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Abstract—In dynamic spectrum access, a new wireless systemspectrum utilization in future wireless networks, spectrum
(secondary user: SU) can utilize the spectrum licensed to an ytilization statistics will be very useful. In this approach,

existing wireless system (primary user: PU) while the spectrum 5 qeyelopment of accurate spectrum measurement system is
is vacant. For accomplishing effective and reliable spectrum necessary

utilization, statistics of the spectrum usage by the PU, such as .
duty cycle (DC), are useful for the SU. In this paper, we investigate ~ There are several spectrum measurement campaigns for
accurate spectrum measurement technique with energy detector accomplishing DSA [7], [8]. In most of the spectrum measure-
for obtaining the accurate duty cycle (DC) estimation with a ments, energy detector (ED) with threshold is used [9]. ED is
noise floor (NF) estimation which is used for proper threshold very simple and does not require any prior information about

setting. In one conventional method, median filtered FCME the PU si L h the detecti f t |
(Forward Consecutive Mean Excision), frequency selectivity due e signal, however the deteclion periormance strongly

to interference among spectra of independent symbols degradesdepends on the threshold setting [10], [11]. There are several
the NF and DC estimation performances. In this paper, we criteria to set the threshold and the most appropriate approach
propose Welch FFT based NF estimation and DC estimation js constant false alarm rate (CFAR). In this case, noise floor
since Welch FFT has a potential to suppress the effect of the (\ry estimation is an important issue for the threshold setting,
frequency selectivity. We analytically obtain probability density . .
function (PDF) and right tail probability of output of the Welch hqwgver most of the. previous works have not considered
FFT process and this analysis enables to set proper threshold. this issue deeply but instead assumed the NF was known. In

Numerical results will show that the proposed method can achieve long term spectrum measurement, NF is not static [12] and
better NF estimation performance. In addition, the NF estimation therefore a periodic NF estimation is required.

improvement and the suppression of frequen lectivi h ; ; e P ;
Weplch FFT can providep%round 15 quuSeN(F:Qy ;giﬁcitn tt)r/é)yDtCe Since in practice IF can be dITﬁCUIt t_o get guarante_ed noise-
estimation performance. only_s_amples, one |mport§nt issue in the NF estm_watmn is
that it is necessary to classify the observed samples into noise
|. INTRODUCTION only samples denoted as clean samples, and noise and signal
For the spectrum scarcity problem, dynamic spectrum agamples denoted as signal samples. FCME (Forward Consec-
cess (DSA) with cognitive radio techniques by the unlicensedive Mean Excision) algorithm [13] has been proposed for
user (secondary user: SU) on the spectrum owned by the division process. However, the NF estimation performance
licensed user (primary user: PU) has been investigated [i§.affected by outliers in the observed samples and biased
In DSA, the SU can utilize the vacant spectrum as long asestimation error.
will not cause any harmful interference to the PU. To find the An extended FCME algorithm, median filtered FCME with
vacant spectrum, spectrum sensing has been investigated §2Lorrection factors; (MED-FCME-3), has been proposed to
The requirements for spectrum sensing are in fact vergsolve the issues [14], [15]. The median filter is used to avoid
challenging. For example, detection probability has to hbe effect of large outliers and it has been shown that MED-
higher than 90% in significantly low signal to noise ratio (SNRCME-3 can achieve proper NF estimation performance.
~) region, such as -14dB or less [3]. Therefore, achieving tf@r DC estimation, localization algorithm based on double-
requirement at low cost is difficult. thresholding with adjacent cluster combining (LAD-ACC) is
One of the possible approaches to achieve low cost amsed and it has also been shown that LAD-ACC based method
accurate spectrum sensing is use of the statistics PU spectaan achieve proper DC estimation performance.
utilization, such as duty cycle (DC), in spectrum sensing. In this paper, we focus on a different issue, whicHres
Specifically, if DC of PU is available, SU can select stochastijuency selectivityin NF and DC estimations. Similar problem
cally vacant spectrum for spectrum sensing. Therefore, ithgas been observed in several works for example [16], [17].
possible to achieve accurate spectrum sensing performaBpecifically, in the case that the actual DC is more than or
with low complexity [4], [5]. In addition, the statistics areequal to0.5 and the signal to noise power ratio (SNR) is low
useful for designing SU’s medium access control protocelich ag) dB, NF estimation performance with MED-FCME-
effectively [6]. Moreover, for more dynamic and flexiblemay degrade. This degradation is due to frequency selectivity
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occupancies can overlap. The purpose of the OE is to derive
spectrum utilization detection results in two dimensional time-

Spectrumanalysis
(e.g., FFT)

N o = Power spectrum frequency grid composed of individual bins, i.e., vacant and
n . .
(PuU ) occupied, denoted b¥l, and H;, respectively.
PU N
i The observation time frame is composed hierarchically and
i one superframe consists &fr frames as shown in Fig. 2.
N stting Now we focus on thength frame. During one frame, the
r OE obtains observed equivalent baseband sigal(n =

Signal detectionin ngpNg,npNg + 1,---npNg + Ng — 1) with sampling rate
2 dimensional bins

D fs Hz and the sampled complex signal is given by

N Ng

LAD/ACC

* Superscript (+) is an estimation method indicator.

y[n] = xln] + z[n] @

where z[n] represents PU signal componenfn| represent
noise component which is circularly symmetric normal com-
Fig. 1. System model plex random variable with zero mean and unit variance, in
addition we assume flat NF in frequency domain. SNR is
defined byy = E[|z[n]|?]/E[|z[n]|?] and E[] is expectation

ogerator. Without loss of generalitfs is assumed to be
e

caused by intgrference among spectra.o.f independent_symlb Swer of two. The passband signal is located at the center
In DC estimation, the frequency selectivity and NF estimati quency f. and the observed frequendyis in the region

error degrade the DC estimation performance significant\xherefc SR 2< < ot £u)2

For this ISSUE, WE propose MED-FCME-Welch where the Power spectrum density for the given observed samples can
Welch FFT is employed [18], [19]. In the related works, [20]b estimated with

the Welch FFT has been used for spectrum measuremenet,

especially for signal detection. On the other hand, in this paper, 1
we mainly focus on the NF and DC estimations with Welch P, ,,, = ‘

FFT. In the DC estimation process, LAD-ACC is also used. We VNs
will show that a significant gain in DC estimation performancs:vhere” is the index number for time framey indicates
can be provided by the proposed method and our approach ﬁ%ﬂuengy bin index number. The actual frequgﬁw ) for
mitigate the effect of the frequency selectivity on the expense ' B

of frequency resolution. givenns is given by

Ng—1 2

> (ylk+npNs] x e 72mk) | (2)
k=0

In the NF estimation block, NF estimation is performed
every time frame and the estimated noise power is denoted by
=0 | ne=1 "] M [%=Nel e Pn(np). In the conventional FCME algorithm, NF estimation
g1 v Py (ng) is used for the threshold setting. One of the possible

yinl Noiseestimationresult ] d
at theframe: P, () approaches to enhance the NF estimation performance based

npfs < < Ns
[I. SYSTEM MODEL f(ng) = (gs*;‘féil)f (0<np <5 +1)
AR + fe (otherwise),
e Superframe . (3)
D i whereng =0,1,---, Ng — 1.
! Frame | !
1
1

Ng samples on Ny estimates is averaging. In fact, the errors caused by
‘ Y J outliers or frequency selectivity provide biased estimation
Noiseestimationin superframe:R, error in the NF estimation, therefore averaging is not effective
* Superscript (+) is an estimationmethod indicator. as mentioned in [15].
Fig. 2: Frame configuration and NF estimations On the other hand in the MED-FCME-and the proposed

method, MED-FCME-Welch, the estimated NF is given by
median filtering Nr estimates in a superframe. The details
The system model is shown in Fig. 1. We assume thaf the NF estimation methods, FCME, MED-FCME-and
multiple PUs access the observed spectrum randomly. NHED-FCME-Welch, will be shown in the following sections.
addition, we assume that the observation equipment (OE) doe# the threshold setting block, the threshel set based on
not have any prior information about the spectrum occupante target PFAPra . Specificallyr has to satisfy the following
by the PUs and PUs’ signal specifications. This situation ¢gjuation
similar to the spectrum utilization in the industry-science- Pea = Pr(Popng > 7|Ho), (4)
medical (ISM) band where frequency bandwidth and time
duration of occupancy are not constant and multiple spectrumherePr() indicates a probability for an event.



In the signal detection block, based on the threshald B. NF estimation with MED-FCME

signal occupancy is detected at two dimensional(bip, n ) In the MED-FCME# [15], median filter is used for sup-
as (P > 1) pressing the effect of NF estimation error in one time frame
D pnp { 0 (ngé:;ise) (5) Py(nr). The NF estimation based on the median filter is
' shown as follows.Py(ng) (np = 0,1,---, Np) sorted in

Although median filter can provide accurate NF estimatioascending order are given by
misdetection of the PU channel usage would still be possible _ _ _
with ED. For this issue, LAD-ACC is used in [15]. Py(0) < Py(1) <--- < PN(Np —1). 12)

lIl. NF ESTIMATION WITH MED-FCME-3 Then, the estimated NF by the median filter is given by

MED-FCME-3 consists of FCME algorithm and median (MED) _ { P () + P (S +1) (even Np) (13)

filter. For achieving accurate NF estimation, a compensation ~ N pN(NF;r%) (odd Np).

factor 5 is also used.
As mentioned in the previous subsectid?y (nr) includes

A. FCME algorithm biased estimation error due to frequency selectivity. Averaging

FCME algorithm [21] is an iterative algorithm and, Pn(np) can not effectively suppress the biased estimation
denotes the index number of the iteration. Now we focus @tiror, therefore the median filter is used in [15]. However, the
the nrth frame and the?,,. ., sorted in ascending order aremedian filter is effective in the case where DC is less than

denoted by 50% and if it is more than 50% it leads to some offset/bias.
_ _ _ _ In the FCME algorithm, it may involve biased NF estimation
[Prpy Prp2 o Prpe =t Popnl, ) error due to the target CSSR. Specificalll?FA’FCME of
.6, Prpng < Prpmpiil: clean sampled can be eliminated by the FCME algorithm.
The NF estimation in the first iteration is performed a$0 compensate the biased NF estimation error, the correction
follows. A set of clean samples is set by factor 8 is used. The suitable correction facioris [15]
Q(0) = {Pupt Prpzs -, Ping()} D 5 g0 Nih (Ns—h—j+1) )
where N (0) = [CNg/100] and this indicates that at least j=1 (Ns = j +1)(Ns — h))

C% samples are assumed to be clean samples.

An average of the clean samples in thté iteration Q(0) whereh is integer in the region < h < Ng and the smallest

number satisfying

is given by
1 NQ(O)i P ’VBTCME (Z;\{:S;h M)NS‘—‘ (15)
n 0) = Pn n 8 o '
S F( ) NQ(O) TUBZ:l FNB ( )
, , ) . The estimated NF in the MED-FCME- is given by
A threshold in theOth iteration, T} (0), is given by (MED-8) _ ,(MED)
Py =Py + 8.
T3 (0) = 6, (0) - Tome (9) For signal detection, the threshotdis set by
whereTcye is set based on the target clean sample rejection 7 =P L, (16)
rate (CSSR) denoted bifes cssr as where m is a shift value set to satisfyra. Since Py, ..,
Tome = —In (PFA’CSSR)_ (10) under H, follows exponential distribution, the propen is
) given by .
Forn; >0, Q(n;) is updated as follows m = 101log 10(— In (Ppa)). (17)
Q(ni) = {Prpnp|Prpng <Th(ni —1)}  (11) IV. DC ESTIMATION AND FREQUENCY SELECTIVITY

The number of the elements i®(n;) is also updated by A. LAD-ACC method

Ng(ni) = [Q(ni)|. Moreover,,.(n;) and Ty(n;) are up- | AD-ACC algorithm is used for DC estimation. DC indi-
dated as mentioned above. cates signal occupancy rate in a certain frequency. bin

The iterative process is continued while, (n;) > No(ni—  An example of the process of LAD-ACC is presented in
1) is satisfied and the final set of clean samples is denotedy; 3. |n the LAD, two thresholds, low threshold, and
Q(7ena) Whherene,q = n; — 1. This condition indicates that high thresholdry, are used and they are also set based on
the iteration terminates if there are no new added elemefiyet CSSRsPra 1, and Pra 11, respectively. At first, in the
in Q(n;) at then;th iteration. Then, the estimated NF in thesiepy Jow (Fig. 3), signal is detected with low threshold. In
TLFth frame,PN(nF), is given byPN(np) = Cnp (nend).

2DC and channel occupancy rate are different parameters. In [15], DC and

1in [15], the MED-FCMES is denoted by MED-FCME with a correction channel occupancy rate are defined. In this paper, we only focus on DC in a
factor 3. certain bin where PU signal exists randomly.
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Fig. 3: Process of LAD-ACC. Fig. 5: Transmit signal in

frequency domain, Upper
one is one symbol case,
Lower one is four symbols
case.

Fig. 4: Transmit signal in
time domain. Upper one

fact, this detection result corresponds,,. ,,, in (5) with S one symbol case, Lower
estimated PSD such &, . ,,,,. Contiguous detected sample$ne is four symbols case.
are grouped together. In the example, there are four groups in
the step low and each sample group is enclosed by a square.

The high thresh_old detects signal sample group wheretﬁ%nsegth segment, observed time complex samples. [1]
least one sample in a sample group has to exceed the 1 . =ce

. =0,1,---, Ny — 1) are given by

threshold. In the example, there are two signal sample groups
detgcted in the step_h|gh and they are enclosed by a square. Yneo [1] = Y[ + (Nseg — 1) N /2], (19)

Finally, the ACC fills a gap between two detected groups
if the gap is less than a predetermined number of sampleswithout loss of generality we assum¥y, is even number
this paper, we set the number of predetermined samples &md there is overlapped samples between neighboring sample

filling to 3. groups, i.e. the number of overlapped samplés is set to
The output of ACC is denoted hy,,,. ,,,, and DC for a bin Nw /2 = No. In this caseNg, N, and Ny, satisfies the
np is given by following equation:
Np—1 2Ng
. L Nseg = -1 (20)
DC = NF kzzo Ak},n57 (18) NW

where Ny, is assumed to be divisor @fNg.

Where nB’nlax |S the number Of Observed t|me Samples |n a Then' the dlscrete power Spectrum dens”:y |S g|ven by
superframe.

Nw —1 2
S 1 —J2m 4
B. Frequency selectivity pies), = ’\/W > (hnlklyn,. [Kle72meok)| - (21)
k=0

In Figs, 4 and 5, transmit signal in time and frequency _ _ _
domains, respectively are shown. The upper two figures areWherecs. is the index number of the frequency bin k]
case of one symbol and the bottom two figures are in casei®fhamming window given by

four symbols. Frequency spectrum in the case of one symbol -
(upper figure in Fig, 5) is almost rectangular since hamming, 1 _ 0.54 — 0.46 cos (N‘;,l) (0<k<Nw—1)
window is used and in this case the region of signal can be 0 (otherwise).

detected by threshold easily. On the other hand, in the case (22)

of four symbols, the constructive and destructive interferent this case, the power spectrum density based on Welch FFT
among spectra of the four symbols provide the frequenésy given by

selectivity (Fig. 5 bottom). The destructive interference causes Nyl

N_F estimation error since a sampled power spectrum m_the p(Weleh) _ 1 Z plseg)
signal bandwidth can be very close to NF. Although median MreCees - Nggo
filter and LAD-ACC have ability to suppress the effect of

the frequency selectivity, it is not enough and the frequengweraging process in the the above equation can suppress the
selectivity in fact causes significant DC estimation error. Thisequency selectivity. Specifically, each spectrum in segment
fact will be confirmed in numerical evaluations. In this papep(*®)  hag independent frequency selectivity characteristic

NsegrCseg

for this problem we propose a method using Welch FFT. and the averaging leads to nearly flat spectrum.
In the MED-FCME-Welch FFTP{}%™ under H, does

(23)

MNseg:Cseg
Ngeg=0

V. NF ESTIMATION WiTH MED-FCME-WELCH FFT not follow exponential distribution in contrast 8, . ,,,, but
In the Welch FFT,Ns samples are divided intaV,., the P{Y™ s given by the sum of,, . We assume that

sample groups where each group consisiVgf samples. In the effect of the overlap is negligible arjdy(ﬂf:‘g) is denoted



25; A. NF estimation performance

——anaysis(N =512 . . . .
ol :nmj::;n(m :5)12) Fig. 7 shows the average estimated NF in decibel as a
: , w function of SNR for different DC (.1, 0.5 and 0.9). The
analysis ( Ny = 128) . . . .
15 & . smulation (N, = 128) estimated NF is normalized by the preset actual noise power,
£ w then the true value i8 dB in Fig. 7.

In the case of high SNRy(= 20 dB), both methods (MED-
FCME-5 and MED-FCME-Welch FFT) achieve accurate NF
estimation for any DCs. On the other hand, in the case of
low SNR (y = 0 dB), the estimation error in the MED-

o 1 > ) vy : FCME-3 increases as the DC increases. This indicates that

PSD median filter is effective only in the low DC case. Specifically,

Fig. 6: PDF ofp(z) based on analysis (24) and Monte Carl§? low DC such as0.1, 90% of observed spectra are only
simulation result. noise component thus accurate NF estimation is possible and

median filter can remove the effect of frequency selectivity.

On the other hand, in case that DC is more than or equal
by x for the sake of simplicity and,, = 2 x N, representing to 0.5, median filter can not always remove the effect of
degrees of freedom. Then, the PDFaofs given by [21] frequency selectivity. However, the MED-FCME-Welch FFT
can suppresses the effect of frequency selectivity directly and

Na (B 1) (- 28%) < , . = :
p(z) = o P(J)(” +) e 24 itis possible to achieve accurate NF estimation even in the
2 . low SNR case.
The FCME parametefcyg for Pra cssr has to satisfy
o0 1.2 ! ! ! ! : ! !
. —8— MED FCMEB, DC=0.9
Pra cssr = / p(z)dz. (25) S ereun vos
/Teue il T enrentn peor
In fact, the above equation can be expressed by an equivalent = o0g = - = VEDFME ek, 0c-01
closed form equation as =
p Ng % 0.6
FA,CSSR () £
2 2 ( ) '§ 0.4
nzTCl\IE i 1 P e g
exp ( ) Il (26) 0.2-
O e s S "
To confirm the validity of (24), the analysis and Monte Carlo 02 ‘ ‘ ‘ ‘ ‘ ‘ ‘
simulation result are shown in Fig. 6. 20 15 -0 s N

The MED-FCME-Welch FFT can suppress the effect of fre-
quency selectivity but the outliers still affect the NF estimatiori./d- 7+ NF estimation as a function of SNR. DC#. 0.5 and
Therefore, we employ the median filter and the estimati¢h?- MED-FCME-G and MED-FCME-Welch FFT.
result is denoted bf’ (MED—Welch) 54 the threshold for signal
detection is given byr = PJ(\,MED’We]Ch) + m wherem can

be set based on the result in (26). B. DC estimation performance with real measurement results

VI. NUMERICAL EVALUATIONS We also evaluate the DC estimation performances with

In this section, we evaluate NF and DC estimation perfoMED-FCME-5 and MED-FCME-Welch FFT in Fig. 8. The
mances in terms of MED-FCMRB-and MED-FCME-Welch real DCs are set t0.1, 0.5 and 0.9 In this evaluation, DC
FFT. Common simulation parameters in the computer sirastimation is obtained by two cases: in the first case NF
ulation are as follows. Observed bandwidth is set to 20@Stimation methods (MED-FCME-and MED-FCME-Welch
Hz and signal bandwidth is set to 440 Hz and noise powEFT) are used and in the second case perfect NF is available.
is set to unit power. There are three target probabilities, tAde first case is plotted by solid line and the second case is
first one is CSSR for settlng’FA cssr for settingTcvg, the plotted by dot line.
second one |§3FAL for settingry,, and the third one |§FAH As confirmed in Fig. 7, MED-FCME-Welch FFT can
for setting 7. They are set as followsPya cssr = 0.01, achieve accurate NF estimation therefore, the gap in DC
PFA H=454-107° andPFA L = 0.01. These PFA settings estimation between two cases in MED-FCME-Welch FFT
are same setting as in [15]. FFT si2& and segment size inis small. On the other hand, there is around one dB SNR
Welch FFT Ny, are set tol024 and 64, respectively. In fact, difference between two cases in MED-FCMEwhen DC is
Ny, setting is an important issue, but as space is limited, vde&5 and 0.9. This result indicates that the difference comes
are not concerned with this issue. from NF estimation error.



The DC estimation difference between MED-FCMEand

(4]

MED-FCME-Welch FFT is around 15 dB. This significant
difference is due to Welch FFT.

1
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Fig. 8: DC estimation as a function of SNR. DC#%. 0.5 and
0.9. MED-FCME-8 and MED-FCME-Welch FFT.
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