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Abstract—This paper addresses opportunistic spectrum access
(OSA) in non-cooperative cognitive radio networks (CRNs). The
sel sh behaviors of the secondary users (SUs) will cause a CRN
to collapse. The SUs are thus enabled to build beliefs about
how other SUs would respond to their decision makings. The
interaction among the SUs is modeled as a stochastic learning
process. In this way, each SU can independently learn the
behaviors of the competitors, optimize the OSA strategies, and

nally achieve the goal of reciprocity. Two learning algorithms
are proposed to stabilize the stochastic CRNs, the convergence
properties of which are also proven theoretically. Simulation
results validate the performance of the proposed results, and
show that the achieved system performance outperforms some
existing protocols.

I. INTRODUCTION

Cognitive radio (CR) has shown the effectiveness in bridg-
ing the enormous gulf in time and space between the reg-
ulation and the potential spectrum ef ciency [1]. In this
paper, we focus on designing opportunistic spectrum access
(OSA) protocols, based on which each secondary user (SU)
independently decides which channels to access in different
time slots, in order to ef ciently utilize the licensed spectrum
when the primary users (PUs) are “sleeping”. In the presence
of multiple SUs, the OSA protocols must also account for the
possibility of competition among users over the same channel.
In general, game theoretic approaches have been exploited to
determine the communication resources of multiple interacting
users [2], [3].

Game theory bases its solution on the concept of equilibrium
[4]. Users behaving within an equilibrium are often explained
in terms of their beliefs about the strategies of the competitors.
This paper is concerned with developing distributed learning
algorithms for OSA in cognitive radio networks (CRNs) from
not only a game-theoretic, but also a learning perspective. The
distinction between learning and non-learning users is simply
that the former change their beliefs, whereas the latter’s beliefs
are static. A variety of learning schemes have been applied to
CR scenarios, as surveyed in [5]. Particularly, reinforcement
learning (RL) [6] has been used to study intelligent decision

makings in heterogeneous CRNs, where every SU has to adapt
to both the PUs’ behaviors and other SUs’ decisions.

The main challenge of deploying distributed learning al-
gorithms in non-cooperative CRNs is the problem of action
coordination. Centralized schemes may be applied to ensure
the optimal decision makings, however, they are not always
applicable in dynamic CRNs. Hence, our goal is to explore the
decentralized spectrum access strategies for the competitive
SUs that generate near-optimal decisions. The conjectural
variation model introduced by Bowley [7] is adopted to
encourage potential cooperation among the SUs. This model
enables the SUs to form beliefs about how other SUs react to
their strategy changes. Speci cally, by implementing such a
strategic interaction mechanism, the SUs will no longer behave
myopically.

The rest of this paper is organized as follows. In the fol-
lowing section, we formulate the problem of OSA in a CRN.
In Section III, we rst introduce the belief model and then
propose two distributed learning algorithms to achieve optimal
spectrum access strategies for the SUs. The case where the
PUs’ statistical behavior patterns are unknown is investigated
in Section IV. Section V provides the numerical results to
verify the validity, and ef ciency of the proposed learning
protocols. Finally, we present in Section VI a conclusion of
this paper.

II. PROBLEM DESCRIPTION

Consider a CRN consisting of a set
of licensed channels with equal bandwidth 1, a set

of SUs opportunistically access these channels
when they are not occupied by the PUs. All users in the
network are operated in a time-slotted fashion. During each
time slot, the PUs transmit over channel with
probability . The state for channel
at time is denoted by idle occupied . For a

1The case for channels with different bandwidths can be easily
transformed to an equivalent problem, in which channel is idle with
probability . Herein, .
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given , are independent for each
and .

Assume that each SU is capable of accessing only one
channel at each time slot. At the beginning of time , SU

selects a channel according to its spectrum
access strategy to sense (access). A strategy is
de ned to be a probability vector ,
where means the probability with which SU accesses
channel . The outcome of spectrum sensing is supposed to be
error-free. If the sensing result indicates that , the
SUs selecting channel compete to transmit; otherwise,
SU will wait until next time slot and choose possibly a
different channel to access. The collision model is applied,
under which if two or more SUs transmit over the same idle
channel then none of the transmissions are successful. At the
end of the same time slot, SU receives from its receiver an
acknowledgement that equals if the transmission
went through and equals otherwise. The number of bits that
SU is able to send in time is2

Obviously, is a random variable that depends on the
PUs’ behaviors and, more importantly for us, the spectrum
access strategies implemented by the SUs.

The overarching target in the rest of this paper is to design
the strategies that maximize the utility

E

for , where denote all the other SUs in except
SU . The OSA in non-cooperative CRNs can be formally
de ned by the tuple , for which an
important solution is the Nash equilibrium (NE).
De nition. A strategy pro le constitutes an NE of
if , for all and .

It’s shown in [8] that at the NE, each SU selects channel
with probability . But if one SU

deviates from this symmetric strategy3, it can achieve better
performance. Such sel sh behaviors may cause signi cant
reduction in the overall network performance.

III. LEARNING WITH DYNAMIC CONJECTURES

To promote cooperation among the non-cooperative SUs,
we propose to use the idea of dynamic conjectures [9]: each
SU conjectures that its strategy changes will in uence other
SUs’ contemporaneous access decisions.

A. The Belief Function
For the purpose of utility maximization, each SU

forms conjectures about the contention measures
, for all . Speci cally, let

(1)

2Suppose bits can be transmitted over a channel during one time slot.
3A common strategy implemented by all SUs is de ned to be a symmetric

strategy, i.e., .

be a belief of . Herein, is the belief factor,
and and are called the reference points [10]. The
belief functions deployed by the SUs are based on the concept
of reciprocity, which refers to the interaction mechanism that
if the SUs realize the probabilities of interacting with each
other in the future is high, they will consider their in uence on
other SUs’ strategies. Otherwise, all SUs will act myopically,
leading to terrible network performance reduction.

Taking into account the conjectures about the strategies of
other competing SUs, SU ’s utility function thus becomes

where . If the
OSA is repeated over time, the SUs can learn from their prior
observations. Let , , be SU ’s contention
measure, belief function and spectrum access strategy at time .
We propose that each SU sets its reference points at time slot

to be and . Therefore, SU ’s utility function
at time is

(2)

An intuitive explanation for (2) is that, each SU believes a
change of in its spectrum access strategy
at time will induce a change of in
the contention measure exactly corresponding to the strategies
of other SUs.

B. Best-response Learning
Along with the previous discussions, the SUs maximize

their utilities in the spirit of best-response to the dynamics
of the learning process.

1) The Best-response Strategies: Treat and
as initial parameters, we then nd for each

SU an optimal strategy plan that consists of a sequence of
single time slot strategy functions

for

which represent the best-response behavior for SU at any
time slot given its belief factors .
Theorem 1. The best-response spectrum access strategy for
each SU is given by (3), where is chosen such
that . Here, with , denotes the
Euclidean projection of onto the interval .
Proof: For each SU , the best-response strategy at
time slot maximizes its utility , that is,

maximize

s.t. C1: and C2:

It’s easy to check that the above optimization problem is
convex with linear constraints C1-C2. Thus the Lagrangian



if

if
(3)

function for SU can be written as

(4)

where and are Lagrangian multipliers. The Karush-
Kuhn-Tucker (K.K.T.) conditions [11] are given by

It’s then straightforward to have the result in Theorem 2. This
concludes the proof.

The detailed description of the best-response learning for
OSA in CRNs is summarized in Algorithm 1.

Algorithm 1

Initialization:
, initialize and , for and ;

choose channels according to , for all SUs.
End Initialization
Learning:

At time slot , each SU
senses and competes for the selected channel, and trans-
mits bits if successfully occupying the channel;
broadcasts strategy information to other SUs.

Set .
For all and , do (3).
SU accesses channel at time with probability .

End Learning

2) Network Stability: Next, we are concerned with the
stability of this algorithm. The Theorem 2 shows that the
stochastic network is stable if each function is a con-
traction mapping. Denote as the strategy
pro le of all SUs at time slot .
Theorem 2. Suppose that the belief factor in the belief function
(1) satis es , for and , the
Algorithm 1 converges to a unique stable state.
Proof: Without loss of generality, we assume that , for

. At the moment, the best-response strategy in (3)
can be rewritten as

We now proceed to prove that is a contraction mapping
if the condition in Theorem 2 occurs. Suppose that
and are two strategy pro le sequences. Let

denote the element at row and column of
the Jacobian matrix of function , then

if

if and

otherwise

where , , , and
. Consider for , we derive

If , there , such that
, i.e., . Thus

converges to the unique stable state by the contraction
mapping theorem [12].

The stability of the stochastic network requires joint con-
dition on , for all and . We
may think that our belief model in (1) and the dynamics it
generates are much less appealing if the condition does not
hold. However, if the network converges to a stable state, the
SUs’ beliefs eventually cease to be falsi ed and our approach
is justi ed.

C. Gradient Ascent Learning
A series of learning algorithms are derived based on the s-

tochastic gradient ascent [13]. Since they are derived from rst
principles with function estimators in mind, they guarantee the
convergence to local maximal. In addition to the convergence
property, the gradient ascent technique has made it possible
to convert an inelegant, inconvenient learning algorithm into
a much simpler and more easily analyzed algorithm. These
signi cant practical bene ts motivate the development of
gradient ascent learners [14].

At the beginning of each time slot, each SU updates its
spectrum access strategies gradually in the ascent direction
of its conjectural utility de ned by (4). More speci cal-
ly, at time , SU updates its strategy according



for all (5)

to (5), where is the step size. So effectively,
means the

probability of choosing a good channel increases by a rate.
Likewise, the probability of choosing a bad channel decreases
by a rate. Substituting (4) into (5), we may have

(6)

where satis es . The Algorithm 2 is
thus proposed by replacing (3) in Algorithm 1 with (6).
Theorem 3. Suppose that the belief factor in belief
function (1) and the step size in (6) satisfy

and , for and
, the dynamics of the Algorithm 2 converge.

Proof: The proof can be obtained similarly as in the proof of
Theorem 2, and is thus omitted.

We may nd that given the same belief factors, both
Algorithms 1 and 2 exhibit similar convergence properties, if
the step size in Algorithm 2 is small enough. In practice, the
best-response strategies often lead to large uctuations that
may cause temporary system instability. On the other hand,
by setting the step size suf ciently small, the gradient ascent
learning experiences a more smoother trajectory.

IV. THE UNKNOWN CASE

For the OSA discussed in previous section, each SU is
supposed to have the perfect knowledge of . However, under
many realistic circumstances, the is initially unknown to all
the SUs and in addition to the competition among the users,
is learned independently over time utilizing the past access
decisions. Combining the results in Section III, we design the
following access protocol in CRNs for the unknown case.

Let denote the number of times that channel
is chosen for spectrum sensing by SU in

time slots. SU records all these decisions in a vector
. At the same time, SU

maintains another vector
where the sensing results are kept. Herein, indicates
the number of times that channel is sensed to be idle by
SU until time . After every step of spectrum sensing, the
vectors and are updated accordingly. Each SU

estimates the value of in time slot through

(7)

Regardless the sensing outcomes, we set when
, for all and . The conjectural

utility function in (2) is thus approximated as

(8)

The intuition behind (8) is that as time goes by, the estimated
will nally converge to in probability, which im-

plies that the unknown case will eventually reduce to the
scenarios we discussed in Section III.

The following Algorithm 3 is designed to achieve the
optimal spectrum access strategies for all SUs.

Algorithm 3

Initialization:
, initialize , , and , for all

and ; choose a channel according to for each SU.
End Initialization
Learning:

At time slot , each SU
senses and competes for the selected channel, and trans-
mits bits if successfully occupying the channel;
records the sensing decision and sensing result in vectors

and ;
computes according to (7) for all ;
broadcasts strategy information to other SUs.

Set .
For all and , do

if

if

or

SU accesses channel at time with probability .
End Learning

V. NUMERICAL RESULTS

This section presents experiments to evaluate the perfor-
mance of the algorithms developed in this paper. In the
following simulations, we set Hz.

A. The Known Case
We rst consider a simple CRN where SUs compete

for accessing licensed channels with idle probabilities
and . Denote the probability of SU

selecting channel at time slot by and selecting channel
by . Similarly, SU selects channel at time

with probability , then selects channel with probability
. The strategies are initialized to be
, and the belief factors are uniformly distributed

between and . For simplicity, the step size in Algorithm 2
is set to be for both of the two SUs.

Fig. 1 and Fig. 2 compare the learning trajectories of both
Algorithm 1 and Algorithm 2. We can see from the curves
that the best-response learning approach converges in around

iterations, while the gradient ascent learning approach



Fig. 1. The strategy dynamics of Algorithms 1 and 2 with initial strategies
.

Fig. 2. The utility dynamics of Algorithms 1 and 2 with initial strategies
.

experiences a more smoother trajectory and derives the same
optimal access strategies after about iterations. Another
observation is that, whenever we generate the initial spectrum
access strategies, the network state achieved by the proposed
algorithms is independent of these initial values.

Fig. 3. The averaged utility dynamics of the SUs of each class.

B. The Unknown Case

Next we show some numerical results to consider the impact
of the learning duration on the learning protocol developed in
Section IV. Fig. 3 dictates the averaged utility performance of
the SUs, implementing the Algorithm 3. In this experiment,
we suppose that there are SUs and
licensed channels with randomly generated idle probabilities

. The belief factors are uniformly
distributed in , and the step size is chosen to be

for all SUs. Additionally, to better illustrate how
SUs adaptively alter their learning protocols, it is assumed that
there are two user classes, each of which consists of SUs.
Class 1 and class 2 choose the best-response learning approach
and the gradient ascent learning approach, respectively. The
results verify that the averaged utilities of each class converge
and the utilities are close to each other after a period of
learning. And the relatively smoother convergence of the
Algorithm 2 is also justi ed in Fig. 3.

Spectrum sensing errors are inevitable in practical applica-
tions, which means that the design of spectrum access strate-
gies for the purpose of optimal spectrum utilization should
take into account the maximum collision probability chosen
to protect the PUs’ performances. Once a collision occurs, the
PUs transmitting over the channel should send out a warning
tone to the SUs. Let be the collision probability observed
by SU over channel , we have (9). To ensure PUs’ QoS
requirements, we set , for all and ,
where is the QoS threshold that the PUs can tolerate. Using
similar simulation environment as in Fig. 3, Fig. 4 shows
the results for SUs of the two classes with parameters

and
. We can nd that the averaged

utility performance still converges to the optimum even though
there exist sensing errors.

C. Performance Comparison

Finally, to further verify the performance of the proposed
algorithms in this paper, we compare them with two existing
OSA protocols:
1) Multi-agent Q-learning protocol: In [15], a distributed
multi-agent -learning OSA protocol was developed by gen-
eralizing single-agent -learning to the multi-agent scenarios.
More speci cally, each SU maintains a -value

, representing the expected bits that can be transmitted
by accessing channel . Once channel is chosen by
SU at time , the -value is updated according to

where is the learning rate and is a characteristic
function for the event that channel is selected at time . The
strategy is updated based on the Boltzmann distribution, i.e.,



No. of warning tones received by SU over channel in time slots
(9)

Fig. 4. The averaged utility dynamics of SUs of each class in the presence
of sensing errors.

Fig. 5. Comparison of the proposed algorithms with the multi-agent -
learning protocol and random access protocol.

where is the temperature [6]. In simulations, we set
and .

2) Random access protocol: At each time, SU accesses
channel according to the NE strategy [8], i.e.,

, for all and .
We simulate the overall network performance in terms of

accumulated utilities. In the experiment, the belief factors
are adaptively randomized according to the number of

SUs, , and there are licensed channels. The
idle probabilities of the channels are randomly select-
ed from to be

. Fig. 5 depicts
the simulation outcomes. From the previous analysis and
experimental results, we know that the proposed algorithm-
s converge to the same optimal strategies. Therefore, only
Algorithm 1 is examined. It can be found from the curves
that when , the achieved performance of the three
protocols are comparable, and increase versus the number

of SUs. The reason is that with more SUs, the spectrum
opportunities will be better exploited. When , the
performances decrease as increases. This is because the
contention among the SUs can not be avoided in this case,
and the collisions become even severer if more SUs compete
to access those channels. Overall, the Algorithm 1 outperforms
the multi-agent -learning protocol and the random access
protocol.

VI. CONCLUSION

This paper investigates the problem of OSA in non-
cooperative CRNs. To prevent the network collapse from
the SUs’ myopic behaviors, the SUs are enabled to form
internal beliefs about how other SUs respond to their strategy
variations. Such beliefs re ect an incentive among the SUs to
cooperate. Based on the belief model, two learning algorithms
are proposed for the SUs to achieve the optimal spectrum
access strategies. We also derive the suf cient conditions
under which the stochastic network converges to a stable
state. The simulation results demonstrate that the proposed
algorithms achieve signi cantly better performance, compared
with the multi-agent -learning protocol and the random
access protocol.
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