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Abstract—Received-signal-strength (RSS) and direction-of-
arrival (DoA) are the sufficient measurements to solve the
primary user localization problem in cognitive radio networks.
In this paper we consider using energy measurements from
sectorized antenna to estimate RSS and DoA of a primary user.
Abstracting from practical antenna types, we define a sectorized
antenna as an antenna that can be set to different operating
modes, each of which resulting in a selectivity of those signals
that arrive from within a certain, continuous range of angles,
i.e. a sector. We first characterize the achievable performance
of RSS and DoA estimations using energy measurements from
sectorized antennas by means of the Cramer-Rao Bound (CRB),
which provides a lower bound on the estimation accuracy of any
unbiased estimator. We then propose a practical RSS and DoA
estimator, namely the simplified least squares (SLS) algorithm.
The SLS algorithm minimizes a cost function obtained from two
largest energy measurements among all sectors, and its accuracy
closely approaches the CRB. Simulation results studying the
impact of important system parameters, such as SNR, number
of sectors and number of samples, on the achievable accuracy
specified by the CRB and the SLS algorithm are presented.

I. INTRODUCTION

Information about primary user (PU) location can enable
several key capabilities in cognitive radio (CR) networks in-
cluding improved spatio-temporal sensing, intelligent location-
aware routing, as well as aiding spectrum policy enforcement
[1]. The PU localization requires cooperation of a large amount
of CRs performing passive localization, since they need to
detect and localize non-cooperative PU or PUs in the whole
coverage area at a very low signal-to-noise ratio (SNR) [2].
Prior research on passive localization can be categorized into
three classes based on the types of measurements shared
among sensors, namely received-signal-strength (RSS), time-
difference-of-arrival (TDoA) and direction-of-arrival (DoA)
[3]. TDoA-based algorithms are not suitable for CR applica-
tions since they require perfect synchronization among CRs.
Therefore, RSS and DoA-based algorithms are the proper
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choices for the PU localization problem. Furthermore, our
earlier work shows DoA-based and joint RSS/DoA-based
algorithms outperform RSS-based algorithms [2].

One specific challenge to the PU localization problem is the
difficulty to apply the classical DoA estimation approach [4],
[5]. The classical approach for DoA estimation assumes each
sensor is equipped with an antenna array that includes a sepa-
rate receiver chain for all antenna branches. The samples from
all branches are then digitally processed by array processing
algorithms such as MUSIC [4] and ESPRIT [5] to obtain DoA
estimates. However, considering the large network size of the
CR network, CR sensors should be portable and cheap devices
with limited hardware and computation capability. Therefore,
the cost of the antenna arrays and the complexity of array
processing algorithms may make it impractical to apply the
classical DoA estimation approach in CR networks.

In this paper we address low-cost and low-complexity DoA
estimation using sectorized antennas. We define a sectorized
antenna as an antenna structure that can be set to selectively
receive energy from different sectors. Thereby, a sector denotes
a continuous range of angles and selectivity means that signals,
arriving from outside of the activated sector, are strongly
attenuated. We further assume that sectorized antennas have
unique reception capabilities, i.e. only a single sector can be
activated at a time. Examples of antenna structures that can
be used as sectorized antennas are switched-beam systems
(SBSs) and leaky-wave antennas (LWAs). An SBS consists
of an antenna array and a beamforming network that can
be configured to activate one of several fixed beam patterns
[6], [7]. The SBS is more suitable for CR devices since the
antenna branches are combined in the RF stage and several key
receiver components, such as the analog-to-digital converters,
are required for only the combined signal branch, compared to
having one for each antenna branch like in case of the digital
antenna array [6]. An LWA [8] consists of a single antenna
whose electrical properties can be modified such that the
antenna’s beam is steered to the desired direction, which makes
it a very promising candidate for DoA estimation in portable
devices. In terms of our definition of sectorized antennas,
different beams of SBSs and LWAs can be used to achieve
the selectivity in each of the sectors.
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For DoA estimation using sectorized antennas, the prior
work requires knowledge of RSS or additional hardware cost.
A DoA estimation algorithm based on neural networks is
proposed in [7] for multiple DS-CDMA signals impinging
on a base station equipped with an SBS. However, the al-
gorithm requires either the RSS to be known or an additional,
nearly omnidirectional, antenna at the receiver that is used
to normalize the received energies properly. Analog DoA
estimation using an LWA is presented in [9]. However, it
is based on continuously changing the antenna’s beam, i.e.
scanning the received energy as a function of the angle, instead
of measurements in sectors.

In this paper, we consider digital signal processing (DSP)-
based DoA estimation algorithms using sectorized antennas,
that are independent of the underlying technology, as well
as the achievable performance of such algorithms. We first
formulate the Cramer-Rao Bound (CRB) for RSS and DoA
estimates obtained from energy measurements of sectorized
antennas. The CRB provides a lower bound on the estimation
accuracy of any unbiased estimator. We then propose a practi-
cal algorithm, namely the simplified least square algorithm
(SLS), for RSS and DoA estimation. The SLS algorithm
exploits the fact that for any given DoA, only a few sectors
contain considerable signal energy, if the antenna pattern is
adequately selective. Therefore, the SLS algorithm formulates
the RSS and DoA estimation as a least square problem using
only the two largest energy measurements from all sectors.
In general a grid search can then be used to estimate DoA
and RSS. However, we also derive a closed-form solution for
those antennas that can be approximated using a Gaussian radi-
ation pattern. The SLS algorithm provides a better estimation
accuracy than the MaxE algorithm, which is a simple RSS
and DoA estimator we proposed in our early work [10], and
closely approaches the CRB. Simulation results studying the
impact of important system parameters, such as SNR, number
of sectors and number of samples, on the achievable accuracy
and the SLS algorithm are presented.

The rest of the paper is organized as follows. The system
model is introduced in Section II. The CRB for DoA and
RSS estimates obtained from sectorized antennas is presented
in Section III. The RSS and DoA estimation algorithms are
formulated in Section IV. Numerical results evaluating the
impact of various parameters on DoA and RSS estimators
and the CRB are discussed in Section V. Finally, the paper
is concluded in Section VI.

II. SYSTEM MODEL

In this paper we consider a CR device estimating the DoA
and RSS of a PU signal without any detailed information about
the transmission. On that account, the CR is equipped with an
antenna whose properties can be modified such that measure-
ments in M different sectors are possible. Thereby, sectors
are characterized by the radiation pattern, which describes the
attenuation of the PU signal as a function of its DoA. In this
paper we first develop the CRBs and algorithms in a general
form such that they are applicable to any sectorized antenna.

However, in order to identify some general trends, we then
assume that the radiation pattern, p (ϕ− ϑm), depends only
on the angular distance between the PU signal’s DoA, ϕ,
and orientation ϑm of sector m, m = 1 . . .M . In addition,
for analysis purposes, we further simplify the model of the
radiation pattern by approximating only the antenna’s main
beam using a Gaussian-like shape as proposed in [11]. Then,
the radiation pattern can be expressed as

p (ϕ) = exp
(
− [M (ϕ)]

2
/β
)

(1)

where M (ϕ) = mod2π (ϕ+ π) − π is used to restrict the
input angle to [−π, π] and β is a parameter determining
the width of the beam. The spacing between the sectors,
∆ϑ = 2π

M , is assumed to be constant, such that the orientation
of sector m becomes ϑm = m∆ϑ. Instead of parameterizing
the radiation pattern via the beamwidth, we use a value that
we denote the side-sector suppression, as. We define the side-
sector suppression as the attenuation that a signal, arriving
at the orientation ϑm of the mth sector, experiences in the
neighboring sectors m − 1 and m + 1, i.e. as = p (∆ϑ).
Therefore, the side-sector suppression determines the amount
of overlap between neighboring sectors, independent of the
number of sectors. The result is a beamwidth determined by

β = − (2π)
2 [
M2 ln (as)

]−1
. (2)

During the measurement period, the CR successively switches
through the M sectors and receives N complex samples for
each sector, which results in M × N complex samples in
total. Then, the baseband complex received signal sample
originating from the m-th sector, with the sample index range
n = (m− 1)N + 1 . . .mN , can be written as

x(n) = p (ϕ− ϑm) s(n) + w(n), (3)

where w(n) ∼ CN
(
0, σ2

w

)
is additive noise assumed to be

circular symmetric complex Gaussian. Likewise, the noiseless
part of the received PU signal is modeled as circular symmetric
complex Gaussian, i.e. s(n) ∼ CN (0, γ), which is a good
approximation for e.g. OFDM-based transmission.

Given the above stated assumptions, it is impossible to
distinguish between the PU signal and noise at the CR.
Therefore, the estimations of RSS γ and DoA ϕ should be
based on the received energies. The power in sector m is
calculated according to

εm =
1

N

mN∑
n=(m−1)N+1

|x(n)|2 , (4)

resulting in chi-squared distributed values εm with 2N de-
grees of freedom. For moderate to large values of N , the
energies can therefore be well approximated using a Gaussian
distribution (see e.g. [12]), i.e. εm ∼ N

(
µm, σ

2
m

)
, with the

parameters

µm = σ2
w + ρmγ (5)

σ2
m =

1

N

(
σ2

w + ρmγ
)2

(6)

where ρm = [p (ϕ− ϑm)]
2.



III. CRAMER-RAO BOUNDS

The CRB is a lower bound on the covariance matrix
of any unbiased estimator. For the estimation of a K × 1
parameter vector r, given the L × 1 vector ε composed of
the observations, the CRB is obtained as the inverse of the
Fisher information matrix (FIM). The FIM is element-wise
defined as

Fi,j = −E
(

∂2

∂ri∂rj
ln [f (ε|r)]

)
, i, j = 1 . . .K (7)

where f (ε|r) is the posterior probability distribution of ε
given r.

Here, K = 2 since we estimate r = [ϕ, γ]
T , using the

L = M energies ε = [ε1, ε2, . . . εM ]
T . Given the Gaussian

approximation of the energy distribution, (5) and (6), the
posterior probability distribution becomes

f (ε|r) =
1

(2π)
M
2 |Q|

1
2

exp

{
−1

2
(ε− g)

T
Q−1 (ε− g)

}
(8)

with g = [µ1, µ2, . . . , µM ]
T and Q = diag

[
σ2

1 , σ
2
2 , . . . , σ

2
M

]
.

In this paper we only present the final result for the resulting
FIM while the detailed derivation, that will be part of a more
extensive journal article, can be found in [13]. With the SNR =
γ
σ2

w
, the elements of the FIM can be expressed as

F11 = (N + 2)

M∑
m=1

ρ̃2
m(

ρ−1
m SNR−1 + 1

)2 (9)

F12 = F21 =
(N + 2)

γ

M∑
m=1

ρ̃m(
ρ−1
m SNR−1 + 1

)2 (10)

F22 =
(N + 2)

γ2

M∑
m=1

1(
ρ−1
m SNR−1 + 1

)2 . (11)

Thereby, the value of ρ̃m =
[ρm]ϕ
ρm

is a function of the radiation
pattern and its derivative with respect to the DoA, i.e. [ρm]ϕ.
For the Gaussian radiation pattern (1), ρ̃m is equal to ρ̃m =
−4M (ϕ− ϑm) /β. Finally, we obtain the following relations
for the lower bound on the root mean square error (RMSE)
of DOA estimation

RMSE ϕ̂ ≥
√

[F−1]11 (12)

and on the relative RMSE (RRMSE) of RSS estimation

RRMSE γ̂ =
RMSE γ̂

γ
≥
√

[F−1]22

γ
(13)

that we have normalized to be independent of the RSS.

IV. DOA AND RSS ESTIMATORS

A. MaxE Estimator

A rough estimate of the DoA and RSS can be obtained using
the following intuitive estimator that we refer to as the MaxE
estimator [10]. The MaxE estimator finds the maximum power
and uses the orientation of the associated sector as the DoA

estimate, while the RSS estimate is obtained by subtracting
the noise variance from the maximum energy:

ϕ̂m = {ϑi | i = arg max
i
εi} (14)

γ̂m = max
i
εi − σ2

w. (15)

It is easily verified that the resulting estimates are biased.
Therefore, the performance of the MaxE estimator cannot
be compared to the CRB. However, since the computational
complexity of the MaxE estimator is very low, it serves any-
way as a practical performance benchmark for more advanced
estimators.

B. Proposed Simplified Least Squares Estimator

Using the same notation as in Sec. III, the received energies
can be written in vector-form as

ε = g (ϕ, γ) + e, (16)

where e is an M ×1 random vector that is independent of the
RSS and DoA. In the LS approach the RSS and DoA estimates
are then estimated such that the LS error criterion,

J (ϕ, γ) = [ε− g (ϕ, γ)]
T

[ε− g (ϕ, γ)] , (17)

is minimized. However, g (ϕ, γ) is nonlinear in ϕ and γ.
Therefore, the minimization of (17) requires iterative algo-
rithms whose convergence depends on the initial guess and is
not guaranteed. Intuitively, the energy measurements indicate
the contribution that each sector has in the RSS and DoA
estimation process. If the sectorized antenna exhibits good
directionality, if the SNR is at a practical level (above 0 dB)
and if the number of samples is finite, then the PU signal
component, i.e. ρmγ, is of meaningful strength only in very
few sectors, while the remaining measurements are too noisy
to exploit their PU signal component. Let r = (r1, r2 . . . rM )
denote a permutation such that εr1 < εr2 < · · · < εrM . Then,
the PU signal DoA is most likely in-between the sectors with
the highest energy, i.e. ϑrM < ϕ < ϑrM−1

. Sectors rM and
rM−1 also contribute most to the DoA and RSS estimation.
Therefore, a good approximation of the LS solution is obtained
by finding the DoA ϕ̂SLS that minimizes

JSLS =

(
∆ε− ρrM

ρrM−1

)2

(18)

with

∆ε =
εrM − σ2

w

εrM−1
− σ2

w
=

ρrMγ + erM
ρrM−1

γ + erM−1

. (19)

Since (18) is independent of the RSS and the DoA is restricted
to the finite interval ϕ ∈ [−π;π], a solution may be obtained
using a simple grid search. However, if the antenna’s main
beam can be approximated using the Gaussian pattern (1), the
DoA estimate minimizing (18) can also be obtained in closed-
form according to

ϕ̂SLS =
1
2β ln ∆ε+ ϑ2

rM − ϑ
2
rM−1

2
(
ϑrM − ϑrM−1

) . (20)



Note that the closed-form solution (20) is also applicable
to antennas whose main beams differ in every sector, as
long as all of them may be approximated by the Gaussian
radiation pattern. In that case the parameter β in (20) is sector-
dependent. An estimation of the attenuation in each of the
sectors follows directly from the estimated DoA, according to
ρ̂m = [p (ϕ̂SLS − ϑm)]

2. As a consequence, an RSS estimate
can be calculated for each of the sectors. In order to reduce the
effect of statistical fluctuations, we then obtain a final estimate
of the RSS by averaging over the RSS estimates from the two
sectors with the highest energies, i.e.

γ̂SLS =
1

2

[(
εrM − σ2

w

)
/ρ̂M +

(
εrM−1

− σ2
w

)
/ρ̂M−1

]
. (21)

In the following we refer to the algorithm that estimates
the DoA based on the minimization of (18) and the respective
RSS estimation (21) as the SLS estimator. In order to prevent
large estimation errors when the signal is severely attenuated,
we have added a validation check that reduces the SLS to the
MaxE algorithm in the following cases:

1) If εrM−2
< σ2

w then DoA estimation is according to (14).
2) If the estimated angle, ϕ̂SLS, is not in-between the two

sectors with the highest energies then RSS estimation is
according to (15).

V. SIMULATION RESULTS

The bounds and algorithms for DoA and RSS estimation
are studied assuming a uniform distribution of incoming
DoAs, i.e. ϕ ∼ U (−π;π). We emulate this distribution via
102 equidistant steps in the interval ϕk ∈

[
−∆ϑ

2 ; ∆ϑ
2

]
, and

simulate 103 realizations per algorithm and DoA-step, and
average over the result at each step in order to obtain the
RMSE and absolute value of bias (AB). The CRB on the
RMSE of DoA estimation (12) and the CRB on the RRMSE of
RSS estimation (13) depend only on the SNR, not on the RSS.
The same conclusion applies for the algorithms presented in
Sec. IV. Therefore, we set the RSS to a fixed value γ = 1pW
and adjust the noise power σ2

w in order to control the SNR.
Fig. 1 shows the dependence of DoA estimation perfor-

mance on the side-sector suppression as. For high values of
as ≈ 1, the antenna is close to omnidirectional and as a
consequence, DoA estimation becomes impossible and the
RMSE is very high. This trend, observed for the CRB as
well as the algorithms, is very intuitive. However, if the side-
sector suppression is too low, the RMSE for the CRB and
algorithms is also high. In order to understand this behavior,
we consider Fig. 2, which depicts the DoA estimation RMSE
as a function of the incoming DoA. Since we assume the
same radiation pattern for all sectors and since the assumed
Gaussian radiation pattern (1) is symmetric with respect to
ϕ = 0, the resulting RMSE curves are periodic with the period
∆ϑ and it is sufficient to consider the normed DoA, ϕ′ = ϕ

∆ϑ ,
over the finite interval ϕ′ ∈ [0; 0.5]. Then, the value ϕ′ = 0
represents all DoAs that arrive at the orientation ϑm of a
sector m = 1 . . .M , while ϕ′ = 0.5 represents DoAs that
arrive in-between two sectors. For the sake of clarity we have

not added the curves of MaxE estimation to Fig. 2. However,
due to its simplicity it is easy to see that the RMSE of the
MaxE estimator increases with ϕ′. This is explained by the
discretization of ϕ ∈ [−π;π] to ϕ̂ ∈ {ϑm|m = 1 . . .M} as
well as due to the attenuation of signals that is increasing with
ϕ′. This signal attenuation, which is stronger for smaller as,
explains the high RMSE resulting from MaxE estimation in
combination with low values of as in Fig. 1. With respect to the
CRB, on the other hand, the RMSE decreases with ϕ′. This is
due to the estimation of the DoA that is dependent on the shape
of the radiation pattern, which has its lowest slope (=0) at the
orientation of a sector. With a low slope, small variations in the
measured energies appear as big changes of the DoA, while
the pattern’s high slope at around ϕ′ ≈ 0.5 makes the DoA
estimation more stable towards variations in the measured
energies. For a medium value as, information not only from
the sector at which the signal is arriving, but also from the
neighboring sectors is available, resulting in a more even
distribution of the RMSE over the whole DoA range. Due to
the validity checks discussed in Sec. IV-B, the behavior of SLS
estimation depends on the operating conditions. Whenever the
operating conditions are disadvantageous for the estimation,
it is likely that the validity checks result in the reduction of
SLS to MaxE. As observed in Fig. 1, the quality of operating
conditions for estimation and therefore the reduction of SLS
to MaxE is, among other parameters, influenced by as. As
discussed in Sec. IV-A, the MaxE algorithm is biased and
therefore not necessarily bounded by the CRB, which is a
lower bound only on unbiased estimators. As a consequence,
SLS estimation in disadvantageous operating conditions is also
biased and therefore not always lower bounded by the CRB
either, as can be seen in Fig. 1 and Fig. 2 (note, that SLS is
biased as soon as AB 6= 0 for any ϕ/∆ϑ) for low values of
as. However, for moderate values of as, the bias of SLS is
close to zero. Then, we observe in Fig. 2 a behavior similar
to that of the CRB, i.e. the RMSE decreases with ϕ′.

Fig. 3 depicts the RRMSE of RSS estimation as a func-
tion of as. For RSS estimation, performance increases with
as, i.e. the more the radiation pattern resembles that of an
omnidirectional antenna. An exception is the small positive
slope in the RRMSE of MaxE and SLS estimation for very
large values of as. As a practical guideline, we would like to
determine the value, as,o, of the side-sector suppression that
results in the lowest RMSE for both DoA and RSS estimation
in relevant operating conditions. However, we have seen that
the best performance of DoA estimation is achieved for a
medium value of as, while best performance of RSS estimation
is, at least from the theoretical point of view, achievable for
as ≈ 1. With respect to the CRB on DoA estimation, the
value as,o seems to be independent of the parameters M and
N . Merely an increase of the SNR results in a small shift of
as,o towards a more directional antenna. With respect to the
algorithms on the other hand, not only increasing the SNR but
also a decrease of M results in a shift of as,o towards smaller
values. Overall, the value as = 0.4 has proven to be a good
tradeoff between RSS and DoA estimation and is henceforth
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used as the default value. Fig. 4 and Fig. 5 show the influence
of the SNR on the DoA and RSS estimation performance.
Since the SNR also influences the operating conditions for
estimation and as a consequence the bias of SLS estimation,
Fig. 4 and Fig. 5 depict the AB/relative AB (RAB γ̂ = AB/γ)
along with the RMSE/RRMSE. As expected, the CRBs and the
RMSE/RRMSE of SLS estimation decrease with increasing
SNR. Furthermore, we observe that the SLS yields biased DoA
and RSS estimates for SNR values that are smaller than 5 dB.
However, very low SNR values have little practical relevance
as they make it difficult to detect the PU signal in the first
place [12]. Thus, for most of the practical relevant cases and
a well parameterized antenna (as ≈ 0.4) the SLS algorithm is
unbiased and therefore lower bounded by the CRB. In contrast
to the behavior observed in CRB and SLS estimation, the
RMSE and RRMSE of MaxE estimation decrease only up
to SNR ≈ 5 dB. For an SNR > 5 dB the performance is
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Fig. 3. Performance of RSS estimation as a function of the side-sector
suppression for a uniform distribution of DoAs. Parameters: M = 9, N = 50,
SNR = 5 dB.

constant due to the bias in the estimation [10]. In case of
DoA estimation, the performance of the MaxE estimator is
significantly worse than the CRB. While the RMSE of SLS-
based DoA estimates is larger than the CRB, the algorithm
always results in a smaller RMSE than the MaxE estimator.
For an SNR = -2 dB, the difference between the MaxE
and SLS RMSE is only ≈ 5◦. Performance starts to differ
significantly from an SNR ≈ 0 dB onwards. Then, the MaxE
RMSE does not decrease anymore, while the SLS estimator
starts to perform close to the CRB (1◦ difference at 5 dB).
This coincides also with the level of SNR where the SLS
algorithm starts to yield almost unbiased DoA estimates. For
RSS estimation, the MaxE and SLS estimator have a lower
RRMSE than the CRB if the SNR is very low (< −1 dB), i.e.
an SNR region were both algorithms are biased. Otherwise,
MaxE estimation results in the largest RMSE while the RMSE
of SLS estimation is only slightly larger than the CRB.

Finally, Fig. 6 depicts the estimation performance as a
function of the number of samples N and with two different
numbers of sectors M ∈ {5, 9}. Since the dependence of RSS
and DoA estimation on N is very similar, we chose to include
only the curve for DoA estimation in this paper. As with
the SNR, an increase of N results in a smaller SLS-RMSE
and a lower CRB, while the performance of MaxE estimation
saturates for comparably low N and at a high RMSE. Again,
the CRB is lower than the RMSE of the estimators, while
SLS is outperforming the MaxE estimator significantly. An
increase of M is always beneficial for DoA estimation. In
contrast to this, the RSS RRMSE is almost independent of M
since the attenuation in neighboring sectors is constant due to
the parametrization via (2), such that only a limited amount
of sectors contribute to RSS estimation anyways.

VI. CONCLUSION

We considered the problem of estimating RSS and DoA of
the primary user in cognitive radio networks using energy mea-
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surements from sectorized antennas. We first formulated the
CRBs for such problem, which provides the lower bound on
the achievable accuracy of any unbiased estimators. We then
proposed the SLS algorithm, which is a simple estimator based
on the two largest energy measurements among all antenna
sectors. Simulation results of the impact of various important
system parameters, such as side-sector suppression, number
of antennas and samples, and SNR, on the CRB and SLS
algorithm were presented to provide guidelines for practical
systems and algorithm design. Our results showed that the SLS
algorithm closely approaches the CRB for positive SNR values
and also outperforms the simple MaxE reference algorithm.
Overall, the obtained results indicate that sectorized antenna
systems can be used for accurate PU DoA and RSS estimation,
and thereon for PU localization, in fairly low-complexity SU
devices, compared to e.g. classical digital antenna arrays.
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