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Abstract—This paper proposes a dynamic subchannel and
power allocation scheme based on Nash Bargaining Game
for an ad hoc network of Secondary Users (SU) coexisting
opportunistically with a Primary base station. Each SU is
equipped with an energy detector to sense the Primary User
(PU) activity over N OFDM sub-channels. We deploy Nash
Bargaining Solution to model the power and subchannel
allocation of the SUs over the temporarily available transmission
opportunities. Simulation results show that the proposed
dynamic power and subchannel assignment is simple, effective
and fair. Moreover, the total throughput of the network is highly
dependent on the accuracy level of the sensing information and
the percentage of PU silence. An acceptable secondary network
throughput is achievable if the probability of PU presence is
limited to less than 0.4.

Index Terms—Dynamic Resource Allocation, Nash Bargaining
Solution, Water-filling, OFDM, Spectrum Sensing, Energy Detec-
tor.

I. INTRODUCTION

With ever-increasing demand for high data rate communi-
cations and wider bandwidth, spectrum scarcity is becoming
an inevitable issue which reveals the inefficiency of the
current static spectrum access techniques [1]. Cognitive radio
technology as a potential platform to implement the Dynamic
Spectrum Access (DSA) has been captured the interest of
researchers in recent years [2]. Two major concerns in an
opportunistic-access cognitive radio networks are spectrum
sensing and spectrum allocation. A secondary user senses the
spectrum of the Primary periodically, and uses it when it is
idle, and switch to other unused bands when primary system
is present. As we can see spectrum sensing is the first and
critical step for a cognitive radio device to operate.

There are several detectors to sense the spectrum of a
Primary User (PU) such as, matched filter, energy detector, and
feature detection [3]. Feature detection is able to distinguish
between the received signal energy and the noise energy but
it requires long observation intervals of the received signal
which leads to high computational complexity. Matched filter
detector is the optimal option for the case of stationary Gaus-
sian noise and when the primary signal is known. However,
when the primary signal is unknown or complexity is an issue,

matched filter and feature detection are ruled out, and energy
detector appears to be the feasible choice.

The problem of dynamic spectrum allocation in OFDMA
wireless networks has been widely studied in the literatures
[4]–[7]. In [4] the dynamic channel assignment is modeled
as a convex optimization problem to maximize the minimum
of the sum of all users rate with respect to some constraint
and a simple suboptimal algorithm is proposed. However,
maximizing the worst user (max-min) rate is at the cost of
sacrificing the users with better channel conditions which leads
to a lower total rate. Another adaptive resource allocation
scheme is proposed in [6] with taking proportional fairness
into account by adding a constraint on rate requirement of each
user. Nevertheless, Proportional fairness is a special case of
NBS when the disagreement point is zero. Generally allocating
subchannels in order to maximize the sum throughput of
the network is a linear optimization problem with integer
variables which could be solved using integer programming
which is computationally complex. Hence, either suboptimum
algorithms are proposed or the integer programming problem
relaxed to a standard convex optimization.

By widespread use of wireless devices the available dy-
namic resource allocation schemes need to be even more
flexible to be able to serve the unlicensed users while the
primary users are in idle mode. This paper addresses this issue
by using Nash Bargaining Solution (NBS) which provides
optimality and fairness at the same time. NBS is a cooperative
game where optimizes the multiplication of the objective
function rather than the aggregate sum which results higher
pay-off per user. In [8] a power control scheme is proposed
based on NBS and KSBS for cognitive radio networks. [9]
also proposes a resource allocation framework for an ad hoc
network of secondary users using two game theoretic methods.
However, in modeling the system there is no constrain for
subchannel sharing among users and each subchannel can be
allocated to several users which is not practical for OFDM
networks and lowers the total throughput [10]. Moreover,
solving and formulating the NB Game as a second approach
is not complete. Another interesting approach for dynamic
resource allocation using NBS approach is proposed in [7].
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The problem is solved for two-user case in an iterative manner,
but for the multiuser case the authors involve another game
tool, called coalition games, which adds more iteration to the
two-user case convergence. Furthermore, the convergence of
the algorithm is not guaranteed.

The available literature applied NBS for only two user cases
and the resulting optimization problem is not solved generally.
This paper proposes an optimum and fair dynamic spectrum
allocation schemes for the case of K users.

In [11] the dynamic resource allocation in cognitive radio
networks with Imperfect Channel Sensing is investigated and
is solved using a discrete stochastic optimization method.
However, the imperfectness is assumed for the channel gain
information. Basically, the goal of spectrum sensing is to
monitor the activity of the PU which is the case in our
paper. An interesting joint cross-layer scheduling and spectrum
sensing for cognitive radio networks is proposed in [12]
based on what is called ’Raw Sensing Information’ and the
power and subchannel allocation is solved using primal-dual
decomposition approach. Their underlay spectrum sharing
method with assuming some acceptable interference level
differs from our work where we adopt overlay method which
does not allocate an OFDM sub-channel to more than one
user simultaneously. Moreover, our problem solving method
is based on NBS which gives a fair and simpler allocation
scheme.

Following to our collaborative spectrum sensing work in
[13], here, we use the sensing information of the energy de-
tector of each SU to design an optimum power and subchannel
allocation for SUs. First, we show that how the sensing bits
of the PHY layer can affect the allocation process in MAC
layer. Then, we propose a sub-optimum resource allocation
algorithm in order to increase the network total throughput
while maintaining fairness among users.

The remaining of this paper is organized as follows. Section
II describes the system model. In section III the proposed
method is elaborated. Simulation results are given in section
IV and V concludes the paper.

II. SYSTEM MODEL

Consider an adhoc secondary network with K users com-
peting over N OFDM sub-channels of a Primary base-station.
Each subchannel has a bandwidth of w. The rate for i-th user
is expressed as:

Ri =

N∑
n=1

wbi,n (1)

where bi,n is the number of bits per symbol for the i-th user
in subchannel n. Assuming bi,n ≥ 2 and BER ≤ 10−3, the
following approximation will hold [14]:

bi,n ≈ log2(1 + c2γi,n ln(
BERi
c1

)) (2)

where c1 = 0.2, c2 = 1.5. BERi is the i-th user bit error rate,
and γi,n is the SNR in subchannel n. Hence, the rate for user

Fig. 1. Block Diagram of an Energy detector

i can be formulated as:

Ri =

N∑
n=1

ci,nw log2(1 + c3
pi,nh

2
i,n

σ2
i

) (3)

where c3 = c2/ ln(c1/BERi), σ2
i is the noise power, and hi,n

and pi,n are the channel gain and transmitted power of the i-th
user on subchannel n respectively. Moreover, the subchannel
assignment coefficient ci,n is given as:

ci,n =

{
1, If subchannel n is allocated to user i
0, Otherwise.

(4)

On the other hand, we assume that each secondary user is
equipped with an energy detector to sense the presence of PU
on any of the N subchannels [13]. The output of the detector
Y , is compared with the threshold λ to make a decision out
of these two hypotheses(Figure 1 ):{

Y ≥ λ H1

Y < λ H0
(5)

where H1 indicates the presence of the PU and H0 denotes
that PU is inactive.

The probability that each SU correctly detects the presence
of PU is Pd,i, and the probability that PU presence is falsely
reported is Pf,i:

Pd,i = P{Y > λ|H1}
Pf,i = P{Y > λ|H0} (6)

Based on the above definition the following four cases could
occur (Figure 2):

1) PU is present and SU detects correctly
2) PU is present and SU detects falsely
3) PU is inactive and SU detects the same
4) PU is inactive and SU detects active
Taking into account the sensing information, we define the

utility per SU as follows:

Ūi =

N∑
n=1

Ĥi,nri,n

=

N∑
n=1

Ĥi,nci,nw log2(1 + c3pi,nGi,n) (7)

where Ĥi,n is the sensing bit of the i-th user on subchannel
n. Ĥi,n = 0 means that the subchannel is occupied by the
PU whereas Ĥi,n = 1 indicates the availability of the the
subchannel for SU use.



Fig. 2. Sequential graph for SU sensing

The problem is how to allocate the N subchannels and
subsequently the transmitted power among K SUs so that
the maximum throughput is achieved. In order to define the
total throughput we take the product of the rates from Nash
Bargaining game. We assume that channel state information
of all users are known.

A. Nash Bargaining Game

Nash Bargaining game [15] is a class of cooperative games
where there is a mutual agreement among users for cooper-
ation in order to achieve a higher utility comparing to the
non-cooperative case. Let’s define u = (u1, u2, ..., uK) as the
utility vector. The minimum attainable utility for the users
without cooperation is called the disagreement point, and is
expressed as u0 = (u01, u

0
2, ..., u

0
K), and U ∈ RK is the

feasible utility set. Then, a K player bargaining problem is a
pair

〈
U,u0

〉
, where U is a compact, bounded, and convex set,

and there exists at least one utility pair (u1, u2, ..., uK) ∈ U
such that u1 ≥ u01, u2 ≥ u02, ..., uK ≥ u0K . A bargaining
solution is a function u∗ = (u∗1, u

∗
2, ..., u

∗
K) = F (U,u0)

that assigns a unique element of U to the bargaining problem〈
U,u0

〉
. This solution is given by:

u∗ = arg max
u∈U,u1≥u0

1,u2≥u0
2,...,uK≥u0

K

K∏
k=1

(uk − u0
k) (8)

In order to model the resource allocation problem we set
the utility function as follows:

Ūi = E{Ui|Hi}

=

N∑
n=1

E[Ĥi,n|Hi]ci,nw log2(1 + c3pi,nGi,n) (9)

On the other hand, from Figure 2 it is obvious that:

P{Ĥi,n|Hi} =
(1− pp)(1− pf )

(1− pp)(1− pf ) + pp(1− pd,i)
= βi (10)

where Pp is the probability that PU is active on any of
subchannels and βi indicates how accurately a SU can sense
the presence of PU as is defined in [12] as well. For example,
the case of pd,i = 1 results in βi = 1 which states that
detection is done with %100 certainty. Hence, (9) can be re-
written as:

Ūi =

N∑
n=1

βici,nw log2(1 + c3pi,nGi,n) (11)

Therefore, F (S, (Ū1,min, Ū2,min, ..., ŪK,min)) is a bargain-
ing problem where the set S contains all the feasible rates,
and its solution satisfies:

arg max
p1,p2,...,pK ,ci,n

K∏
i=1

(Ūi − Ūi,min) (12)

subject to:

C1 :

N∑
i=1

Pi ≤ Pi,max

C2 : Ūi ≥ Ūi,min

C3 : ci ∈ {0, 1}

C4 :

K∑
i=1

ci = 1

C5 : pi,n ≥ 0

where Pi,max is the maximum power budget of the i-th
user. Constraint C4 ensures that each subchannel is assigned
to one user only. This optimization problem is hard to solve
as it is dealt with both continuous and binary variables. One
approach is to relax the condition in C4 by letting ci take
values between [0 1].



III. PROPOSED RESOURCE ALLOCATION SCHEME USING
NASH BARGAINING GAME

In order to solve (12), we first form the Lagrangian and
apply the Karush-Kuhn-Tucker (KKT) conditions as follows:

L(pi,n, ci,n) = (

N∑
n=1

β1c1,nw log2(1 + c3p1,nG1,n)− Ū1,min)

. . . (

N∑
n=1

βici,nw log2(1 + c3pi,nGi,n)− Ū1,min)

−
K∑
i=1

λi(

N∑
n=1

pi,n − Pi,max)

−
N∑
n=1

µn(

K∑
i=1

ci,n − 1)

−
K∑
i=1

N∑
n=1

νi,npi,n (13)

Hence, the KKT conditions are:

∂L(pi,n, pi,n)

∂pi,n
= 0 (14)

∂L(pi,n, ci,n)

∂pi,n
= 0 (15)

λi, νi,n, µn ≥ 0 (16)
K∑
i=1

λi(

N∑
n=1

pi,n − Pi,max) = 0 (17)

N∑
n=1

µn(

K∑
i=1

ci,n − 1) = 0 (18)

where Gi,n =
h2
i,n

σ2 .
From (14) we get the following power allocation equation:

pi,n =

∏K
j=1,j 6=i (Ūj − Ūj,min)

λi
βici,nw −

1

c3Gi,n
(19)

Assuming subchannel n is assigned to user i, i.e. ci,n = 1,
(19) has the familiar face of a water filling equation with
slightly changes in the water level. Hence, more power will be
allocated to the subchannels with higher gains. On the other
hand, (15) and (18) yields to:

β1 log 2(1 + c3p1,nG1,n)

(Ū1 − Ū1,min)
= · · · = βi log 2(1 + c3pi,nGi,n)

(ŪK − ŪK,min)
(20)

As it is seen, getting a closed form solution for pi,n and ci,n
from (19) and (20) is an NP-hard problem. However, it casts
light on the shape of the optimum solution. Looking at ci,n
each fraction can be interpreted as the rate of each user in one
subchannel to the total rate of all subchannels assigned to that
user which illustrates the ratio of the rate in one subchannel
to the total rate should be the same for all users. This clue
asserts the fairness of the optimal solution and ,also, gives us
a metric for subchannel allocation.

A. The Proposed Sub-optimum Power and Sub-channel Allo-
cation Algorithm

As it is seen in previous section, Nash product terms are
hard to handle especially with the large number of users and
subchannels. Hence, we break the problem into two subprob-
lems. First, we assume that the subchannels are allocated,i.e.
ci,n is known, from (19) and (17) we get the following familiar
water filling equation:

pi,n =
Pi,max + 1

c3

∑N
i=1

1
Gi,n

N
− 1

c3Gi,n
(21)

Then, we propose the following algorithm for subchannel
allocation by modifying the algorithm in [4] as follows:

1) Initialization:
a) Set Ūi = 0,Ωi = ∅ for all i = 1, 2, ...,K and

A = {1, 2, ..., N}.
2) for i=1 to K,

a) Find n satisfying |Gi,n| ≥ |Gi,k| for all k ∈ A.
b) Let Ωi = Ωi ∪ {n}, A = A− {n} and update Ūi

according to (11).
3) While A 6= ∅,

a) find i satisfying Gi,n∑
j∈Ωi

Gi,j
≤ Gm,n∑

j∈Ωm
Gm,j

for all
m, 1 ≤ m ≤ K. Ωi and Ωm are the subchannels
allocated to user i and m respectively;

b) For the found i, find n satisfying |Gi,n| ≥ |Gi,k|
for all k ∈ A;

c) For the found i and n, let
Ωi = Ωi ∪ {n}, A = A− {n} and update Ri
according to (11).

4) Water fill power based on (21) for each Ωi,
i = 1, 2, ...,K.

IV. SIMULATION RESULTS

In this section we testify the performance of the proposed
subchannel and power allocation approach under different
sensing parameters. It is assumed that the sub-channel gains
are i.i.d. random variables with Rayleigh distribution. Noise
spectral density is N0 = −110 dB and is the same for all K
users. The total available bandwidth is w = 3.2 MHz, and the
maximum allowable power per user is 0.3 W. Without loss of
generality we set Ūi,min = 0. First, we consider the case that
PU is completely silent which results in βi = 1. Hence, the
problem reduces to allocating N subchannels among K users
without requiring any sensing information. In this case we
are able to compare the proposed algorithm with the available
methods(max-min and sum-max) for the non-cognitive case as
it is seen in Figure 3. It shows the allocated rate per user per
subchannel for N = 16 subchannels and K = 6 users with
gray bars for the proposed algorithm, black bars for the max-
sum rate and white bars for the max-min case. Let’s consider
the two extreme cases first. It is obvious that the first user has
the worst channel condition. As we see the max-sum algorithm
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Fig. 4. Total throughput vs. the probability of PU activity (K = 12, N = 32)

does not allocate any subchannel to this user since it lowers the
total rate while the max-min approach treats this user almost
the same as other users at the cost of reducing the total rate
of the network. The proposed algorithm, however, aiming at
balancing the optimality and the fairness, assigns the lowest
rate to this user. Let’s switch to the second user which is
the best user with the highest channel gain. The max-sum
allocates the highest rate to this user but the max-min assigns
a rate even less than the worst case user which results in the
underutilization of the second user good channel conditions.
The proposed algorithm keeps the middle position. The same
analysis applies for the rest of users which are between the
two first extreme cases.

Figure 4 illustrates the total throughput of the K = 6 users
with N = 32 subchannels versus the probability of the PU
activity. We observe that for the values of Pp < 0.4 the
throughput does not drop that much. However, when Pp passes
0.5 the total throughput drops rapidly which can give us a
threshold on where the co-existence of a PU and SUs are
beneficial.

In Figure 5 we assess the total throughput of the Secondary
network under different values of β. We assume that all
SUs are using an energy detector with the same parameters,
therefore, the index i of β could be dropped. The very bottom
plot is correspond to the case of β = 0 which could be mapped
to the case that PU is active all the time (Pp = 1) or the case
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that Pf = 0. In either case there would be no transmission
opportunity for the SUs and no throughput will be achieved.
As β increases the total throughput is growing accordingly
which indicates that the more accurately the SUs sense the
higher throughput is obtained. The maximum throughput is
for the case of β = 1 which means either SUs are sensing
perfectly Pd = 1 or PU is completely silent Pp = 0.

V. CONCLUSION

An effective dynamic subchannel and power allocation
algorithm is proposed based on Nash bargaining Solution
for an ad hoc network of secondary users with imperfectly
sensing PU activity. Comparing to the max-sum approach
which totally ignores the users with weak channel conditions
and the max-min scheme which maximizes the worst user
rate at the cost of scarifying the good users, the proposed
algorithm balances these two extreme cases by weighting each
user according to its total channel gain. Moreover, it is shown
that the total throughput of the secondary network is highly
related to how accurately the sensing process is performing
and how frequently the PU is present. The higher detection
probability is desirable in order to take the best advantage of
the temporarily available PU subchannels. Furthermore, a PU
with more than %40 activity lowers the SU throughput sharply
which could be an indicator for the SUs that the PU is not
worth sensing.
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