
A Split Architecture for Random Access MAC for
SDR Platforms

Paolo Di Francesco⇤, Séamas McGettrick⇤, Uchenna K. Anyanwu‡, J. Colman O’Sullivan⇤,
Allen B. MacKenzie‡ and Luiz A. DaSilva⇤‡

⇤CTVR / The Telecommunications Research Centre, Trinity College Dublin, Ireland
‡Wireless @ Virginia Tech, Blacksburg, Virginia, USA

Email: pdifranc@tcd.ie, smcgettr@tcd.ie, uchevt@vt.edu, cosull13@tcd.ie, mackenab@vt.edu, dasilval@tcd.ie

Abstract—Implementation of carrier-sensing-based medium

access control (MAC) protocols on inexpensive reconfigurable

radio platforms has proven challenging due to long and un-

predictable delays associated with both signal processing on a

general purpose processor (GPP) and the interface between the

RF front-end and the GPP. This paper describes the development

and implementation of a split-functionality architecture for a

contention-based carrier-sensing MAC, in which some of the

functions reside on an FPGA (field programmable gate array)

and others reside in the GPP. We provide an FPGA-based

implementation of a carrier sensing block and develop two

versions of a CSMA MAC protocol based upon this block. We

experimentally test the performance of the resulting protocols in

a multihop environment in terms of end-to-end throughput and

required frame retransmissions. We cross-validate these results

with a network simulator with modules modified to reflect the

mean and variance of delays measured in components of the real

software-defined radio system.

I. INTRODUCTION

The term Cognitive Radio (CR) applies to a wide variety of
systems, ranging from transceivers that use simple techniques
to gather information about the wireless environment and have
basic decision-making capabilities, to systems that have multi-
sensory features and are capable of sophisticated analysis,
learning, and decision-making. Cognitive radios can be viewed
as radio nodes that are aware of the context in which they are
operating and can reconfigure themselves to best fit the current
conditions in the medium.

A cognitive radio should be able to sense activity in the
channel in which it is operating and reconfigure itself based
on the results. To achieve this reconfiguration, cognitive radios
are often built on software-defined radios (SDRs). Flexible
SDR platforms have been incorporated into a wide range of
wireless communications technology, spanning from satellite
communications to sensor networks. They allow the recon-
figuration of waveforms, frequency, and modulation schemes
in order to improve communication performance. Traditional
SDR platforms are capable of performing most, if not all, of
their signal processing tasks on a general purpose processor

The research leading to these results has received funding from the
European Union’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement n. 258301 (CREW project).

This research also received support from the Science Foundation Ireland
under Grant no. 10/IN.1/I3007 and from a Bradley Fellowship from Virginia
Techs Bradley Department of Electrical and Computer Engineering and made
possible by an endowment from the Harry Lynde Bradley Foundation.

(GPP). The hardware radio front-end employed usually per-
forms only minimal tasks. The combination of minimal radio
hardware and appropriate software packages (e.g. GNU Radio,
Iris, Sora) offers great opportunities for researchers to carry
out Cognitive Radio experiments at a relatively low cost.

Having cognitive radio nodes reconfigurable via software
makes it possible to analyze the radio environment and to
adjust the system parameters to a particular operational situa-
tion quickly and without redesigning hardware. However, the
flexibility achieved with the software introduces high delays
due to the nature of the off-the-shelf computer processing the
radio waveforms. To date, SDR and CR experiments have
primarily focused on environments where a single link is
established or, at most, two competing links coexist in an
interference channel. Higher layer issues have been mostly
neglected or analyzed using unrealistic assumptions due to the
limitations introduced by the aforementioned delays.

Enabling networking experimentation on affordable SDR
platforms presents a challenge at the Medium Access Control
(MAC) layer, where the issues in implementing protocols with
reasonable performance have been well summarized in the
literature [1]–[3], and were alluded to in our earlier work [4].

In this paper we propose a new architecture for a CSMA
MAC, with MAC functionality split between an FPGA (field
programmable gate array) and the GPP. This approach pro-
vides an improved Rx/Tx turnaround response time for MAC
implementations. We carry out time-critical functions in the
FPGA, while non-time-critical functions remain implemented
in software running on a GPP [3]. This work makes the
following contributions:

• We propose an architecture for a CSMA MAC on an RF
front-end with limited computing capabilities.

• We provide a split-functionality implementation of a
random access MAC where some of the functions reside
on an FPGA and others reside in the GPP.

• We describe a carrier-sense block in an FPGA, closer to
the RF front-end. While we test this functionality within
a set of radios running Iris, the implementation of carrier
sensing on the FPGA is agnostic to the choice of software
platforms.

• We cross-validate all results between prototype-based ex-
perimentation and network simulations using OMNeT++.

This paper is structured as follows. In section II, we

CROWNCOM 2013, July 08-10, Washington DC, United States
Copyright © 2013 ICST
DOI 10.4108/icst.crowncom.2013.252050



describe the proposed architecture, whose functionality is split
between an FPGA and a GPP. In section III, we illustrate the
implementation of the different functions. Section IV presents
the tests and results of our CSMA implementations. Finally,
section V summarizes our main conclusions and discusses
areas for future work.

II. RANDOM ACCESS MAC PROTOCOLS FOR SDR
PLATFORMS

There are a number of considerations to take into account
when designing a MAC protocol for cognitive radio nodes on
SDR. A designer must first consider the needs of the functions
at the physical (PHY) and MAC layers, and the limitations of
the available hardware platforms. With this information the
designer can make more informed decisions about how to
implement the radio protocol stack. In this section we do this
by first looking at the requirements of the radio functions to
implement an effective MAC. We then discuss the limitations
of the available platforms. Finally, we propose our solution to
these limitations and describe the proposed radio.

A. Radio Considerations
In this paper we are particularly interested in contention-

based MAC protocols. These protocols often use a carrier-
sense mechanism, which is a fundamental part of most wire-
less networking stacks (e.g. in wireless LAN and sensor
networks), to detect other transmissions. The implementation
of a CSMA MAC radio node can be roughly split into six main
functions. These are clear-channel assessment (CCA), back-
off, mod/demodulation, frame recognition, retransmission, and
ACKs transmission. Each of these functions has different re-
quirements with regards to latency, computational complexity,
flexibility, and order of execution. These requirements are
summarized in Table I.

From Table I we observe that the CCA requires low latency.
Thus the channel assessment is best placed as close to the radio
front end as possible to ensure its low latency. The backoff can
be tightly coupled to the carrier sense unit since it requires data
from the carrier sensing unit to function.

TABLE I
RADIO FUNCTION REQUIREMENTS FOR A CSMA MAC PROTOCOL

Function Latency Complexity Flexibility Coupled
CCA Low Low Low -
Backoff High Low Low Carrier Sense
Mod/Demod Low High High -
Frame Recognition Low Low High Mod/Demod
Re-Tx High Low Low Mod/Demod
ACKs Low Low Low Mod/Demod

Likewise we can determine that the mod/demodulation
should also be placed as close as possible to the radio front-end
to ensure low latency. The remaining three modules cannot be
implemented before the mod/demodulation unit and as such
should remain tightly coupled to that module.

The mod/demodulation module has one further considera-
tion that should be taken into account. The mod/demodulation
has high computation complexity which means it might be

suited to hardware implementation. However, the module also
requires a large amount of flexibility to allow it to be used
in many different configurations, which is not conducive to
hardware implementation. A tradeoff will need to be made
between the flexibility of the module and the throughput the
unit will be able to achieve. The result of this tradeoff is largely
determined by the hardware platform used.

B. Platform Considerations
SDR platforms used by research groups for cognitive radio

experimentations usually rely on inexpensive radio front-ends
connected to a PC, where most of the radio chain actually
runs in software in a GPP. This configuration allows the radio
node to be inexpensive and extremely flexible. This low cost
and high flexibility enables large and complex cognitive radio
experiments. The USRP [5] is the most popular example of a
minimal RF front-end that relies on a PC for baseband signal
processing.

There may be significant and variable latency between
the processing elements on which signal processing occurs
and the physical radio front-end. This leads to unpredictable
performance of the MAC protocol. It particularly affects
the turnaround time, which results from the combination of
MAC layer frame processing time, non-negligible latencies
associated with sending samples from the front-end to the
GPP and from the GPP to the RF front-end, and the time
taken to mod/demodulate frames. It also leads to difficulty in
predictably scheduling frames for transmission by the SDR.
Furthermore, it results in a blind-spot [1] in which assessments
of the channel state may be stale due to signal processing
delay, and hence useless. This makes implementation of a
reliable CCA mechanism difficult.

C. Proposed Solution
In the previous two sections we have looked at the re-

quirements of a CSMA MAC radio node and the limitations
of platforms that use a minimal RF front-end. The large
latency introduced by the use of a minimal RF front-end
makes it difficult to achieve the low latency requirements of
the carrier sense module in the radio node. To circumvent
this problem we propose and implement a split-functionality
hardware-software architecture for MAC protocols, judiciously
placing signal processing functions over multiple computing
platforms, such as an FPGA and a GPP. Many radio front-ends
like the USRP contain an FPGA which is used to route data
and for some basic DSP operations. These FPGAs often have
unused logic available and we have used this logic to place
components adjacent to the radio front-end. Although much
of this discussion will be focused on the USRP radio front-
end, the experience gained can be applied to any minimal RF
front-end with an integrated FPGA.

Since the performance of the carrier sensing CCA is crucial
to the MAC we should place it adjacent to the radio hardware.
Moreover, the radio hardware must be able to store the
transmitting frames in a buffer, and, based on the CCA result,
quickly deactivate the carrier-sensing and transmit the frame



Radio HW

RF
front-end

A/D D/A

FPGA

Radio SW
user space

CCA

Backoff

Frame 
recognition

Mod/Demod

reTx

BUS

ACKs

PHY

MAC

a)

Radio HW

RF
front-end

A/D D/A

FPGA

Radio SW
user space

CCA

Backoff

Frame 
recognition

Mod/Demod

reTx

BUS

ACKs

PHY

MAC

b)

Fig. 1. a) Full Software architecture for a typical Radio Hardware (FPGA)
+ Radio Software (host user space) configuration. b) Split Functionality
architecture proposed.

without waiting for further communications from the host.
Without this storing system, a CCA in hardware would lead
to little gain in terms of delay reduction.

Another important function in contention-based MACs is
the backoff. This function is used to schedule a transmission
on a random basis when multiple nodes try to access the
medium simultaneously. It attempts to avoid two or more
nodes accessing the channel at the same time when the channel
is sensed free. Since the backoff requires communication with
the CCA it should be also implemented on the FPGA. In this
work we have not implemented the backoff on the FPGA;
however, this module is currently under development.

An argument could be made to move the mod/demodulation
modules to the FPGA since they exhibit high computational
complexity and the overall throughput of the system is limited
by these units. We opted to keep these units in software, as
FPGA space is limited and we did not wish to be confined to
a limited set of mod/demodulation schemes.

Other functions, such as frame recognition, retransmission,
and ACKs transmission remain on the GPP. These functions
require fully demodulated incoming frames, and since we have
opted to leave the demodulation on the GPP, the natural place
for these functions is to remain on the host.

In Figure 1 we depict how the proposed split functionality
architecture would look in a typical FPGA+GPP configuration.

III. IMPLEMENTATION

In this section, we present the system designs for both the
MAC implementation on the GPP and the carrier sense on the
FPGA. We have selected the USRP E100 as our hardware plat-
form based on available FPGA space, programmability, ease
of use, and cost. However, this design can be easily extended
to other platforms using the USRP + GPP configuration (e.g.
USRP N210+PC).

We have used Iris [6] as the software platform for our proof-
of-concept implementation. It interfaces with Ettus USRP RF
front-end hardware, to allow for affordable experimentation. It
should be pointed out, however, that the on-FPGA element is
agnostic of the choice of attached software platform. It would

Enable Carrier Sense

Threshold RegisterCarrier Sense
Module

Setting Bus Interface

Calculate 
Magnitude

+ - Current 
Average

64 cyle 
delay line

Compare
Busy/Clear

Sliding Window Average

Address Write

Sample in

Fig. 2. Block Diagram of the proposed carrier sense module on E100 USRP

be usable, for instance, in a GNU Radio environment, as it
preserves all UHD (USRP Hardware Driver) semantics.

A. USRP E100 Overview

The USRP E100 is an embedded standalone software-
defined radio platform. The radio front-end is connected
directly to the FPGA and all data transmitted from the GPP
or received by the radio front-end must pass through the
FPGA. The FPGA is therefore ideally placed to implement
latency-sensitive processes, like sensing whether a channel is
occupied and controlling transmissions to avoid collisions. To
implement this system it is necessary to integrate customized
FPGA blocks into the existing FPGA software design.

The FPGA uses the VITA radio transport (VRT) protocol to
communicate with the ARM processor. VITA was developed
to provide interoperability between diverse SDR components
by defining a transport protocol to convey digitized signal data
and receiver settings [7].

Our carrier sense implementation in hardware needed to be
tightly coupled with the VITA hardware in the FPGA to access
RX samples before they are sent to the host and to control the
TX stream’s access to the channel. Both functions are required
by an FPGA carrier sense implementation. Therefore it was
necessary to tap into the in-phase and quadrature (I/Q) samples
at the VITA control block in the receive path. Moreover,
the rate at which these samples are produced at this point
in the chain is equal to the rate requested by the user, i.e
down-conversion has already taken place, which is useful for
debugging receiver issues. The I/Q samples are sent to the
carrier sense block, which in turn produces a signal indicating
whether a carrier is present.

B. Carrier Sense MAC Design

The Carrier Sense block in the FPGA relies on a simple
energy-detection strategy. The block computes the average
signal power for a set of samples and then compares this power
with a programmable threshold value. If the received signal
strength is greater than the threshold, then a signal indicating
the carrier is present is sent to the VITA TX controller. The
state machine in the VITA TX controller has been modified
to ensure that the carrier present signal is low before sending
frames to the radio front-end. In this way, our carrier sense
module ensures the channel is free before transmitting. The
details of carrier sense block implementation will be discussed
in the next section.



TABLE II
CARRIER SENSE MODULE UTILIZATION IN XILINX FPGA (W/O CS IN

PARENTHESES)

Logic Utilization Total Available Utilization
Total No. Slice Registers 16,245 (15,007) 33,280 48% (45%)
No. of occupied Slices 13,464 (12,068) 16,640 80% (72%)
Total No. of 4 input LUTs 22,461 (20,901) 33,280 67% (62%)

1) Carrier Sense module: A block diagram of the carrier
sense module as implemented on the E100 FPGA is shown
in Figure 2. The data path can be split into four separate
processes. These processes are the control registers, the magni-
tude calculation, the sliding window average, and the threshold
compare. The control registers are used to enable/disable
the carrier sense unit and to set the threshold value for the
carrier sense unit. These registers are connected to the UHD
settings bus and can be written to from software through the
UHD library. When the carrier sense module implemented is
disabled, the FPGA image works exactly like the pre-installed
FPGA image on the USRP, and thus the carrier sense module
can permanently remain on the FPGA without interfering with
non-carrier sensing experiments.

The remaining three hardware components implement the
sliding window carrier sensing module. Data is collected from
the receive chain and the I/Q values are fed to the magnitude
calculation hardware. The magnitude value is added to the
current average and simultaneously placed at the top of a delay
queue. The data on the bottom of the delay queue is subtracted
from the current average as this value is exiting the sliding
window. Once these two operations are complete the current
value register is updated with the new sliding window average.
In this implementation the sliding window averages over 64
baseband samples. This number is currently fixed at build time
but it can be easily changed to suit a particular application.

Finally the average of the samples is compared with a
programmable threshold value and the Busy/Clear signal is set
accordingly. If the current average is above the threshold, then
the data path asserts the Busy/Clear signal, which instructs the
TX path in the FPGA to not transmit until the channel is free.
If the current average is below the threshold, then the TX path
is free to send frames.

Table II is a summary of the FPGA resource utilization with
both the basic UHD modules supplied with the USRP and
the proposed carrier sense module. The table also shows, in
parentheses, the FPGA resource utilization of only the UHD
hardware as supplied on the E100. 72% of the total slices,
which consist of registers and look-up tables, are used by the
carrier sense and the supplied modules, which means there is
still considerable space available in the FPGA fabric to extend
our carrier sense module or provide other functions.

Since we implemented the carrier sense module on the
FPGA, the carrier sense mechanism works independently of
our MAC implementation in software. So, when frames are
sent from the MAC layer in Iris, the MAC has no control
over what is done in the FPGA. There are several advantages
associated with implementing carrier sense in the FPGA.
Firstly, the FPGA-based carrier sense module can be used with

MAC

Controller
Mod

UhdTx

Demod

UhdRx
end_of_burst

packet_tx
event

PN Engine PN Engine

Stack EngineIris

end_of_burst

CS
module

FPGA

E100

Fig. 3. Iris node - software implementation to allow carrier sensing feedback
to the MAC.

any software defined radio, as it does not require any special-
ized software modules. Secondly, the carrier blind spot [1]
is significantly decreased, since the latency from sensing to
sending frames is greatly reduced, as compared as to a full
software implementation of CSMA. This decreases the chance
of collisions with other nodes’ transmissions.

2) Software Implementation: Spreading the MAC between
the FPGA and software implementation has some drawbacks,
as the software MAC does not know whether a frame has been
sent or whether the frame is just waiting in the TX buffer.
The original MAC protocol used in this work and described
in [4] requires knowledge of when a frame is sent across the
network. In the software-only version of the protocol it could
be assumed that the frame would be sent immediately. The
time spent forwarding of the frame through the FPGA logic is
relatively fixed due to the deterministic nature of FPGA signal
processing. It is necessary for the MAC to estimate this time
in order to start the retransmission counter; the frame is then
retransmitted if no ACK is received by the MAC before the
timer is up.

However, in the FPGA/software system the MAC unit can
no longer assume that the frame is sent and so does not know
when to start its transmission timeout timer. If the MAC starts
the timer immediately, and the carrier sense unit stops the
frame from being transmitted, the MAC unit might assume
the frame has been lost and thus retransmit it. This would
lead to unnecessary frames being sent on the channel and to a
lower throughput. Therefore to implement the FPGA/software
hybrid version of the protocol we made a number of changes
to the software running on the GPP.

Figure 3 shows a block diagram of the software imple-
mented on the USRP E100. Iris components used in the
software-only version of the protocol, which do not interface
to the FPGA, are shown in light grey. The modifications
necessary to allow feedback from the FPGA carrier sense
module are highlighted in bold. In order to give feedback to
MAC functions implemented in software as to when a frame is
sent we exploited the existing “frame sent” feedback message
of UHD.

We created an Iris controller block that eavesdrops on these
UHD status messages and reports back to the MAC whenever
a frame is transmitted over the air. We changed the MAC



TABLE III
RF PARAMETERS

RF Parameter Value
Frame size 600 B

Center Frequency 5.009 GHz
Bandwidth 200 KHz
FFT size 256

to utilise this information to start the retransmission timeout
timer. Thus, the retransmission timeout timer is only initiated
once the frame has been sent across the channel, instead of
when it leaves the MAC layer. In this way, the software and
hardware work in tandem to provide access to the channel.

IV. TEST AND RESULTS

In order to evaluate the impact of our carrier-sense module
in a network of SDR nodes, we built a prototype of the
carrier sense module and tested it in an experimental two-hop
network, we then replicated the setup in a network simulator
to cross-validate our findings.

A. Protocols
In the current work, we incorporate the proposed split func-

tionality into two versions of a CSMA MAC protocol, one em-
ploying explicit acknowledgements and the other employing
implicit acknowledgements, where this last one is particularly
tailored for multihop wireless environments. For more details
about the explicit and the implicit acknowledgments protocols,
interested readers are referred to [4].

B. Carrier Sense Results
Our two-hop testbed network consisted of three USRP

E100 nodes with Iris running on the ARM processor and the
XCVR2450 daughterboard [5] as a RF front-end transceiver.
The testbed uses a host machine running a local NTP server
for synchronization and monitoring purposes.

Each experimental run involved 100 frames successfully
transmitted from the source node to the destination node
through one intermediate node. The source and the destination
are within interference range of each other. In this setting, the
channel contention is due to intra-flow interference created
by the DATA/ACK frame exchange between nodes. Table III
presents the parameters used for the radio experimental setup.
It is worth noting how, even though the HW used would allow
data rates up to 8 MSamples/sec [5], we made use of a data
rate of 200 KSamples/sec in order to avoid the loss of samples
from the FPGA to the OMAP due to overflow events [8].

It is understood that SDR operations and the wireless
environment introduce a high degree of unpredictability on
the system’s behavior. For that reason, we repeated the exper-
iments 50 times for each configuration and report the results
in a box-and-whisker diagram (Figures 4 and 5). In order
to assess the performance of the system, we looked at two
metrics: the total number of retransmissions for a DATA frame,
given by the sum of the retransmissions at the source node and
the intermediate node, and the end-to-end throughput.

In Figures 4 and 5 we report the total number of re-
transmissions in the system and the end-to-end throughput,

Fig. 4. Retransmissions. Implementation and simulations results are shown in
yellow and orange respectively. For each box, the whiskers below and above
show the minimum and maximum value, respectively. The bottom and the top
of the box represent the 1st and 3rd Quartile respectively. The horizontal line
inside the box represents the median. Outliers are excluded from calculation
of min/max and are shown as small crosses. An outlier is defined as the
value of an observation which is less than 1.5x1stQuartile or greater than
1.5x3rdQuartile.

Fig. 5. Throughput. Implementation and simulations results are shown in
yellow and orange respectively. See Figure 4 for details

respectively. A few observations are noteworthy for the im-
plementation results. First, despite the presence of the carrier-
sensing, retransmissions can still take place due to either errors
in correction of the carrier offset (rare) or timeout expiration
in the MAC due to over-the-air collisions. Second, since
fewer frames are required when using CSMA with Implicit
ACKs compared to CSMA with Explicit ACKs, thus less
contention for the medium, the former exhibits fewer retrans-
missions compared to the latter. Third, since the throughput
is influenced by both retransmissions and the Round Trip
Time (RTT), we observed that the end-to-end throughput in
the Explicit ACKs with Carrier Sensing almost matches the
throughput in the Implicit ACKs with Carrier Sensing. This
is due to the time required by the source node to receive the
corresponding ACK from the intermediate node. The ACK
frame sent by the intermediate node in the Explicit strategy
is short, requiring little time over the air, compared to an
Implicit ACK frame, which has the dimension of a DATA
frame. The consequence is that with the Explicit strategy, a
new frame is introduced into the network earlier than with the
Implicit strategy. As a result, the end-to-end throughput for the
Explicit ACK case is very close the end-to-end throughput for
the Implicit ACK despite showing more retransmissions.

C. Simulations
Simulations play an important role during protocol design

and refinement phases. However, many simulation results are
not believable because they are never validated against real-



world or experimental scenarios. We sought here to create
a validated simulation to reinforce our understanding of our
experimental results and to enable us to test our protocols in
situations unobtainable in the lab. The OMNeT++ network
simulator was selected. We set up a two-hop network using
OMNeT++’s standard libraries and modified existing modules
in order to replicate our SDR implementation of CSMA,
including the impact of modules running in the GPP and those
running in the FPGA. It is well known that a conventional
SDR node based on USRP suffers of unpredictable turnaround
time [4]. Unfortunately, as we have experienced, these effects
are more prominent in embedded systems.

In order to model the unpredictable turnaround time, to
simulate an SDR node, we first characterized the time required
to process the signal, and the time needed to pass data to
each component. Then we modified the existing Network,
MAC, and PHY layer modules in OMNeT++ to introduce
the delays modeled. In Table IV we report the time spent
in critical components in the receiver and transmitter chain,
differentiating whether the entry refers to the time necessary to
process a DATA frame or an ACK. We also calculated the time
taken by the different engines to pass data among themselves.
Several observations can be drawn from the results.

TABLE IV
PROFILING COMPONENTS IN IRIS

Component Frame µ[ms] Median[ms] �[ms]

DATA 2.58 2.57 0.06Modulator
ACK 0.45 0.45 0.03
DATA 0.34 0.33 0.03UhdTx
ACK 0.16 0.15 0.03
DATA 7.45 7.23 2.58Demodulator
ACK 6.53 7.21 2.43

Data Passing

DATA 3.26 0.52 5.94Stack!PN
ACK 3.75 0.23 8.43
DATA 23.16 10.18 31.15PN!Stack
ACK 27.99 23.98 26.72

First, we observe that the receiver chain is the critical part in
a SDR node. While the transmitter chain works only when the
MAC sends down a frame, the receiver chain has to process
samples coming constantly from the FPGA. Anytime the
UHDRx fills its buffer with samples coming from the FPGA,
it sends these samples to the next component, processed in
turn in Iris. Second, the different frames’ dimensions do not
affect the processing time on the demodulator. The reason
for that resides on equalization and carrier phase recovery
functions, which are independent from the data size. Last, the
most critical operation and the real source of unpredictability
for the turnaround time (which also affects the RTT) is not in
the demodulator, as we were expecting, but in the data being
passed from the PN Engine to the Stack Engine during the
receiving phase. The reasons for that stem from a combination
of the current Iris framework and the thread scheduling in the
operating system handling the USRP E100. The thread running
the PN Engine in the receiver chain gains greater priority

with respect to the one running the Stack Engine because it
constantly has data to be analyzed. This leads to an unfair
scheduling of the resources between the threads involved in
Iris, where, even if the Stack component has data sitting in the
buffer ready to be processed, it waits for the PN Engine to
complete its operations.

We repeated the simulations 15 times for each MAC con-
figuration. We discovered that the simulation and the imple-
mentation results were remarkably consistent as we show in
Figures 4 and 5. As a result, our experimental findings have
been cross-validated by the simulation results.

V. CONCLUSIONS & FUTURE WORK

In this paper we have described a general architecture
for CSMA MAC protocols on inexpensive reconfigurable
radio platforms. We have designed this architecture using a
split-functionality approach, moving the most delay sensitive
functions on the FPGA. We have then combined this FPGA-
based implementation with appropriate modifications to the
GPP-based MAC functions of a software radio built with the
Iris software platform and the USRP E100, though the FPGA-
modifications themselves are software platform agnostic.

We performed mutihop experiments to assess the perfor-
mance of our carrier-sensing MAC in a realistic environment,
measuring the throughput and number of retransmissions in a
two-hop linear network.

We also cross-validated our experimental results using a net-
work simulator (OMNet++), which we modified to reflect the
details of our MAC implementation as well as the component
delay times seen in our experimental system.

We are currently enhancing our carrier-sensing MAC proto-
col implementing backoff functionality adjacent to the sensing
mechanism on the FPGA and more sophisticated frames
dependent logic. We also plan further tests in larger, more
complex (and more realistic) network topologies.

REFERENCES

[1] T. Schmid, O. Sekkat, and M. B. Srivastava, “An Experimental Stady of
Network Performance Impact of Increased Latency in Software Defined
Radios,” in Proc. of ACM workshop on Wireless network testbeds,
experimental evaluation and characterization (WinTECH), 2007.

[2] A. Puschmann, M. A. Kalil, and A. Mitschele-Thiel, “A Flexible CSMA
based MAC protocol for Software Defined Radios,” Journal of RF-
Engineering and Telecommunications (Frequenz), 2012; 6(9-10).

[3] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “Enabling
MAC protocol Implementations on Software Defined Radios,” in Proc.
of USENIX symposium on Networked systems design and implementation
(NSDI), 2009.

[4] J. C. O’ Sullivan, P. Di Francesco, U. K. Anyanwu, L. DaSilva, and
A. MacKenzie, “Mutihop MAC implementations for affordable SDR
hardware”, in IEEE New Frontiers in Dynamic Spectrum Access Networks
(DySPAN), 2011.

[5] “Ettus Research LLC.” [Online]. Available: http://www.ettus.com/.
[6] P. D. Sutton, J. Lötze, H. Lahlou, S. A. Fahmy, K. E. Nolan, B. Özgül,

T. W. Rondeau, J. Noguera, and L. E. Doyle, “Iris: An Architecture for
Cognitive Radio Networking Testbeds”, IEEE Communications Maga-
zine, 2010; 48(9), pp. 114–122.

[7] R. Normoyle, and P. Mesibo, “The VITA radio transport as a framework
for Software Definable Radio architectures,” in SDR 08 Technical Con-
ference and Product Exposition, 2008.

[8] P. Balister, 2011. High Performance Interface between the OMAP3
and an FPGA, [Online]. Available: http://elinux.org/images/7/7b/Omap3-
fpga.pdf.


