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Abstract—In this paper, we consider a cognitive radio network
in which a secondary user (SU) has opportunities to access one
of multiple channels licensed by several primary users (PUs).
Before transmission, SU should sequentially decide which channel
to explore and in what sequence, as well as whether to access
or to sleep. Our goal is to design a joint spectrum sensing
and transmission strategy for SU to maximize energy efficiency,
which is defined as the number of bits transmitted per unit
energy consumption (including both transmission and operating
energy). By modeling PUs’ occupancy activities as a Markov
process, we formulate the problem of designing optimal sensing
and transmission strategy as a Partially Observable Markov
Decision Process (POMDP). To solve it in a practical way, we
establish the optimal threshold structure of myopic strategy and
propose the algorithm to determine the optimal sensing order,
which takes low computational complexity. Simulation results
show that the energy efficiency loss of proposed approach is
less than 8% compared with optimal solution. In addition, our
approach can improve energy efficiency by roughly 15% to 35%
compared to the traditional approaches, with less than 10% loss
of capacity.

I. INTRODUCTION

With the rapid development of wireless communication,
static spectrum allocation schemes cannot meet the require-
ments of wireless spectrum resource. For the purpose of
improving spectrum efficiency, cognitive radio, which supports
dynamic spectrum allocation, has been proposed [1]. In a
cognitive radio network, secondary users (SUs) are allowed to
opportunistically access the idle spectrums, which have been
licensed to but not used by the primary users (PUs).

Regarding the growing attentions paid on global warming
and climate change, the capability of energy saving [2] [3]
turns into a significant metric to evaluate the performance of
wireless communication networks. Meanwhile, mobile termi-
nals are sensitive to energy saving capability which guarantees
longer service time and richer service diversity [4]. With the
development of large scale cognitive network, the activity
of secondary users and the attributes of networks become
much more complicated [5] [6]. Accordingly, energy-efficient
network solutions, which can meet the demands of high
capacity and low energy consumption simultaneously, have
yielded a stream of new research activity.

Some works have been done on designing a cognitive radio
network with the concern of energy efficiency. Cui et.al mod-
eled the energy consumption of circuit and transmission in [7].

In the perspective of energy constraint, Chen et.al [8] designed
a joint sensing and access strategy for opportunistic spectrum
access based on POMDP model, which aimed at maximizing
the throughput with energy constraint. In addition, Hoang et.al
[9] extended Chen’s works and discussed the optimal sensing
duration, by which a tradeoff between achievable throughput
and energy consumption was achieved. Pei et.al [10] proposed
a more intuitive definition of energy efficiency and consider
the optimal sensing strategy, power allocation, and sensing
order problem. In that paper the occupancy activity of PUs is
considered to be a pure random process and the idle probability
is known to SU.

We consider a scenario, where SU has only limited informa-
tion of channel states. To find spectrum opportunities as well
as to provide protection to PUs, an SU must perform spectrum
sensing before it transmits over a channel. An SU can conduct
sensing and probing on each channel sequentially to gather
information about network states and choose a channel for
transmission. Based on this structure, an energy-efficient joint
sensing and access strategy should be designed, which decides
when to stop sensing and which channel to be used.

Different from the work in [10], we model PUs’ occupancy
activity as a Markov chain. Hereby we formulate the problem
of joint sensing and transmission over multiple channels as
a POMDP. We study myopic strategy to solve the problem
in a practical way, and propose the algorithm to determine
optimal sensing order with less computational complexity than
dynamic programming based method. Another contribution is
that, we introduce the capability of recall in sensing procedure.
Accordingly, we prove that the optimal stopping rule of
myopic strategy is a threshold based solution and obtain the
closed form of threshold.

The rest of this paper is organized as follows. System
model is described in Section II. The process of sensing and
transmission is formulated as POMDP in Section III. Myopic
strategy to solve the problem is discussed in Section IV.
Simulation results and analysis are shown in Section V. Finally,
conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider an opportunistic spectrum access (OSA) sce-
nario where an SU must explore multiple channels before it
exploits it. Both PUs’ activities and channel fading conditions
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(a) Network model.

(b) Markov model of PU occupancy activity.

Fig. 1. Primary network.

are taken into consideration. An SU should exploit history in-
formation of these channels to maximize its energy efficiency
by choosing proper actions.

A. Primary Network

As shown in Fig. 1, we study a cognitive network consisting
of N channels licensed by PUs, each with potentially different
bandwidth BWn(n = 1, ..., N). Each channel evolves as a
two-state discrete-time Markov chain. The two states indicate
the PUs’ activities of idle (defined as state 1) and busy (defined
as state 0). We denote the spectrum occupancy state as

h(t) , [h1(t), ...hN (t)]. (1)

The state transition probabilities of channel occupancy on
the nth channel are given by {pij(n), i, j = 0, 1}, which are
are independent to others and assumed to be known to SU.

B. Secondary Network

We assume that there is only one pair of SU transmitter and
receiver who operates in an overlay manner with PUs. The SU
can sense one channel at a time and access only one during a
single transmission. We assume the channel states (including
the occupancy states and the fading conditions) are unchanged
within a frame, which consists of stages for sensing, probing
and transmission.

Fig. 2 shows a single frame of SU, which consists of two
phases: sensing & probing phase, and data transmission phase.

In sensing and probing phase, the SU senses channels
sequentially. If a channel is sensed idle, the SU will probes the

CH 1 CH 2 ... CH N
ACK/

NACK

Sensing and Probing Data transmission

sensing probing

TS TT

Fig. 2. Frame structure of SU, with sensing order given as {1,2,...,N}.

channel to estimate the channel condition. SU can record all
sensing and probing results. After several steps of sensing and
probing operation, SU may decide to stop sensing and probing
phase. When to stop this phase is decided by strategy, which
will be discussed in the next several sections.

In data transmission phase, SU would choose to sleep to
wait for better network status, or to start transmission directly.
SU would get ACK for a successful transmission and NACK
for an unsuccessful transmission. The sensing and probing
time TS for a single channel and transmission time TT are
assumed to be fixed. Whether to transmit and which channel
is chosen to be transmit on is also decided by strategy, which
will be discussed in the next several sections.

Spectrum sensing on each channel is a binary hypotheses
test to determine between H0(i.e.hn = 0) and H1(i.e.hn =
1). With given sensing time and sensing algorithm, the energy
cost eS of sensing and probing on each channel is also a
fixed value in this paper. In addition, on the nth channel, we
denote the probability of false alarm as Pf,n and probability
of detection as Pd,n.

C. Energy Efficiency

In this paper, energy efficiency is defined as

η =
Average Number of Bits Transmitted

Average Energy Consumed
(2)

Energy consumption in the mth frame may include the
following two parts: 1) the energy consumed in the sensing
and probing phase; 2) the energy consumed in the data
transmission phase Etx n(m). Hereby, the overall energy cost
is:

E(m) = Etx n(m)iT (m) + nS(m)eS (3)

where 0 ≤ nS(m) ≤ N is the number of channels sensed in
the sensing and probing phase. iT (m) ∈ {0, 1} is the indicator
which indicates whether SU transmit in frame m or not.

We assume the SU transmits at a fixed rate R, and adjusts
its transmission power to ensure successful transmission. We
denote c as the speed of light, d as the distance between the SU
transmitter and the SU receiver, fc,n as the carrier frequency of
channel n, N0/2 as the power spectral density of the noise, Nf

as the receiver noise figure, L as the link margin compensating
the hardware process variation and imperfection. On the nth
channel the transmit power Pt n can be written as:

Pt n =
SNRnLσ2

n

ρnyn
(4)



where ρn = ( c
4πdfc,n

)2 captures the propagation loss, and
σ2

n = N0BWnNf is the noise power at the receiver front
end. yn is the channel gain of the nth channel, which can be
gotten by channel probing and its distribution is known to SU.
SNRn is determined by transmission rate:

SNRn =
2R/BWn−1

Γ
(5)

where Γ is considered as the SNR gap to channel capacity,
which is determined by modulation type and BER requirement
[7].

We can represent the energy consumption of transmission
as [7]:

Etx n = Ptx nTT = (
ξ

ζ
Pt n + Pc)TT (6)

where ξ
ζ is a fixed value determined by the property of power

amplifier, and Pc is the power consumed in circuits, which
can also be considered as a fixed value.

III. PROBLEM FORMULATION

Within a frame, the SU may not sense all channels and there
are sensing errors as well. Thus we can formulate the problem
of designing optimal sensing and transmission strategy as a
POMDP problem.

Network states and stages: The channel state of each
channel at frame m may comprise two parts of information,
which are the spectrum occupancy state and the channel fading
condition. We use sn(m) = (hn(m), yn(m)) to indicate the
state of channel n at frame m, and the network state at frame
m can be denoted as s(m) = [s1(m), ..., sN (m)].

CH a(1) CH |a(nS(m)+1)|... ...
CH

a(nS(m))
ACK/

NACK

Sensing and Probing Data transmission

CH a(t)

Frame m

stage t

stage 1 stage nS(m) stage nS(m)+1... ...

action a(t) observation

Fig. 3. Frame structure of SU, with sensing order given as
{a(1), a(2), ..., a(N)}.

We divide the mth frame into at most (N + 1) stages.
Each stage denotes a single operation of sensing & probing,
transmission, or sleep. As shown in Fig. 3, frame m contains
nS(m) + 1 stages.

Actions and observations: As shown in Fig. 3, a single
stage may contain two procedures: action and observation.

At the beginning of stage t, SU performs three kinds of
actions: choose one channel to continue sensing, choose one
channel for transmission or sleep to wait for better network
states. We define the sensing and transmission actions at the tth
stage as a(t), where a(t) is an integer and −N ≤ a(t) ≤ N .
If a(t) < 0, SU will choose to transmit on channel |a(t)|. If
a(t) = 0, SU will choose to sleep. If a(t) > 0, SU will choose
to sense channel a(t). At the (nS(m)+1)th stage, SU decides

to transmit or sleep, which also indicates the end of sensing
and probing phase in the mth frame.

There are two kinds of observations for SU, which are
sensing observation and transmission observation respectively.
Sensing observation denotes the observation of whole network
states through sensing and probing, while transmission obser-
vation is the acknowledgement of ACK or NACK received
after a transmission.

Update of belief vector: At the beginning of each stage,
the SU’s statistical knowledge of the network state is provided
by its action and observation history. Since the state variation
is independent between channels, we denote a belief vector
b(t) = [b1(t), ..., bN (t)], where bn(t) is the conditional prob-
ability (given the action and observation history) that the nth
channel is idle. As all kinds of actions can incur observations,
the belief vector change after the each stage.

At the beginning of stage t + 1, the belief vector b(t + 1)
can be obtained by incorporating the action and their results
in the tth stage. We list all kinds of cases, where the belief
vector is updated.

Case I: When the action conducted in the tth stage is sleep,
the belief vector b(t + 1) will be updated at the beginning of
stage t + 1 based on Markovian model of PU traffic. That is,

∀n ∈ {1, ..., N}, bn(t + 1) = bn(t)p11(n) + (1− bn(t))p01(n)
(7)

Case II: When the action conducted in the tth stage is
transmission, the belief vector of the chosen channel |a(t)| will
be assured to be 1 or 0 according to whether the transmitter
receives an ACK response. Then the belief vector is updated
again according to (7) at the beginning of stage t + 1.

Case III: When the action conducted in the tth stage is
continuing sensing, the belief vector of channel a(t), which
is the channel chosen to be sensed in the tth stage, will be
updated according to the sensing result, if the channel is sensed
idle, we have

ba(t)(t) = 1− Pf,a(t). (8)

If the channel is sensed busy, we have

ba(t)(t) = 1− Pd,a(t). (9)

At the beginning of stage t + 1, the belief vector will stay
unchanged.

Object: Our object is to maximize energy efficiency of
the secondary user over M frames. We will firstly formulate
transmission gain and energy cost in one frame. Then the
objective function of this POMDP problem will be proposed.

In frame m, SU will finally choose channel |a(nS(m)+1)|
for transmission. The transmission gain can be denoted as:

B(m) = b|a(nS(m)+1)|(nS(m) + 1)RTT iT (m). (10)

Substituting (4), (5), (6) into (3), we can obtain the energy
cost in frame m as:



E(m) = nS(m)eS + (
ξ

ζ
Pt a(m) + Pc)TT iT (m)

= nS(m)eS + (
ξ(2R/BWa(m)−1)Lσ2

a(m)

ζΓρa(m)ya(m)
+ Pc)TT iT (m)

(11)
The object of this POMDP problem is to find an optimal

policy π which can maximize the total energy efficiency in
M frames. A policy π is a sequence of functions π =
[µ1, µ2, ..., µt, ...], where µt maps each belief state b(t) to a
sensing and transmission action {a(t)}. The optimal sensing
and transmission strategy are given by

π∗ = arg max
π

E[
∑M

m=1 B(m)∑M
m=1 E(m)

|b(1)] (12)

where the initial belief vector b(1) can be set as the stationary
distribution of channel occupancy state.

In order to obtain the optimal sensing and transmission
strategy, we need to enumerate all possible states that SU
may experience over M frames. After that, we can obtain
{nS(1), ..., nS(M)}, {iT (1), ..., iT (M)} for each strategy and
calculate the corresponding objective function. Then we can
search the path by which SU can obtain the maximum ex-
pected energy efficiency over M frames.

However, there are at most M(N +1) stages in M frames,
the searching space is relatively large and the computational
complexity required to obtain the optimal strategy is very
high, which makes it unfeasible to be implemented on SU’s
transmitter.

IV. MYOPIC SENSING AND TRANSMISSION STRATEGY

One of the methods for solving the problem in a much more
feasible way is to apply the myopic strategy [11], which only
focuses on the immediate reward of the current frame. In the
following section, we will study the myopic strategy in the
m0th frame with a given belief vector b(1). Our object is
to maximize energy efficiency in one frame. Thus sleep will
never be an optimal choice for myopic strategy, iT (m0) = 1.

At the beginning of stage t0, with a given sensing order
[a(1), ..., a(N)], we denote ηt0,[a(1),...,a(N)](t) as the maxi-
mum expected energy efficiency achieved on the condition that
SU stop sensing at stage t(t > t0). As we only consider the
energy efficiency in one frame, we can write the expression
of ηt0,[a(1),...,a(N)](t) as:

ηt0,[a(1),...,a(N)](t) = max
n∈{a(1),...,a(t−1)}

E[
bn(t0)RTT

Etx n + teS
].

(13)
Note that ∀t < t0, Etx n is determined through probing.

Thus E[ bn(t0)RTT

Etx n+teS
] = bn(t0)RTT

Etx n+teS
.

Hereby we formulate the problem of optimal myopic strat-
egy. At the beginning of stage t0, SU need to determine the
sensing order a∗ = [a∗(1), ...a∗(N)] and stopping point t∗

which can maximize the expected energy efficiency:

{a∗, t∗}t0 = arg maxt≥t0 maxn∈{a(1),...,a(t−1)} E[ bn(t0)RTT

Etx n+teS
]

= arg maxt≥t0 ηt0,[a(1),...,a(N)](t).
(14)

At the beginning of each stage, SU need to list all possible
sensing order and stopping point pair, and calculate the ex-
pected energy efficiency according to (14). Then SU can search
the optimal sensing order and stopping point. This process is
completed with high computational complexity.

In the following part of this section, we will decompose the
problem: analyze how to determine optimal sensing order and
design the respective optimal stopping rule.

The first proposition will show the feature of optimal
sensing order.

Proposition 1. At stage t0, the channel which SU should sense
to optimize energy efficiency is

n∗ = arg max E[
bnRTT

Etx n + t0eS
] (15)

Proof: We assume the optimal sensing order a∗
t+0

=
[a∗(t0), ...a∗(N)].

If t∗ = arg maxt0≤t′≤N ηt0,a∗
t
+
0

(t′) = t0. SU would stop at

stage t0. We should sense channel n∗ to ensure optimality.
If t∗ = arg maxt≤t′≤N ηt0,a∗

t
+
0

(t′) ̸= t0 and a∗(t∗) = n∗,

SU would stop at stage t∗. In this case we can change the
sensing order of a∗(t0) and a∗(t∗) to obtain a sensing order
with higher or equal energy efficiency. Thus we could sense
n∗ at stage t0 without loss of optimality,

If t∗ = arg maxt≤t′≤N ηt0,a∗
t
+
0

(t′) ̸= t0 and a∗(t∗) ̸= n∗,

SU would stop at stage t∗. We can sense channel n∗ at stage
t0 without loss of optimality.

Proposition 1 shows that at the beginning of each stage, SU
can make sure which stage to sense. In addition, as shown
in (15), the next channel to be explored is not affected by
sensing history. Thus at the beginning of the first stage, SU
can determine the optimal sensing order of the whole frame.

We now present the detailed algorithm to determine sensing
order according to Proposition 1. As shown in Algorithm 1,
the computation complexity is only O(N2), which is much
less than O(N !N), the dynamic programming based solution
proposed in [10].

Algorithm 1 Solution of optimal myopic sensing order
1: initialize the set of unsorted channels U = {1, 2, ..., N},

sensing order a, a(n) = 0, 1 ≤ n ≤ N .
2: for i = 1 to N do
3: for all n ∈ U do
4: pn ← E[ bn(1)RTT

Etx n+ieS
];

5: end for;
6: a(i)← arg maxn∈U pn;
7: U ← U − {a(i)};
8: end for;



We will show that the optimal stopping rule is a threshold
based structure through the following proposition.

Proposition 2. With the optimal order [a(1), a(2), ...a(N)], at
stage t0 , if

maxn∈{a(1),...a(t0−1)}
bn(t0)RTT

Etx n+(t0−1)eS
≥

maxn∈{a(1),...a(N)} E[ bn(t0)RTT

Etx n+t0eS
],

(16)

then SU should choose to stop sensing to achieve maximum
energy efficiency. Otherwise SU should continue sensing.

Proof: Suppose (16) is satisfied. Then for any t′ > t0,
we have

ηt0,[a(1),...,a(N)](t′) = maxn∈{a(1),...a(t′−1)} E[ bn(t0)RTT

Etx n+(t′−1)eS
]

≤ maxn∈{a(1),...a(t′−1)} E[ bn(t0)RTT

Etx n+t0eS
]

≤ maxn∈{a(1),...a(N)} E[ bn(t0)RTT

Etx n+t0eS
]

≤ maxn∈{a(1),...a(t0−1)}
bn(t0)RTT

Etx n+(t0−1)eS
.

(17)

As shown in (17), for any t′ > t0, stopping at stage t′ will
not achieve higher energy efficiency.

If (16) does not hold good, we have:

ηt0,[a(1),...,a(N)](t0) =
max{maxn∈{a(1),...a(t0−1)}

bn(t0)RTT

Etx n+t0eS
,max E[ bn(t0)RTT

Etx n+t0eS
]}

= maxn∈{a(1),...a(N)} E[ bn(t0)RTT

Etx n+t0eS
]

> maxn∈{a(1),...a(t0−1)}
bn(t0)RTT

Etx n+(t0−1)eS

(18)

As shown in (18), sensing a(t0) at stage t0 will achieve
higher energy efficiency. Thus the proposition is proved.

Proposition 2 shows that at the beginning of each stage, SU
can check (16) to decide whether to continue sensing. If SU
stops at stage t′, then we have nS(m0) = t′ − 1.

V. SIMULATION RESULTS

In this section we present the simulation results to evaluate
the performance of our proposed algorithm. Simulation of
parameters are listed in Table I.

A. Energy Efficiency Evaluation

Firstly, we evaluate the performance of proposed algorithm
by comparing it with the other three approaches: Omniscience,
sensing in fixed order and full sensing. In omniscience ap-
proach, SU has full information about the network status
and the instantaneous channel gain of each channel. Thus
SU can make the optimal choice directly. In sensing in fixed
order approach SU has no information about network status.
SU senses the channel in a fixed order and transmit on the
first channel detected idle. In full sensing approach, SU will
explore the whole network status and then decide which
channel to access.

Fig. 4 illustrates the energy efficiency versus number of
frames. In this case, the number of channels is N = 10. Our
proposed algorithm finally achieves an energy efficiency of
46Mbits/J.

TABLE I
SIMULATION PARAMETERS

Energy of sensing and probing
eS

5mJ

Bandwidth B 5MHz
Pre-set data rate R 10Mbps
Link margin L 10dB
Distance d 200m
Circuit power Pc 200mW
Sensing and probing time TS 20ms
Transmission time TT 100ms
Parameters of sensing errors Pd = 0.95, Pf = 0.05

SNR gap Γ
For M − QAM, BER = 10−5,
Γ ≈ − ln(5BER)/1.5 = 6.6023

Carrier frequency fc,n fc,n = 595 + 5n(MHZ)
PAR over drain efficiency ξ/ζ 11.3745

Transition probabilities of PU p01(n) = 0.3 + 0.6 ∗ n/N
p10(n) = 0.8 − 0.6 ∗ n/N

SU channel condition yn
{1, 2, 3, 4, 5} with probability
{0.4, 0.3, 0.15, 0.09, 0.06}
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Fig. 4. Energy efficiency vs number of frames.

Note that the omniscience approach performs better than
optimal POMDP solution because it involves no cost for
sensing and probing. While our proposed algorithm performs
only 8% worse than the omniscience approach, which implies
that its loss of energy efficiency is less than 8% compared to
the optimal POMDP solution.

With the capability to explore better channels, our proposed
approach performs 15% better than fixed order approach. It
also performs 35% better than full sensing approach by saving
energy consumed in the sensing and probing phase through
optimal sensing order.

B. Effect of number of channels

We show the energy efficiency achieved for different num-
ber of channels, compared with the other three approaches in
Fig. 5. We can observe that for different number of channels,
the achieved energy efficiency by our proposed algorithm is
nearly constant around 46Mbits/J, which performs better than
fixed order approach as a result of exploring better channels
through the threshold structure and optimal sensing order.
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Full sensing approach is sensitive to the number of channels,
because the energy consumed in sensing and probing phase
increases when number of channels N increases. It performs
46% worse than our proposed method when N = 19. As
N increases the gap of energy efficiency between full sens-
ing approach and proposed approach also increases. This is
because our proposed approach can explore the best channel
faster through optimal sensing order.

C. Energy efficiency - capacity tradeoff

Fig. 6 illustrates the normalized average capacity and energy
efficiency versus the sensing energy eS of the proposed
strategy and the traditional throughput maximizing approach.
In throughput maximizing approach, SU would sense channels
in descending order of {bn(t)}, and choose the first channel
detected idle for transmission.

It shows that with the increase of eS , the average energy
efficiency of two approaches goes down. While as eS in-
creases, the advantage of proposed strategy over traditional
ones decreases. This is because that as sensing energy weighes
more, the advantage of proposed strategy through picking
channels with high energy efficiency weighes less. Our pro-
posed strategy can perform at most 50% better on energy
efficiency, and achieve over 90% capacity of the tradition one
at the same time.

In practical situations power cost of sensing is usually less
than 1W and the time cost is usually less than 10ms [7],
which means that eS is usually less than 10mJ . As shown in
Fig. 4, when eS ∈ [0, 10mJ ], our approach can perform at
least 30% better than traditional approach.

VI. CONCLUSION

In this paper, we analyze the problem of joint sensing and
transmission strategy in a multi-channel system. We formulate
the energy efficiency maximization problem as a POMDP
problem. In order to solve it in a more practical way, we
discuss the myopic strategy. We reveal the feature of myopic
strategy, propose the low complexity algorithm constructing
optimal myopic sensing order, and derive the threshold based
stopping rule as well as corresponding thresholds. Simulation
results show the proposed algorithm does not bring principle
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Fig. 6. Normalized energy efficiency & capacity vs sensing energy eS .

degradation compared with optimal solution, and achieves
great improvement over traditional throughput maximization
approach with acceptable capacity loss.
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