Indoor channel case. It was also verified that increasing the
number of subbands beyond 32 doesn’t improve the detection
performance in any of the cases.

Comparison of computational complexity of the Max/Min
eigenvalue detector [22] and the presented Max-Min energy
based sensing methods is given in detail in Table I and
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Fig. 3. Simulated detection probabilities using eigenvalue based an Max-Min
energy based detectors with 2x-oversampling, 8 and 32 subchannels under
Indoor channel. Theoretical performance of energy detector without noise
uncertainty and with 1 dB noise uncertainty included as reference.
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Fig. 4. Simulated detection probabilities using eigenvalue based an Max-
Min energy based detectors without oversampling with 8 and 32 subchannels
under ITU-R Vehicular A channel. Theoretical performance of energy detector
without noise uncertainty and with 1 dB noise uncertainty included as
reference.

Table II. While Table I shows the computational complexity
for the non-oversampled case, complexity is calculated for 2x-
oversampled case in Table II.

Depending on the values of L, M , N and NFFT , significant
reduction of the computational complexity can be reached. For
instance from Table II, when the number of samples is 10240
with L = 16 and M = 2, the overall computational complexity
(number of multiplications and additions) of the traditional
max/min eigenvalue based algorithm is 360448 whereas it is
122880 and 81920 under the case of NFFT = 8 for Max-
Min energy with differentiation and without differentiation,
respectively. Hence upon using the Max-Min algorithm, the
complexity is reduced by about 78 percent.
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Fig. 5. Simulated detection probabilities using eigenvalue based an Max-
Min energy based detectors with 2x oversampling, 8 and 32 subchannels
under ITU-R Vehicular A channel. Theoretical performance of energy detector
without noise uncertainty and with 1 dB noise uncertainty included as
reference.
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Fig. 6. Simulated detection probabilities using eigenvalue based an Max-
Min energy based detectors without oversampling with 8 and 32 subchannels
under SUI-1 channel. Theoretical performance of energy detector without
noise uncertainty and with 1 dB noise uncertainty included as reference.

V. CONCLUSION

In this study, we investigated spectrum sensing methods
which utilize the variability of the power spectral density of
the received signal, which is due to multipath propagation
channel and/or the shape of the transmitted PU spectrum.
It was observed that the methods are able to overcome the
problem of noise uncertainty in the oversampled cases and
also in the non-oversampled cases if the channel exhibits
sufficient frequency selectivity. In those cases, the detection
performance was found to be similar to that of the Max/Min
eigenvalue detector. The proposed simplified scheme reaches
or exceeds the performance of the differential scheme in all
oversampled cases and in non-oversampled cases with high
frequency selectivity.
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Fig. 7. Simulated detection probabilities using eigenvalue based an Max-Min
energy based detectors with 2x-oversampling, 8 and 32 subchannels under
SUI-1 channel. Theoretical performance of energy detector without noise
uncertainty and with 1 dB noise uncertainty included as reference.

While the proposed simplified scheme is conceptually quite
simple compared to the differential approach, the compu-
tational complexities of these two methods are rather sim-
ilar, and much smaller than the complexity of the eigen-
value based detector. The overall complexity can be reduced
from O((ML)

3
) +MN(1 + L) to O(NFFT log(NFFT )) +

O(NFFT ). The complexity reduction is due to replacing the
calculation of the covariance matrix and its eigenvalues by
blockwise FFT processing.

In the future work, to complete the picture, we will consider
to quantify analytically the correlations introduced by the
waveform and channel in different scenarios. Also other forms
of decision statistic, like maximum subband energy / minimum
subband energy, will be considered.
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