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Abstract—In dynamic spectrum access, a new wireless system
(secondary user: SU) can utilize the spectrum licensed to an
existing wireless system (primary user: PU) while the spectrum
is vacant. For accomplishing effective and reliable spectrum
utilization, statistics of the spectrum usage by the PU, such as
duty cycle (DC), are useful for the SU. In this paper, we investigate
accurate spectrum measurement technique with energy detector
for obtaining the accurate duty cycle (DC) estimation with a
noise floor (NF) estimation which is used for proper threshold
setting. In one conventional method, median filtered FCME
(Forward Consecutive Mean Excision), frequency selectivity due
to interference among spectra of independent symbols degrades
the NF and DC estimation performances. In this paper, we
propose Welch FFT based NF estimation and DC estimation
since Welch FFT has a potential to suppress the effect of the
frequency selectivity. We analytically obtain probability density
function (PDF) and right tail probability of output of the Welch
FFT process and this analysis enables to set proper threshold.
Numerical results will show that the proposed method can achieve
better NF estimation performance. In addition, the NF estimation
improvement and the suppression of frequency selectivity by the
Welch FFT can provide around 15 dB SNR gain in the DC
estimation performance.

I. I NTRODUCTION

For the spectrum scarcity problem, dynamic spectrum ac-
cess (DSA) with cognitive radio techniques by the unlicensed
user (secondary user: SU) on the spectrum owned by the
licensed user (primary user: PU) has been investigated [1].
In DSA, the SU can utilize the vacant spectrum as long as it
will not cause any harmful interference to the PU. To find the
vacant spectrum, spectrum sensing has been investigated [2].

The requirements for spectrum sensing are in fact very
challenging. For example, detection probability has to be
higher than 90% in significantly low signal to noise ratio (SNR
γ) region, such as -14dB or less [3]. Therefore, achieving the
requirement at low cost is difficult.

One of the possible approaches to achieve low cost and
accurate spectrum sensing is use of the statistics PU spectrum
utilization, such as duty cycle (DC), in spectrum sensing.
Specifically, if DC of PU is available, SU can select stochasti-
cally vacant spectrum for spectrum sensing. Therefore, it is
possible to achieve accurate spectrum sensing performance
with low complexity [4], [5]. In addition, the statistics are
useful for designing SU’s medium access control protocol
effectively [6]. Moreover, for more dynamic and flexible

spectrum utilization in future wireless networks, spectrum
utilization statistics will be very useful. In this approach,
a development of accurate spectrum measurement system is
necessary.

There are several spectrum measurement campaigns for
accomplishing DSA [7], [8]. In most of the spectrum measure-
ments, energy detector (ED) with threshold is used [9]. ED is
very simple and does not require any prior information about
the PU signal, however the detection performance strongly
depends on the threshold setting [10], [11]. There are several
criteria to set the threshold and the most appropriate approach
is constant false alarm rate (CFAR). In this case, noise floor
(NF) estimation is an important issue for the threshold setting,
however most of the previous works have not considered
this issue deeply but instead assumed the NF was known. In
long term spectrum measurement, NF is not static [12] and
therefore a periodic NF estimation is required.

Since in practice it can be difficult to get guaranteed noise-
only samples, one important issue in the NF estimation is
that it is necessary to classify the observed samples into noise
only samples denoted as clean samples, and noise and signal
samples denoted as signal samples. FCME (Forward Consec-
utive Mean Excision) algorithm [13] has been proposed for
the division process. However, the NF estimation performance
is affected by outliers in the observed samples and biased
estimation error.

An extended FCME algorithm, median filtered FCME with
a correction factorβ (MED-FCME-β), has been proposed to
resolve the issues [14], [15]. The median filter is used to avoid
the effect of large outliers and it has been shown that MED-
FCME-β can achieve proper NF estimation performance.
For DC estimation, localization algorithm based on double-
thresholding with adjacent cluster combining (LAD-ACC) is
used and it has also been shown that LAD-ACC based method
can achieve proper DC estimation performance.

In this paper, we focus on a different issue, which isfre-
quency selectivity, in NF and DC estimations. Similar problem
has been observed in several works for example [16], [17].
Specifically, in the case that the actual DC is more than or
equal to0.5 and the signal to noise power ratio (SNR) is low
such as0 dB, NF estimation performance with MED-FCME-β
may degrade. This degradation is due to frequency selectivity
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Fig. 1: System model

caused by interference among spectra of independent symbols.
In DC estimation, the frequency selectivity and NF estimation
error degrade the DC estimation performance significantly.
For this issue, we propose MED-FCME-Welch where the
Welch FFT is employed [18], [19]. In the related works, [20],
the Welch FFT has been used for spectrum measurement,
especially for signal detection. On the other hand, in this paper,
we mainly focus on the NF and DC estimations with Welch
FFT. In the DC estimation process, LAD-ACC is also used. We
will show that a significant gain in DC estimation performance
can be provided by the proposed method and our approach can
mitigate the effect of the frequency selectivity on the expense
of frequency resolution.

II. SYSTEM MODEL
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The system model is shown in Fig. 1. We assume that
multiple PUs access the observed spectrum randomly. In
addition, we assume that the observation equipment (OE) does
not have any prior information about the spectrum occupancy
by the PUs and PUs’ signal specifications. This situation is
similar to the spectrum utilization in the industry-science-
medical (ISM) band where frequency bandwidth and time
duration of occupancy are not constant and multiple spectrum

occupancies can overlap. The purpose of the OE is to derive
spectrum utilization detection results in two dimensional time-
frequency grid composed of individual bins, i.e., vacant and
occupied, denoted byH0 andH1, respectively.

The observation time frame is composed hierarchically and
one superframe consists ofNF frames as shown in Fig. 2.
Now we focus on thenF th frame. During one frame, the
OE obtains observed equivalent baseband signaly[n](n =
nFNS , nFNS + 1, · · ·nFNS + NS − 1) with sampling rate
fs Hz and the sampled complex signal is given by

y[n] = x[n] + z[n] (1)

where x[n] represents PU signal component,z[n] represent
noise component which is circularly symmetric normal com-
plex random variable with zero mean and unit variance, in
addition we assume flat NF in frequency domain. SNR is
defined byγ = E[|x[n]|2]/E[|z[n]|2] andE[] is expectation
operator. Without loss of generalityNS is assumed to be
power of two. The passband signal is located at the center
frequencyfc and the observed frequencyf is in the region
wherefc − fs/2 ≤ f ≤ fc + fs/2.

Power spectrum density for the given observed samples can
be estimated with

PnF ,nB
=

∣∣∣∣∣ 1√
NS

NS−1∑
k=0

(
y[k + nFNS ]× e−j2πnBk

)∣∣∣∣∣
2

(2)

wherenF is the index number for time frame,nB indicates
frequency bin index number. The actual frequencyf(nB) for
given nB is given by

f(nB) =

{
nBfs
NS

+ fc (0 ≤ nB ≤ NS

2 + 1)
(nB−NS/2−1)fs

NS
+ fc (otherwise),

(3)
wherenB = 0, 1, · · · , NS − 1.

In the NF estimation block, NF estimation is performed
every time frame and the estimated noise power is denoted by
PN (nF ). In the conventional FCME algorithm, NF estimation
PN (nF ) is used for the threshold setting. One of the possible
approaches to enhance the NF estimation performance based
on NF estimates is averaging. In fact, the errors caused by
outliers or frequency selectivity provide biased estimation
error in the NF estimation, therefore averaging is not effective
as mentioned in [15].

On the other hand in the MED-FCME-β and the proposed
method, MED-FCME-Welch, the estimated NF is given by
median filteringNF estimates in a superframe. The details
of the NF estimation methods, FCME, MED-FCME-β, and
MED-FCME-Welch, will be shown in the following sections.

In the threshold setting block, the thresholdτ is set based on
the target PFAṖFA. Specificallyτ has to satisfy the following
equation

ṖFA = Pr (PnF ,nB > τ |H0) , (4)

wherePr() indicates a probability for an event.



In the signal detection block, based on the thresholdτ ,
signal occupancy is detected at two dimensional bin(nF , nB)
as

DnF ,nB
=

{
1 (PnF ,nB

> τ)
0 (otherwise).

(5)

Although median filter can provide accurate NF estimation,
misdetection of the PU channel usage would still be possible
with ED. For this issue, LAD-ACC is used in [15].

III. NF ESTIMATION WITH MED-FCME-β

MED-FCME-β1 consists of FCME algorithm and median
filter. For achieving accurate NF estimation, a compensation
factor β is also used.

A. FCME algorithm

FCME algorithm [21] is an iterative algorithm andni

denotes the index number of the iteration. Now we focus on
thenF th frame and thePnF ,nB

sorted in ascending order are
denoted by

[PnF ,1 PnF ,2 · · · PnF ,c · · · PnF ,N ], (6)

i.e., PnF ,nB ≤ PnF ,nB+1.
The NF estimation in the first iteration is performed as

follows. A set of clean samples is set by

Q(0) = {PnF ,1, PnF ,2, · · · , P i,NQ(0)} (7)

whereNQ(0) = ⌈CNS/100⌉ and this indicates that at least
C% samples are assumed to be clean samples.

An average of the clean samples in the0th iterationQ(0)
is given by

ςnF (0) =
1

NQ(0)

NQ(0)∑
nB=1

PnF ,nB (8)

A threshold in the0th iteration,Th(0), is given by

Th(0) = ςnF (0) · TCME (9)

whereTCME is set based on the target clean sample rejection
rate (CSSR) denoted bẏPFA,CSSR as

TCME = − ln (ṖFA,CSSR). (10)

For ni > 0, Q(ni) is updated as follows

Q(ni) = {PnF ,nB
|PnF ,nB

< Th(ni − 1)}. (11)

The number of the elements inQ(ni) is also updated by
NQ(ni) = |Q(ni)|. Moreover, ςnF

(ni) and Th(ni) are up-
dated as mentioned above.

The iterative process is continued whileNQ(ni) > NQ(ni−
1) is satisfied and the final set of clean samples is denoted by
Q(nend) whherenend = ni − 1. This condition indicates that
the iteration terminates if there are no new added elements
in Q(ni) at thenith iteration. Then, the estimated NF in the
nF th frame,PN (nF ), is given byPN (nF ) = ςnF

(nend).

1In [15], the MED-FCME-β is denoted by MED-FCME with a correction
factor β.

B. NF estimation with MED-FCME-β

In the MED-FCME-β [15], median filter is used for sup-
pressing the effect of NF estimation error in one time frame
PN (nF ). The NF estimation based on the median filter is
shown as follows.PN (nF ) (nF = 0, 1, · · · , NF ) sorted in
ascending order are given by

PN (0) ≤ PN (1) ≤ · · · ≤ PN (NF − 1). (12)

Then, the estimated NF by the median filter is given by

P
(MED)
N =

{
PN (

NF
2 )+PN (

NF
2 +1)

2 (even NF )
PN (NF+1

2 ) (odd NF ).
(13)

As mentioned in the previous subsection,PN (nF ) includes
biased estimation error due to frequency selectivity. Averaging
PN (nF ) can not effectively suppress the biased estimation
error, therefore the median filter is used in [15]. However, the
median filter is effective in the case where DC is less than
50% and if it is more than 50% it leads to some offset/bias.

In the FCME algorithm, it may involve biased NF estimation
error due to the target CSSR. Specifically,ṖFA,FCME of
clean sampled can be eliminated by the FCME algorithm.
To compensate the biased NF estimation error, the correction
factor β is used. The suitable correction factorβ is [15]

β = 10 log 10

NS−h̄∑
j=1

(NS − h̄− j + 1)

(NS − j + 1)(NS − h̄))

 (14)

whereh̄ is integer in the region1 ≤ h̄ ≤ NS and the smallest
number satisfying

h̄ =

⌈
e
TCME

(∑NS−h̄

j=1

(NS−h̄−j+1)

(NS−j+1)(NS−h̄))

)
NS

⌉
. (15)

The estimated NF in the MED-FCME-β is given by
P

(MED−β)
N = P

(MED)
N + β.

For signal detection, the thresholdτ is set by

τ = P
(MED−β)
N +m, (16)

wherem is a shift value set to satisfẏPFA. SincePnF ,nB

under H0 follows exponential distribution, the properm is
given by

m = 10 log 10(− ln (ṖFA)). (17)

IV. DC ESTIMATION AND FREQUENCY SELECTIVITY

A. LAD-ACC method

LAD-ACC algorithm is used for DC estimation. DC indi-
cates signal occupancy rate in a certain frequency bin2.

An example of the process of LAD-ACC is presented in
Fig. 3. In the LAD, two thresholds, low thresholdτL and
high thresholdτH, are used and they are also set based on
target CSSRs,ṖFA,L and ṖFA,H, respectively. At first, in the
step low (Fig. 3), signal is detected with low threshold. In

2DC and channel occupancy rate are different parameters. In [15], DC and
channel occupancy rate are defined. In this paper, we only focus on DC in a
certain bin where PU signal exists randomly.
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Fig. 3: Process of LAD-ACC.

fact, this detection result corresponds toDnF ,nB in (5) with
estimated PSD such asPnF ,nB

. Contiguous detected samples
are grouped together. In the example, there are four groups in
the step low and each sample group is enclosed by a square.

The high threshold detects signal sample group where at
least one sample in a sample group has to exceed the high
threshold. In the example, there are two signal sample groups
detected in the step high and they are enclosed by a square.

Finally, the ACC fills a gap between two detected groups
if the gap is less than a predetermined number of samples. In
this paper, we set the number of predetermined samples for
filling to 3.

The output of ACC is denoted byAnF ,nB
and DC for a bin

nB is given by

DC =
1

NF

NF−1∑
k=0

Ak,nB
, (18)

wherenB,max is the number of observed time samples in a
superframe.

B. Frequency selectivity

In Figs, 4 and 5, transmit signal in time and frequency
domains, respectively are shown. The upper two figures are in
case of one symbol and the bottom two figures are in case of
four symbols. Frequency spectrum in the case of one symbol
(upper figure in Fig, 5) is almost rectangular since hamming
window is used and in this case the region of signal can be
detected by thresholdτ easily. On the other hand, in the case
of four symbols, the constructive and destructive interference
among spectra of the four symbols provide the frequency
selectivity (Fig. 5 bottom). The destructive interference causes
NF estimation error since a sampled power spectrum in the
signal bandwidth can be very close to NF. Although median
filter and LAD-ACC have ability to suppress the effect of
the frequency selectivity, it is not enough and the frequency
selectivity in fact causes significant DC estimation error. This
fact will be confirmed in numerical evaluations. In this paper,
for this problem we propose a method using Welch FFT.

V. NF ESTIMATION WITH MED-FCME-WELCH FFT

In the Welch FFT,NS samples are divided intoNseg

sample groups where each group consist ofNW samples. In
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the nsegth segment, observed time complex samplesynseg
[n]

(n = 0, 1, · · · , NW − 1) are given by

ynseg [n] = y[n+ (nseg − 1)NW /2], (19)

without loss of generality we assumeNW is even number
and there is overlapped samples between neighboring sample
groups, i.e. the number of overlapped samplesNO is set to
NW /2 = NO. In this case,NS , Nseg andNW satisfies the
following equation:

Nseg =
2NS

NW
− 1 (20)

whereNW is assumed to be divisor of2NS .
Then, the discrete power spectrum density is given by

P (seg)
nseg,cseg =

∣∣∣∣ 1√
NW

NW−1∑
k=0

(hh[k]ynseg [k]e
−j2πcsegk)

∣∣∣∣2 (21)

wherecseg is the index number of the frequency bin andhh[k]
is hamming window given by

hh[k] =

{
0.54− 0.46 cos

(
2πk

NW−1

)
(0 < k < NW − 1)

0 (otherwise).
(22)

In this case, the power spectrum density based on Welch FFT
is given by

P (Welch)
nF ,cseg =

1

Nseg

Nseg−1∑
nseg=0

P (seg)
nseg,cseg . (23)

Averaging process in the the above equation can suppress the
frequency selectivity. Specifically, each spectrum in segment
P

(seg)
nseg,cseg has independent frequency selectivity characteristic

and the averaging leads to nearly flat spectrum.
In the MED-FCME-Welch FFT,P (Welch)

nF ,cseg underH0 does
not follow exponential distribution in contrast toPnF ,nB but
theP

(Welch)
nF ,cseg is given by the sum ofPnF ,nB

. We assume that
the effect of the overlap is negligible andP (Welch)

nF ,cseg is denoted
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by x for the sake of simplicity andnx = 2×Nseg representing
degrees of freedom. Then, the PDF ofx is given by [21]

p(x) =
nx

2
nx
2 Γ(nx

2 )
(nxx)

(nx
2 −1)e(−

nxx
2 ). (24)

The FCME parameterTCME for ṖFA,CSSR has to satisfy

ṖFA,CSSR =

∫ ∞

TCME

p(x)dx. (25)

In fact, the above equation can be expressed by an equivalent
closed form equation as

ṖFA,CSSR =
nx

2
nx
2 Γ(nx

2 )
·exp

(
nxTCME

2

)
nx

2

nx
2 −1∑
r=0

(−1)r(nx

2 − 1)!x
nx
2 −1−r

(nx

2 − 1− r)!(−nx

2 )r

 . (26)

To confirm the validity of (24), the analysis and Monte Carlo
simulation result are shown in Fig. 6.

The MED-FCME-Welch FFT can suppress the effect of fre-
quency selectivity but the outliers still affect the NF estimation.
Therefore, we employ the median filter and the estimation
result is denoted byP (MED−Welch)

N and the threshold for signal
detection is given byτ = P

(MED−Welch)
N + m wherem can

be set based on the result in (26).

VI. N UMERICAL EVALUATIONS

In this section, we evaluate NF and DC estimation perfor-
mances in terms of MED-FCME-β and MED-FCME-Welch
FFT. Common simulation parameters in the computer sim-
ulation are as follows. Observed bandwidth is set to 2000
Hz and signal bandwidth is set to 440 Hz and noise power
is set to unit power. There are three target probabilities, the
first one is CSSR for settinġPFA,CSSR for settingTCME, the
second one iṡPFA,L for settingτL, and the third one iṡPFA,H

for setting τH . They are set as follows;̇PFA,CSSR = 0.01,
ṖFA,H = 4.54 · 10−5, and ṖFA,L = 0.01. These PFA settings
are same setting as in [15]. FFT sizeNS and segment size in
Welch FFTNW are set to1024 and64, respectively. In fact,
NW setting is an important issue, but as space is limited, we
are not concerned with this issue.

A. NF estimation performance

Fig. 7 shows the average estimated NF in decibel as a
function of SNR for different DC (0.1, 0.5 and 0.9). The
estimated NF is normalized by the preset actual noise power,
then the true value is0 dB in Fig. 7.

In the case of high SNR (γ = 20 dB), both methods (MED-
FCME-β and MED-FCME-Welch FFT) achieve accurate NF
estimation for any DCs. On the other hand, in the case of
low SNR (γ = 0 dB), the estimation error in the MED-
FCME-β increases as the DC increases. This indicates that
median filter is effective only in the low DC case. Specifically,
in low DC such as0.1, 90% of observed spectra are only
noise component thus accurate NF estimation is possible and
median filter can remove the effect of frequency selectivity.
On the other hand, in case that DC is more than or equal
to 0.5, median filter can not always remove the effect of
frequency selectivity. However, the MED-FCME-Welch FFT
can suppresses the effect of frequency selectivity directly and
it is possible to achieve accurate NF estimation even in the
low SNR case.
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Fig. 7: NF estimation as a function of SNR. DC=0.1. 0.5 and
0.9. MED-FCME-β and MED-FCME-Welch FFT.

B. DC estimation performance with real measurement results

We also evaluate the DC estimation performances with
MED-FCME-β and MED-FCME-Welch FFT in Fig. 8. The
real DCs are set to0.1, 0.5 and 0.9 In this evaluation, DC
estimation is obtained by two cases: in the first case NF
estimation methods (MED-FCME-β and MED-FCME-Welch
FFT) are used and in the second case perfect NF is available.
The first case is plotted by solid line and the second case is
plotted by dot line.

As confirmed in Fig. 7, MED-FCME-Welch FFT can
achieve accurate NF estimation therefore, the gap in DC
estimation between two cases in MED-FCME-Welch FFT
is small. On the other hand, there is around one dB SNR
difference between two cases in MED-FCME-β when DC is
0.5 and 0.9. This result indicates that the difference comes
from NF estimation error.



The DC estimation difference between MED-FCME-β and
MED-FCME-Welch FFT is around 15 dB. This significant
difference is due to Welch FFT.
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VII. C ONCLUSION

In this paper, we have investigated a spectrum measurement
technique where NF estimation, spectrum usage detection in a
two-dimensional time-frequency grid, and DC estimation are
performed. For spectrum usage detection, ED was used and
therefore threshold setting based on periodical NF estimation
is important for long time spectrum measurement. Frequency
selectivity degrades NF and DC estimation performances in
the conventional method (MED-FCME-β). In our proposed
NF estimation, Welch FFT is used and it can suppress the
effect of the frequency selectivity on the expense of frequency
resolution. For the threshold setting, we analyzed the PDF
and right tail probability for observed periodogram by the
Welch FFT. The numerical results verified the efficiency of
the proposed method. Specifically, accurate NF estimation was
available in low SNR case such asγ = 0 dB even if DC is
more than 0.5. In addition, in terms of DC estimation, our
proposed method can achieve around 15 dB gain compared to
MED-FCME-β.
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