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Abstract— This paper proposes novel and simple linearly
combined signal energy based spectrum sensing algorithm for
cognitive radio networks. It is assumed that the transmitter pulse
shaping filter is known to the cognitive receiver. And, flat fading
channels with synchronous and asynchronous receiver scenarios
are considered. For each of these scenarios, the proposed detector
is explained as follows: First, by introducing a combiner vector,
over-sampled signals with total duration equal to the symbol
period are combined linearly. Second, for this combined signal,
the Signal-to-Noise ratio (SNR) maximization and minimization
problems are formulated as Rayleigh quotient optimization
problems. Third, by using the solutions of these problems, the
ratio of the energy of the combined signals corresponding to the
maximum and minimum SNRs are proposed as the test statistics.
For these test statistics, analytical probability of false alarm (Pf )
and probability of detection (Pd) expressions are derived for
additive white Gaussian noise (AWGN) channel. It is shown that
these detectors are robust against noise variance uncertainty.
Moreover, simulation results demonstrate that the proposed
detectors achieve better detection performance compared to that
of the well known energy detector in AWGN and Rayleigh fading
channels with noise variance uncertainty. The proposed detectors
also guarantee the prescribed Pf (Pd) in the presence of adjacent
channel interference signals.

Index Terms— Cognitive radio, Spectrum sensing, Noise vari-
ance uncertainty, Adjacent channel interference.

I. INTRODUCTION

Cognitive radio (CR) is a promising approach to deploy

dynamic spectrum access network [1], [2]. One of the key

characteristics of a CR network is its ability to extract the

characterstics of the surrounding radio environment. This is

performed by the spectrum sensing (signal detection) part of

a CR network.

The most common spectrum sensing algorithms for CR

network are matched filter, energy and cyclostationary based

algorithms. If the characteristics of the primary user such as

modulation scheme, pulse shaping filter and packet format

are known perfectly, matched filter is the optimal signal

detection method as it maximizes the received Signal-to-

Noise Ratio (SNR). However, this method requires perfect

synchronization between the transmitter and receiver. On the

other hand, dedicated receiver is needed to detect each signal
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characteristics of a primary user [3]. Energy detector does not

need any information about the primary user and it is simple to

implement. However, energy detector is very sensitive to noise

variance uncertainty, and there is an SNR wall below which

this detector can not guarantee a certain detection performance

[3]–[5]. Cyclostationary based detection method is robust

against noise variance uncertainty and it can reject the effect

of adjacent channel interference. However, the computational

complexity of this detection method is high, and large number

of samples are required to exploit the cyclostationarity nature

of the received samples [5], [6]. On the other hand, this

method is not robust against cyclic frequency offset which

can occur due to clock mismatch between the transmitter

and receiver [7]. In [8], Eigenvalue decomposition (EVD)-

based spectrum sensing algorithm has been proposed. This

algorithm is robust against noise variance uncertainty but its

computational complexity is high. Furthermore, this algorithm

assumes multi-antenna receiver with the channel covariance

matrix different from a scaled identity matrix [9].

This paper proposes novel and simple linearly combined

signal energy based spectrum sensing algorithm for cognitive

radio networks. It is well known that digital communica-

tion signals are constructed by passing over-sampled signals

through a transmitter pulse shaping filter. As this pulse shaping

filter is standard, it is assumed to be known to the cognitive

receiver1. And, flat fading channels with synchronous and

asynchronous receiver scenarios are considered. For each of

these scenarios, the proposed detector is explained as follows:

First, by introducing a combiner vector, over-sampled signals

with total duration equal to the symbol period are combined

linearly. Second, for this combined signal, the SNR maximiza-

tion and minimization problems are formulated as Rayleigh

quotient optimization problems. Third, by employing the solu-

tions of these problems, the ratio of the energy of the combined

signals corresponding to the maximum and minimum SNRs

are proposed as the test statistics. For these test statistics,

analytical probability of false alarm (Pf ) and probability

of detection (Pd) expressions are derived for additive white

Gaussian noise (AWGN) channel. As the Pf expressions

do not depend on the actual noise variance, these detectors

1Note that the most common pulse shaping filters are square root raised
cosine and Gaussian filters. Thus, the assumption of this paper is realistic.
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are robust against noise variance uncertainty. The theoretical

expressions are confirmed by computer simulations. Under

noise variance uncertainty, simulation results demonstrate that

the proposed detectors achieve better detection performance

compared to that of the well known energy detector in AWGN

and Rayleigh fading channels. Also, the proposed detectors

guarantee the prescribed Pf (Pd) in the presence of adjacent

channel interference signals.

II. PROBLEM FORMULATION

Assume that the transmitted symbols sn, ∀n are pulse

shaped by a filter g(t). After the digital to analog conversion,

the baseband transmitted signal is given by

x(t) =
∞∑

k=−∞

skg(t− kTs) (1)

where Ts is the symbol period. In an AWGN channel, the

received signal after filtering is expressed as

r(t) =

∫ ∞

−∞

f∗(τ)(x(t− τ) + w(t− τ))dτ

=

∫ ∞

−∞

f∗(τ)(
∞∑

k=−∞

skg(t− kTs − τ) + w(t− τ))dτ

=
∞∑

k=−∞

skh(t− kTs) +

∫ ∞

−∞

f∗(τ)w(t− τ)dτ (2)

where f∗(t) is the receiver filter, w(t) is the additive white

Gaussian noise and h(t) =
∫∞

−∞
f∗(τ)g(t − τ)dτ . The ob-

jective of spectrum sensing is to decide between H0 and H1

from r(t), where

r(t) =

∫ ∞

−∞

f⋆(τ)w(t− τ)dτ, H0 (3)

=

∞∑

k=−∞

skh(t− kTs) +

∫ ∞

−∞

f⋆(τ)w(t− τ)dτ,H1.

Without loss of generality, we assume that the received signal

r(t) has a zero mean.

III. PROPOSED SPECTRUM SENSING ALGORITHM

We define the nth discrete signal ỹ[n] as follows:

ỹ[n] ,
L−1∑

i=0

αir((n− 1)Ts + ti)

=

∞∑

k=−∞

sk

L−1∑

i=0

αih((n− 1)Ts + ti − kTs)+

L−1∑

i=0

αi

∫ ∞

−∞

f⋆(τ)w((n− 1)Ts + ti − τ)dτ (4)

where {ti}L−1
i=0 are chosen such that tL−t0 = Ts and {αi}L−1

i=0

are the introduced variables. By assuming that the signal and

noise (i.e., s(t) and w(t)) are independent, the power of ỹ[n]
can be expressed as

E{|ỹ[n]|2} =E{|
∞∑

k=−∞

sk

L−1∑

i=0

αih((n− 1)Ts + ti − kTs)|2}+

E{|
L−1∑

i=0

αi

∫ ∞

−∞

f⋆(τ)w((n− 1)Ts + ti − τ)dτ |2}

=σ2
s

∞∑

k=−∞

αH
Ankα+ σ2

wα
H
Bnα

=σ2
sα

H
Anα+ σ2

wα
H
Bnα (5)

where σ2
s and σ2

w are the variances of the signal and

noise, respectively, α = [α0, α1, · · · , αL−1]
T , Ank =

anka
H
nk, An =

∑∞
k=−∞ Ank and Bn = 1

σ2
w
E{bnb

H
n }

with ank = [h((n − 1)Ts + t0 − kTs), h((n − 1)Ts +
t1 − kTs), · · · , h((n − 1)Ts + tL−1 − kTs)]

T and bn =
[
∫∞

−∞
f⋆(τ)w((n−1)Ts+t0−τ)dτ,

∫∞

−∞
f⋆(τ)w((n−1)Ts+

t1 − τ)dτ, · · · ,
∫∞

−∞
f⋆(τ)w((n− 1)Ts + tL−1 − τ)dτ ]T .

The entries of An and Bn can further be expressed as

(An)ij =
∑∞

k=−∞ h((n− 1− k)Ts + ti)h
⋆((n− 1− k)Ts +

tj) =
∑∞

k′=−∞ h(k′Ts+ti)h
⋆(k′Ts+tj) , Aij and (Bn)ij =∫∞

−∞
f⋆(τ)f(ti − tj + τ)dτ , Bij . It follows

E{|ỹ[n]|2} =σ2
sα

H
Aα+ σ2

wα
H
Bα. (6)

For given A and B, the SNR minimization and maximization

problems of E{|ỹ[n]|2} can be expressed as

min
αmin

σ2
sα

H
minAαmin

σ2
wα

H
minBαmin

≡ min
αmin

αH
minAαmin

αH
minBαmin

≡ min
αmin

αH
min(A+B)αmin

αH
minBαmin

(7)

max
αmax

αH
max(A+B)αmax

αH
maxBαmax

. (8)

These optimization problems are Rayleigh quotient problems.

Since A and B are positive semidefinite matrices, the Gener-

alized eigenvalue solution approach can be applied to get the

optimal solutions of these problems which is summarized as

follows [10], [11]:

As B is a positive semidefinite matrix, applying eigenvalue

decomposition gives us

B = U

(
Σ 0

0 0

)
U

H , UDDU
H (9)

where Σ is a diagonal matrix containing nonzero eigenvalues

of B, U is a unitary matrix and

D =

(
Σ

1
2 0

0 0

)
. (10)

The pseudoinverse of B is given by

B
† = U

(
Σ

−1
0

0 0

)
U

H = UD̃D̃U
H (11)

where

D̃ =

(
Σ

− 1
2 0

0 0

)
. (12)



By employing (9) - (12), and defining α̃ , DU
Hαmin for

(7) and ˜̃α , DU
Hαmax for (8), we can rewrite the problems

(7) and (8) as

min
α̃

α̃H
Ãα̃

α̃Hα̃
(13)

max
˜̃
α

˜̃α
H
Ã ˜̃α

˜̃α
H
˜̃α

(14)

where Ã = (UD̃)H(A+B)(UD̃) = [I 0;0 0]+D̃U
H
AUD̃.

The optimal α̃ and ˜̃α of these problems are given by the

eigenvectors corresponding to the minimum and maximum

nonzero eigenvalues of Ã, respectively. Since Ã is also

a positive semidefinite matrix, its minimum and maximum

nonzero eigenvalues are always positive. The optimal solutions

of the original problems (7) and (8) are thus given by λ ,

α⋆
min = UD̃α̃⋆ and τ , α⋆

max = UD̃( ˜̃α)⋆.

At optimality, the denominator terms of the above problems

are equal to unity (or any other positive value). Thus, under

H0 hypothesis, the optimal values of (13) and (14) are the

same and equal to unity. However, under H1 hypothesis, the

optimal value of (14) is higher than that of (13)2. Due to this

fact, we propose the following test statistics:

̂̃
T =

∑N
n=1 |ỹ[n]|2αmax∑N
n=1 |ỹ[n]|2αmin

,

∑N
n=1 |z[n]|2∑N
n=1 |e[n]|2

,
M̂a2z

M̂a2e

(15)

where

M̂a2z =
1

N

N∑

n=1

|z[n]|2, M̂a2e =
1

N

N∑

n=1

|e[n]|2. (16)

The authors of [8] propose over-sampling along with pre-

whitening method to apply the EVD-based detection algorithm

for the single receiver antenna case. However, in practice, there

is always a nonzero (with very-small power) adjacent channel

interference signal. And in such a scenario, the pre-whitening

method of [8] can not be applied. This is due to the fact

that the pre-whitening method of [8] will amplify the effect

of the adjacent channel interference signal. Consequently, the

detector of [8] can not ensure a predefined Pf when there is an

adjacent channel interference signal. However, as we can see

from (15), this test statistics can guarantee predefined Pf (Pd)
when the adjacent channel interference signal power is very

small compared to that of the desired signal and noise power.

For sufficiently large N (which is the case in

cognitive radio), by applying central limit theorem,

we can interpret z[n] and e[n] as filtered and down-

sampled versions of {w[i]}LN
i=1, where the filters

are ηR+L−1×1 ,
√

2(1 + γmax)
∑

diag(Υ, k)
and θR+L−1×1

,
√
2(1 + γmin)

∑
diag(Ψ, k),

k = [−(L − 1),−(L − 2), · · · , R − 1] for z[n] and e[n],
respectively, and γmax and γmin denote the SNRs obtained

by solving the problems (7) and (8), respectively, with w[i], ∀i
are independent and identically distributed (i.i.d) zero mean

circularly symmetric complex Gaussian (ZMCSCG) random

2Note that under H1 hypothesis, the optimal values of (14) and (13) are
equal if and only if A = B which will never happen in practical scenario.

variables all with unit variance3, Υ = τT ⊗ f , Ψ = λT ⊗ f ,

⊗ denotes a kronecker product, f = [f0, f1, · · · , fR] is the

sampled version of the receiver filter f(t) with sampling

period Ts

L , R is the filter length and
∑

diag(X, k) denotes

the sum of the kth (k = 0, k > 0 and k < 0, denote the

main diagonal, above the main diagonal and below the main

diagonal, respectively) diagonal elements of X.

For better exposition, let us introduce a new variable T̃

T̃ =
limN→∞

1
N

∑N
n=1 |z[n]|2

limN→∞
1
N

∑N
n=1 |e[n]|2

,
Ma2z

Ma2e
. (17)

By defining σ2
z , 1+γmax, σ2

e , 1+γmin and γd = γmax−
γmin, T̃ can be expressed as

T̃ =
2σ2

z

2σ2
e

= 1, H0

=
2σ2

z

2σ2
e

= 1 +
γd

1 + γmin
, H1. (18)

From this equation, one can notice that our problem turns to

examining whether T̃ = 1 or T̃ > 1 for sufficiently large

N . To get the Pd and Pf of the proposed test statistics, we

examine the following Theorem [12].

Theorem 1: Given a real valued function
̂̃
T = M̂a2z

M̂a2e
, the

asymptotic distribution of
√
N(

̂̃
T − T̃ ) is given by

√
N(

̂̃
T − T̃ ) ∼ N (0, σ̃2) (19)

where σ̃2 = vΦv
T ,

v =

[
∂
̂̃
T

∂M̂a2z

,
∂
̂̃
T

∂M̂a2e

]

M̂a2z=Ma2z,M̂a2e=Ma2e

=

[
1

Ma2e
,−Ma2z

M2
a2e

]
(20)

and Φ is the asymptotic covariance matrix of a multivariate

random variable
√
N([M̂a2z, M̂a2e]

T − [Ma2z,Ma2e]
T ) ∼

N (0,Φ).
Proof: See Theorem 3. 3. A on page 122 of [12].

As can be seen from (15), since the size of η(θ) is

larger than L, z[n](e[n]) and (z[n + p], e[n + p]), ∃p 6= 0
are correlated. If P consecutive samples of z[n](e[n]) are

correlated, by applying multivariate central limit theorem

[13], the coefficients of Φ can be expressed as Φ(1,1) =

Ma4z − (2P + 1)M2
a2z + 2E{|z[n]|2 ∑P

p=1 |z[n + p]|2},

Φ(1,2) = Φ(2,1) = E{|z[n]|2|e[n]|2} − (2P + 1)Ma2zMa2e +

E{|z[n]|2 ∑P
p=1 |e[n+p]|2}+E{|e[n]|2 ∑P

p=1 |z[n+p]|2} and

Φ(2,2) = Ma4e−(2P+1)M2
a2e+2E{|e[n]|2 ∑P

p=1 |e[n+p]|2},

where

Ma4z = lim
N→∞

1

N

N∑

n=1

|z[n]|4, Ma4e = lim
N→∞

1

N

N∑

n=1

|e[n]|4.

Substituting Φ into (19) gives

σ̃2 =
M2

a2eΦ(1,1) − 2Ma2eMa2zΦ(1,2) +M2
a2zΦ(2,2)

M4
a2e

. (21)

3This is due to the fact that the noise power does not have any effect on
the test statistics under H0 hypothesis, and the effect of the signal power is
incorporated by the filters η and θ under H1 hypothesis.



As T̃ = 1 under H0 hypothesis, we modify the test

statistics
̂̃
T to

T =
√
N(

̂̃
T − 1). (22)

The Pf of this test statistics is expressed as

Pf (λ) =Pr{T > λ|H0}. (23)

Under H0 hypothesis, as T ∼ N (0, σ̃2
H0), Pf is given by

Pf =

∫ ∞

λ

1√
2πσ̃2

H0

exp
− x2

2σ̃2
H0 dx = Q

(
λ

σ̃H0

)
(24)

where Q(.) is the Q-function which is defined as [14]

Q(λ) =
1√
2π

∫ ∞

λ

exp−
x2

2 dx

and σ̃2
H0 is σ̃2 of (21) under H0 hypothesis. Note that σ̃2

H0

can be computed numerically (see Appendix A).

Mathematically, Pd(λ) is expressed as

Pd(λ) =Pr{T > λ|H1}

=

∫ ∞

λ

1√
2πσ̃2

H1

exp
−

(x−µ)2

2σ̃2
H1 dx = Q

(
λ− µ

σ̃H1

)
(25)

where µ =
√
N(T̃ − 1) =

√
N γd

1+γmin
and σ̃2

H1 is σ̃2 of (21)

under H1 hypothesis which can be computed numerically just

like that of σ̃2
H0 with σ2

z = 1+γmax and σ2
e = 1+γmin. From

the above expression, we can understand that for given γd > 0
and λ, increasing N increases Pd. This is due to the fact that

Q(.) is a decreasing function. Thus, the proposed detection

algorithm is consistent (i.e., for any given Pf and SNR, as

N → ∞, Pd → 1).

As can be seen from (7) and (8), for a given g(t), the

achievable maximum and minimum SNRs depend on the

selection of f(t) and {ti}L−1
i=0 . For a given g(t), getting

the optimal f(t) and {ti}L−1
i=0 ensuring the highest detection

performance is an open research topic. In our simulation, we

have observed better detection performance when we select

f(t) = g(t) (i.e., matched filter) and {ti = Ts(
1
2 + i

L )}L−1
i=0 .

For example, if f(t) is square root raised cosine filter (SR-

RCF), the initial timing (t0) will be as in Fig. 1.

From this explanation, we can notice that to get the highest

Pd, t0 must be known perfectly. The exact t0 is known when

the receiver is synchronized perfectly with the transmitter.

However, in general, since the transmitters and receivers are

administered by different operators, perfect synchronization is

not possible. In the following, we generalize the aforemen-

tioned detector for asynchronous receiver scenario.

As can be seen from (7) and (8), perfect synchronization

is required just to get the optimized α. Thus, in the case of

asynchronous receiver scenario, the SNR minimization and

maximization problems can be modified by considering all

possible values of t0 and can be expressed as

min
αmin

L∑

i=1

αH
minAt0iαmin

αH
minBt0iαmin

(26)

max
αmax

L∑

i=1

αH
maxAt0iαmax

αH
maxBt0iαmax

(27)
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Fig. 1. Description of t0 for SRRCF.

where At0i(Bt0i) is the matrix A(B) of (6) with t0 = t0i. It

is well known that all pulse shaping filters are symmetric (for

example, SRRCF and Gaussian pulse shaping filter). Because

of this, Bij depends on |i−j| for any t0 (i.e., B is a symmetric

Teoplitz matrix). Thus, for any initial t0i, {Bt0i}Li=1 are equal

to B of (6). Consequently, we can reformulate the above

problems as

min
αmin

αH
min

∑L
i=1 At0iαmin

αH
minBαmin

(28)

max
αmax

αH
max

∑L
i=1 At0iαmax

αH
maxBαmax

. (29)

These two problems can be examined exactly like those of (7)

and (8). The details are omitted for conciseness.

Once the optimal solutions of (28) and (29) are obtained,

the test statistics for asynchronous receiver scenario can be

formulated like (22). By assigning (σ̃H0i, σ̃H1i, µi) as the

(σ̃H0, σ̃H1, µ) obtained from (αmax,αmin,At0i ,B), the Pf

and Pd expression of this test statistics can be expressed as

Pf =
1

L

L∑

i=1

Q

(
λ

σ̃H0i

)
= Q

(
λ

σ̃H01

)

Pd =
1

L

L∑

i=1

Q

(
λ− µi

σ̃H1i

)

where the second equality is due to the fact that under H0

hypothesis, {σ̃H0i}Li=1 are the same.

As can be seen from (5), the entries of B can be obtained

analytically from f(t). However, from (5) we can see that the

entries of A are obtained by infinite summation (i.e., −∞ ≤
k′ ≤ ∞). However, in a practical filter, as the magnitudes of

f(t)(g(t)) decrease rapidly as |t| increases, the coefficients of

A can be well approximated by employing finite summations

(i.e., −K ′ ≤ k′ ≤ K ′), where K ′ is a finite integer.

For any given transmitter pulse shaping filter g(t), the

proposed detectors are summarized in Table I.



Table I

Initialization: Set f(t)=g(t) (matched filtering), and L

and R as required.

Synchronous receiver scenario

a) Search t0 such that γd is maximum. We would like

to mention here that for the well known SRRCF

(roll-off factor = 0.2) pulse shaping filter, we have

found almost constant γd for L ≥ 8. In our simula-

tion, we choose L = 8 to reduce the computational

complexity of the detector. However, for general

pulse shaping filter, exhaustive search of t0 can be

applied for any L. This is due to the fact that the

optimization problems are solved only once prior

to the detection process.

b) With the above t0, solve the optimization problems

(7) and (8), and compute γmin and γmax.

c) With the optimal α of (7) and (8), compute Pf

using (24).

d) With the above γmin, γmax and optimal α of (7)

and (8), compute Pd using (25).

Asynchronous receiver scenario

a) For {t0i}Li=1, solve the optimization problems (28)

and (29), and compute γmin and γmax.

b) With the optimal α of (28) and (29), compute Pf

using (24).

c) With the above γmin, γmax and optimal α of (28)

and (29), compute Pd using (25).

IV. SIMULATION RESULTS

In this section, we provide simulation results for the

proposed detection algorithms. All of the simulation results

of this section are obtained by averaging 5000 experiments.

For all simulations, we employ a SRRCF with roll-off factor

0.2, L = 8 and R = 64L + 1, and N = 215. The SNR is

defined as SNR ,
σ2
s

σ2
w

.

A. Verification of Pf expressions under adjacent channel

interference signal

In this subsection, we examine the effect of adjacent chan-

nel interference signal on the Pf expression of the proposed

algorithm (24) and that of the EVD-based detection algorithm

[8]. For the comparison, we consider an adjacent channel

signal defined as A(t) = I1ã1(t)+ I2ã2(t) with σ2
ã1

= σ2
ã2

=
σ2
w, where, ã1(t) = sin( 3πTs

t)a1(t), ã2(t) = sin( 5πTs
t)a2(t),

a1(t)(a2(t)) is a zero mean binary phase shift keying (BPSK)

signal with data rate 1
Ts

and I1(I2) is a discrete random

variable which takes a value 0 or 1. With this adjacent channel

interference signal, we will have r(t) =
∫∞

−∞
f⋆(τ)(w(t−τ)+

A(t− τ))dτ in H0 hypothesis.

The Pf expressions of the proposed detection algorithm

and the EVD-based detection algorithm of [8] (Maximum to

Minimum Eigenvalue (MME) algorithm of [8]) are plotted

in Fig. 2. As can be seen from this figure, in the proposed

algorithm, the theoretical Pf expression fit that of the sim-

ulation result, whereas, in the EVD-based algorithm of [8],

the theoretical Pf expression is deviated significantly from

the simulation result in the desired region (i.e., the region
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Fig. 2. Theoretical and simulated Pf with and without adjacent channel
interference. (a) The proposed detection algorithm. (b) The EVD-based
detection algorithm of [8] (MME algorithm of [8]). For this simulation, we
use a smoothing factor of 2L and the Tracy-Widom distribution of order 2
(TW2) values are taken from Table 3 of [15].

0 ≤ Pf ≤ 0.1) when A(t) 6= 0. From this discussion,

we can understand that the proposed detection algorithm can

tolerate adjacent channel interference signal. However, getting

the exact value of this interference level analytically is beyond

the scope of this work.

B. Verification of theoretical expressions

In this subsection, we verify the theoretical Pf and Pd

expressions of the proposed detectors by computer simula-

tions. We consider QPSK and 16 QAM modulated signals

in an AWGN channel environment for both synchronous and

asynchronous receiver scenarios. It is assumed that A(t) = 0,

and the SNR is known perfectly4 and is set to −14dB. For

these settings, the theoretical σ2
z , σ

2
e , σ̃

2 and µ are as shown in

4Here A(t) = 0 and the true SNR (i.e., accurate signal and noise variances)
are required just to get Pd which depends on SNR.



Table II: Theoretical σ2
z , σ

2
e , σ̃

2 and µ for different scenarios

Synchronous (Sync) Asynchronous (Async)

H0 σ2
z = σ2

e = 1, µ = 0, σ̃2 = 5.9684 σ2
zav = σ2

eav = 1, µav = 0, σ̃2
av = 5.9684

H1 σ2
z = 1.0398, σ2

e = 1.0101, µ = 5.3285, σ̃2 = 5.6723 σ2
zav = 1.0398, σ2

eav = 1.0235, µav = 2.8894, σ̃2
av = 6.161
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Fig. 3. Theoretical and simulated Pf versus Pd plot of the proposed
detectors. Sync and Async denote synchronous and asynchronous receiver
scenarios, respectively.

Table II5. As can be seen from Fig. 3, the theoretical Pf versus

Pd expressions fit that of the simulation for all modulation

types in both synchronous and asynchronous receiver scenario.

In the following, we compare the performance of our detec-

tors (with and without adjacent channel interference signals)

to that of energy detector. For A(t) 6= 0, the adjacent channel

interference signal of Section IV-A with σ2
ã1

= σ2
ã2

= σ2
s is

employed.

C. Comparison of the proposed detector and energy detector

In this subsection, we compare the performance of the

proposed detector with that of the energy detector for AWGN

and Rayleigh fading channels under noise variance uncertainty.

According to [4], in an uncertain noise variance scenario, the

actual noise variance can be modeled as a bounded interval of

[ 1ǫσ
2
w ǫσ2

w] for some ǫ = 10∆σ2/10 > 1, where the uncertainty

∆σ2 is expressed in dB. We assume that this bound follows

a uniform distribution, i.e., U [ 1ǫσ2
w ǫσ2

w]. The noise variance

is the same for one observation (since it has a short duration)

and follows a uniform distribution during several observations.

Moreover, in a Rayleigh fading channel, the channel gain is the

same for one observation and follows a Rayleigh distribution

during several observations. The comparisons are performed

for different SNRs by setting Pf = 0.1. For better exposition,

QPSK signal is considered. Fig. 4 show the performance of the

proposed detector and that of energy detector for synchronous

and asynchronous receiver scenarios. In this figure, the Async

5In the asynchronous receiver scenario, (.)av denotes average.
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Fig. 4. Comparison of the proposed detectors and energy detector. Sync and
Async denote synchronous and asynchronous receiver scenarios, respectively.

w/o Opt and Async with Opt curves are the detection proba-

bilities obtained by employing the optimal α of ((7), (8)) and

((28), (29)), respectively, for asynchronous receiver scenario.

From Fig. 4, we can observe that the proposed detector

achieve the best performance when the receiver is synchro-

nized with the transmitter. And in the asynchronous receiver

scenario, the Pd of the optimized detector (Async with Opt)

is higher than that of the naive one (Async w/o Opt) which

is expected. Furthermore, the proposed detectors have better

detection performances compared to that of energy detector

for both synchronous and asynchronous receiver scenarios.

V. CONCLUSIONS

This paper proposes novel linearly combined signal en-

ergy based spectrum sensing algorithms for cognitive radio



networks in flat fading channels. It is assumed that the transmit

pulse shaping filter is known. With this assumption, first, by

introducing a combiner vector, the over-sampled signal of total

duration equal to Ts are combined linearly. Second, for this

combined signal, the SNR maximization and minimization

problems are formulated as Rayleigh quotient optimization

problems. Third, by employing the solutions of these prob-

lems, the ratio of the energy of the combined signals corre-

sponding to the maximum and minimum SNRs are proposed

as the test statistics. For this test statistics, analytical Pf

and Pd expressions are derived for an AWGN channel in

both synchronous and asynchronous receiver scenarios. The

Pf expressions do not depend on the actual noise variance

and hence the proposed detectors are robust against noise

variance uncertainty. The theoretical expressions are confirmed

by computer simulations. Under noise variance uncertainty,

simulation results demonstrate that the proposed detectors

achieve better detection performance compared to that of the

well known energy detector in AWGN and Rayleigh fading

channels for both synchronous and asynchronous receiver sce-

narios. Furthermore, simulation results show that the proposed

algorithms maintain the prescribed Pf (Pd) in the presence of

adjacent channel interference signals.

APPENDIX A

NUMERICAL COMPUTATION OF σ̃2
H0

By defining |z[n]|2 = zr[n]
2 + zi[n]

2 and |e[n]|2 =
er[n]

2+ei[n]
2, where (.)r and (.)i denote real and imaginary,

respectively, it can be shown that

E{|z[n]|2|z[n+ p]|2} = E{(zr[n]zr[n+ p])2+

(zi[n]zi[n+ p])2}+ E{zr[n]2zi[n+ p]2 + zi[n]
2zr[n+ p]2}

E{|e[n]|2|e[n+ p]|2} = E{(er[n]er[n+ p])2+

(ei[n]ei[n+ p])2}+ E{er[n]2ei[n+ p]2 + ei[n]
2er[n+ p]2}

E{|z[n]|2|e[n+ p]|2} = E{(zr[n]er[n+ p])2+

(zi[n]ei[n+ p])2}+ E{zr[n]2ei[n+ p]2 + zi[n]
2er[n+ p]2}

E{|z[n]|2|e[n]|2} = E{(zr[n]er[n])2 + (zi[n]ei[n])
2}+

E{zr[n]2ei[n]2 + zi[n]
2er[n]

2}. (30)

It follows

E{|z[n]|2|z[n+ p]|2} =2σ4
z(E{(z̄r[n]z̄r[n+ p])2}+ 1)

E{|e[n]|2|e[n+ p]|2} =2σ4
e(E{(ēr[n]ēr[n+ p])2}+ 1)

E{|z[n]|2|e[n+ p]|2} =2σ2
zσ

2
e(E{(z̄r[n]ēr[n+ p])2}+ 1)

E{|z[n]|2|e[n]|2} =2σ2
zσ

2
e(E{(z̄r[n]ēr[n])2}+ 1) (31)

where ēr[n](z̄r[n]) ∼ N (0, 1). Since ēr[n](z̄r[n]) and ēr[n+
p](z̄r[n + p]) are correlated, getting closed form analytical

expressions for the expectation terms of this equation is very

complicated. However, by appropriately zero padding, it is

possible to express ēr[n](z̄r[n]) and ēr[n + p](z̄r[n + p]) as

a fully correlated samples of appropriate size. To this end,

we derive an expression for the expectation term E{(τη)2},

where τ =
∑J

i=1 ciw̃i, η =
∑J

i=1 diw̃i, J is a positive integer,

{ci, di}Ji=1 are arbitrary coefficients and {w̃i}Ji=1 are i.i.d zero

mean Gaussian random variables all with unit variance.

E{(τη)2} =E{(
J∑

i=1

cidiw̃
2
i +

J∑

i=1

J∑

j=1,j 6=i

cidjw̃iw̃j)
2}

=E{(
J∑

i=1

cidiw̃
2
i )

2 + (

J∑

i=1

J∑

j=i,j 6=i

cidjw̃iw̃j)
2}

=
J∑

i=1

J∑

j=1

c2i d
2
j + 2cicjdidj (32)

where the second equality employs E{w̃iw̃j = 0, ∀i 6= j}
and the third equality employs the definition of moment for a

Gaussian random variable [16].

The absolute second and fourth moments of z[n](e[n]) are

given by [16]

Ma2z = 2σ2
z ,Ma2e = 2σ2

e ,Ma4z = 8σ4
z ,Ma4e = 8σ4

e . (33)

Using (31), (32) and (33), σ̃2
H0 can be computed numeri-

cally by employing (21).
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