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Abstract—Combinatorial auction with flexible bidding formats
is proposed in this paper for the channel allocation problem in
cognitive radio networks. Different from other auction mecha-
nisms, our solution includes the channel characteristic and user
requirements in the biding, and therefore has more freedom to
reflect the preference of secondary users on the channel selection.
Four bidding formats are introduced, each of which has different
emphasis to maximize social welfare of the spectrum resource.
The details of each bidding format are explained, followed by
the optimal solution or approximation solution proposed for
each format. The approximation ratio of proposed algorithms
is analyzed. Finally a numerical test is conducted in terms of
social welfare and spectrum utilization. The test shows that actual
approximation ratio is close to the optimal one.

I. INTRODUCTION

Among methods for the allocation of channel access rights
in cognitive radio networks (CRN), auction [1] has been widely
used, along with others as price [2], game theory [3], and
etc. Although fairness and efficiency are shown, [4] [5] [6]
[7], most of auction approaches do not consider well the
SU’s preference on channels. For instance, in [4], the authors
formulates the auction framework as a non-cooperative game,
but assumes each SU can only connect to a single PU; in [5],
each user is only allowed to access one spectrum band; in [6],
a multi-user multi-unit double auction mechanism is proposed,
but channels are treated homogeneously across SUs.

The combinatorial auction appears to be attractive for
the channel allocation in CRN, as it considers the trade of
multiple items in bundles. However, there are few literatures
on the combinatorial auction in CRN. Even fewer researches
studied the flexibility of SU’s requirements on the channel
selection. In [7], SUs are allowed to bid a bundle of time-
frequency blocks. However it has limitation to represent SU’s
specific requirements. For instance, the channel c1 c2 c3 are
the same in bandwidth and characteristic but only one of them
is preferred. To solve this problem, we define four bidding
formats. The basic format is named atomic bid. With the help
of two operators AND and OR, we define other three formats
as alternative bid, additive bid and integrated bid. With those
formats, we are able to define a bidding structural uniformity
which adequately describes SU’s requirements on the channel
selection.

In the paper, we model the channel as an item in the
combinatorial auction. We consider the channel characteristic
as a parameter in the auction. In addition, SU’s valuations on
channel are channel-dependent. SU determines its bid based

on transmission demand and valuations. We strict an SU’s
bid to four defined formats with allowing each bidder request
multiple bundles in the bid and put an arbitrary combination of
items in a bundle. Our paper targets following problem: deter-
mine the winners in channel allocation to achieve a high social
welfare (the sum of winners’ valuations). We first illustrate the
optimal solution under the atomic and alternative bid. Then we
propose a greedy algorithm under the additive bid and briefly
analyze the approximation ratio of the algorithm. Finally we
propose an approximation algorithm under integrated bid based
on the solutions in the alternative and additive bid.

The rest of the paper is organized as follows. The system
model, preliminary knowledge on valuation and objective are
introduced in Section II. Four bidding formats are described in
Sections III. The channel allocation algorithm under different
bidding formats are presented in Section IV. The numerical
evaluations are given in Section V. Finally the conclusion is
drawn in Section VI.

II. PRELIMINARY

A. System Model
As illustrated in Fig. 1, we consider m primary users (PU)

and n SUs denoted as S = {s1, s2, . . . , sj , . . . , sn}, randomly
distributed in a given area. These SUs are connected to an
information agent, which acts as an auctioneer for bidding.
Each PU operates on a channel orthogonal with the channels
of other PUs. Therefore m channels is available in this area,
denoted by C = {c1, c2, . . . , ci, . . . , cm}. In our model, these
channels differ not only on ownership, but also on channel
characteristic.

SUs is allowed to purchase permission to access the
channels owned by PUs. We assume that a channel is the
basic unit that can be lent by an SU. Furthermore we adopt the
underlay spectrum sharing model in which an SU can access
the channel simultaneously even the PU is transmitting, as long
as the interference to the PU is below a threshold. Each PU
declares a tolerant interference level to the information agent
before leasing out and the agent publishes these thresholds to
all SUs. We further assume an SU can calculate its transmitting
power on a channel owned by an active PU according to the
interference threshold and distance to PU.

B. Valuation
1) Single Channel: Each SU j has a set of channel-

dependent valuations which describe the highest price SU j
is willing to pay for each channel. The valuation vij of SU j
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Figure 1: System Model

on channel i is evaluated according to metrics like data rate and
consecutive stable transmitting time. The valuation integrates
all these metrics in a function, as

vij =
∑
l

αl
jM

i,l
j (1)

M i,l
j is the value of metric l of SU j on channel i. αl

j is the
coefficient SU j giving to metric l, which depends on SU’s
preference and transmission request. From 1, we can easily
derive that, an SU’s valuations differ on each channel and so
are the valuations of different SUs on a single channel.

The value of a metric is determined by the attributes of
the metric. Three main attributes affecting the valuation of a
channel are listed below:

• The usable power level on the channel when PU is
active.

• The channel characteristic, e.g., central frequency and
bandwidth.

• The level of activity of PU on the channel. It is evident
that longer the PU using the channel, the less stable
slots an SU can get. Although a PU and an SU share a
channel, the SU can transmit in a higher power when
the PU is inactive.

A metric can be valued by its attributes, and then forms the
valuation of a channel.

2) subset of channels: In practice, it is possible for an SU
to put a request on a subset of channels, thus it should have a
single valuation on the subset. In general, there are two kinds
of subsets [8]: complement [9], where an SU may value the
set of items higher than the sum of the individual values of the
items, and substitute [10], where an SU may value the set of
items lower than the sum of the individual values of the items.
In our study, we allow both types of subsets in the auction.

C. Problem Formulation
Both PUs and SUs have incentives to trade: PU can get

profit and SU can access the channel. In the trade, an SU
forms its channel request by taking account of its transmission
demand and channel-dependent valuations. We study how to
allocate channels to SUs so as to maximize the social welfare.

We apply an auction framework to study this problem.
SUs are buyers, who submit bids to the information agent.
The buyer’s bid consists of arbitrary bundles of channels and
corresponding valuations. After receiving bids, the auctioneer
determines the final allocation. Due to the differences on
channel characteristic and on SUs’ requirements, we formulate
the allocation problem as a combinatorial auction problem
[11]. The combination auction is defined as an auction in
which bidders can place bids on combination of items, called
”bundle” or ”package”, which satisfy two conditions: no good
is assigned to more than one buyer, and no buyer receives
more than one bundle of items [7]. In our study, we extend
the concept of bundle, which can be either a single channel or
a combination of channels.

We aim to design a combinatorial auction mechanism
for channel allocation: for each buyer j submits a bid bj ,
containing a set of bundles T e

j ⊆ C, e ∈ {1, 2, . . . , Ej}. Ej is
the number of bundles in bj . Let vj(T e

j ) be valuation of buyer
j for bundle T e

j . Moreover we use a binary variable X(j, T e
j )

to denote the allocation result, with 1 indicates buyer j wins
bundle T e

j and 0 indicates the buyer loses. Then the objective
is to

max
∑
j∈S

Ej∑
e=1

vj(T
e
j )X(j, T e

j ), T e
j ⊆ C

s.t.

Ej∑
e=1

X(j, T e
j ) 6 1,∀j ∈ S

T e
j ∩ T e′

j′ = ∅,∀ X(j, T e
j ) = 1, X(j′, T e′

j′ ) = 1⋃
j∈S

⋃
X(j,T e

j )=1

T e
j ⊆ C

(2)

The goal is to maximize the sum of winning buyers’ valu-
ations. The first constraint means a buyer can get at most
one bundle of channels; the second constraint indicates that
there is no intersection between any two winning bundles,
i.e., every channel should only be allocated once; the third
constraint means all the allocated bundles should not exceed
the channel set. In following section, we use SU, buyer and
bidder interchangeably.

III. BIDDING FORMAT

In this section we define four bidding formats, by which
we could fully represent varieties on buyers’ requirements. We
use bj to denote the submitted bid of buyer j in the description
of each format.

A. Single unit atomic bid
Each buyer submits its bid bj , including the request on

single channel and specific valuation, as (ci, v
i
j). This is the

basic unit of bidding, including a single bundle in the bid and
only one channel in the bundle.

B. Multi-unit alternative bid
Each buyer submits a bid bj , including a number of atomic

bids, i.e., a collection of pairs (ci, v
i
j). In this case, the buyer

requests multiple bundles with single channel in each bundle.
These bundles are substitutable, which means the buyer is
willing to accept one but only one bundle in its bid. We use



the ”OR” operator to express the alternation in request. For
example, buyer j bids

(c1, v
1
j ) OR (c2, v

2
j ) (3)

to express bidding price v1j on c1 and v2j on c2, and the
willingness to pay either c1 or c2. It is suitable for the case
when a wireless device locates in an area with PUs sparsely
distributed. The buyer has many available channels while a
single channel is able to fulfill its spectrum requirement.

C. Multi-unit additive bid
Each buyer submits its bid bj , including a request on a

subset of channels and a single valuation. In this case, buyer
submits a single bundle, but there are multiple channels in the
bundle. We express this additive request by ”AND” operator.
For example, if a buyer j has a request on channel c1 and c2
with the valuation v12j , it will submit an ”AND” bid as

(c1 AND c2, v
12
j ). (4)

This bid can be used by wireless devices with multiple radios,
which can transmit and receive data simultaneously on differ-
ent channels, or wireless devices using frequency hopping.

D. Integrated bid
Due to the complexity of the network environment, a user

may like to express more complex bids, for example,

c1 AND (c2 OR c3). (5)

The buyer requests for two channels: one is c1, but for the other
one, it has no preference between c2 and c3. Under this format,
bids may not be directly composed by separate bundles, like
(5). We cannot directly extract bundles from the bid, but we
could change the bid into

(c1 AND c2) OR (c1 AND c3). (6)

In (6), it is clear that the buyer submits two bundles and
both contain two channels. We extract the bundle information
without misrepresenting the origin request of buyer.

As illustrated in (2), the final allocation is decided ac-
cording to specific valuations of all bundles. If a bid is
constructed as (5) or even more complex, we cannot obtain
accurate valuations from the origin request, which may lead
to a significant degradation on efficiency. Therefore we strict
the bidders to reconstruct their bids into a uniform structure
before submitting to the auctioneer: No matter which form the
request is, it can be reconstructed to OR combination of atomic
bids and additive bids (refer to Chapter 9 in [12]), as

(cx, v
x) OR (cy AND cz, v

yz) OR · · · (7)

Several separate parts are connected by OR operators. Each
part is a bundle which in the form of either atomic bid or
additive bid.

IV. CHANNEL ALLOCATION MECHANISM IN
COMBINATORIAL AUCTION

In this section we develop allocation mechanisms under
different bidding formats to solve the problem defined in 2.

A. Single unit atomic bid
The solution for this bid is straightforward. We simply sort

the valuations on each channel in decreasing order and choose
the highest bidder as the winner. In this way, the social welfare
is maximized while the allocation constraints are followed.

B. Multi-unit alternative bid
In this bid the buyer requests one out of multiple channels.

We can formulate the allocation problem under this format
as Maximum Weighted Matching(MWM) problem in bipartite
graph [13]. A bipartite graph is a graph whose vertices can be
divided into two disjoint sets U and V such that every edge
connects a vertex in U to one in V , indicating the buyer set S
and channel set C in our model. An edge exists between two
vertices means the buyer put a request on the channel. The
weight on the edge is a single valuation in buyer’s bid. For
instance, the buyer j bids (c1, v

1
j ) OR (c2, v

2
j ). Then in the

graph, vertex j have edges connecting to vertex c1 and c2 with
weights v1j and v2j , respectively.

The auctioneer forms the graph by mapping all the bundles
in users’ bids into edges. Then the auctioneer conducts the
MWM algorithm to find Maximum weighted matching. Max-
imum weighted matching is defined as a matching where the
sum of weights of the edges in the matching have a maximal
value while no two edges share a common vertex. The property
of matching achieves our goal while satisfies the constraints.
Hence the winners are connecting vertices in the matching and
the edges indicate the final allocation.

A simple example is shown in Fig. 2(b). There are 5
SUs and 3 channels, the SUs’ bids is shown in Table 2(a).
In mapping stage, we add edges and label the weights. The

SU1 (c1, 4)
SU2 (c1, 5) OR (c2, 5)
SU3 (c1, 4)
SU4 (c2, 6) OR (c3, 4)
SU5 (c2, 8) OR (c3, 7)

(a) The SUs’ bids

1c 2c
3c

1s 2s 3s 4s 5s

4 5 4

5
6
8

4

7

(b) Bipartite graph and maximum weighted
matching

Figure 2: An illustration of example

graph is shown in Fig. 2(b), including both dash lines and solid
lines. We apply MWM algorithm to find maximum weighted
matching. The final matching is highlighted with solid line.
The winning pairs include (s2, c1), (s4, c2) and (s5, c3), and
social welfare is 18. We can notice, though the edge between
c2 and s5 owns the highest weight, it didn’t appear in the final
matching.

There exists many literatures on MWM, and it could be
solved optimally with a time complexity O(V2logV+VE),
V and E is the number of vertices and edges in bipartite



graph. The Hungarian algorithm is a popular polynomial-time
algorithm to solve it optimally.

C. Multi-unit additive bid
In the literature, optimal auction methods to this prob-

lem normally have high computational complexity, which is
prohibitive for real-time auction in dynamic spectrum access.
We propose a computationally efficient near-optimal allocation
mechanism based on a greedy algorithm.

The algorithm has three steps:

1) we transform the bid bj into virtual bid vj/|Tj |. vj
is the valuation of the bundle and |Tj | is the number
of channels in the bundle;

2) we sort all buyers’ virtual bids in decreasing order
and form a list L;

3) a greedy algorithm is used in the third step with the
pseudo-code shown in Algorithm 1.

The algorithm examines every requests in L sequentially,
and grant the request if it does not overlap with previous
granted requests. Otherwise, the valuation of current request
is compared with sum of valuations of overlapped previous
granted requests, and replace the overlapped requests if its
valuation is higher. The process ends until all the request are
examined.

Algorithm 1: Greedy Alloc(L, T, C)

1: Initialize
2: Φ← ∅
3: Input: Sorted list L; Set of bundles T ; Set of channels C
4: T ← ∅ // Set of assigned channels
5: while L 6= ∅ do
6: j = FirstBidder(L)
7: Find out requested bundle Tj of bidder j
8: if Tj ∩ T = ∅ then
9: Φ← (j, Tj), T ← Tj , C := C \ Tj

10: else
11: Find out set of bidders I(j) in Φ that overlaps with

j
12: if vj >

∑
i∈I(j) vi then

13: Φ := Φ \ (i, Ti), T := T \ Ti, C ← Ti, ∀i ∈ I(j)
14: Φ← (j, Tj), T ← Tj , C := C \ Tj
15: end if
16: end if
17: L := L \ j
18: end while
19: Output: Φ

Next we analyze the approximation ratio of Algorithm 1:

Theorem 1. The proposed greedy algorithm can approximate
the optimal allocation within a factor (m

n′ −ε), where m is the
number of channels and n′ is the number of winning bidders
that does not exist in the optimal solution. ε is a variable
whose value is based on the ratio of common bidders in greedy
solution and optimal solution.

Proof: Let OPT be the set of winners in optimal allocation
and V ∗ =

∑
i∈OPT vi. Then we denote the result obtained by

proposed algorithm as GRE and V G =
∑

j∈GRE vj . We now

prove that
V ∗ 6 (

m

n′
− ε)V G (8)

Let us consider the winning bidders in OPT and GRE,
denote as {b∗1, b∗2, . . . , b∗p} and {bG1 , bG2 , . . . , bGn′}, respectively.
We can easily derive: there is no overlapping between bidders
within OPT, i.e. Ti ∩ Ti′ = ∅ ∀i, i′ ∈OPT, and so are the
bidders in GRE; for every bidder in GRE, there must exist at
least one bidder in OPT overlap with it. If not so, we can
put this bidder in OPT and form a better solution, which is
contrary to the assumption of OPT.

There may exist common bidders in both two sets. If
so, without loss of generality, we remove these bidders and
consider the worst case where OPT and GRE have no bidders
in common. Such operation does not affect the difference of
valuations between OPT and GRE. We inherit the denotation
of OPT and GRE after removing common bidders.

We mix the bidders in OPT and GRE, and rank them in
decreasing order of vi/|Ti| as step 1. In the greedy algorithm,
we go through all those bidders. For any bidder b∗i , i ∈OPT,
when it is considered in greedy algorithm, either it stays in
GRE temporarily and be replaced by a lower-rank bidder, or
directly be rejected due to overlapping. In the former case, we
consider the bidders in GRE. For example, assume the bidder
bGj overlaps with a number of bidders in OPT, denoted as I(j).
According to the proposed algorithm, there is∑

i∈I(j)

v∗i 6 vGj . (9)

In the later case, for any bidder b∗i in OPT, there would be
a number of bGj , j ∈GRE overlapping with it, denoted as I(i).
According to the proposed algorithm, there is

v∗i 6
∑

j∈I(i)

vGj (10)

We divide all bidders in OPT into the two cases and
map them to (9) (10). Adding them together, we get a new
inequality. The left part of the inequality equals V ∗, the right
part equals sum of vGj · kj , where kj is a constant. We should
notice that at most |TG

j | will be associated with bGj , because no
two bidders in OPT intersect with each other. Then we have

V ∗ 6
∑

j∈GRE

vGj · |TG
j |. (11)

According to Cauchy-Schwarz inequality, such that

V ∗ 6
∑

j∈GRE

vGj · |TG
j | 6

√ ∑
j∈GRE

(vGj )2
√ ∑

j∈GRE

(|TG
j |)2 (12)

Algorithm 2: Approximate Allocation for Integrated Bids

1: Initialize
2: Φ← ∅ L← ∅
3: Input: Set of trans-bids Tr = {tr1, tr2, . . . , trj , . . .};

Buyer set S; Channel set C; Bipartite graph G = (V,E)
4: Add two sets of vertices Vb, Vc into G, representing buyers

and channels
5: for j = 1 to n do
6: Extract bundles {T 1

j , T
2
j , . . . , T

e
j , . . . , T

Ej

j } from trj
7: for e = 1 to Ej do



8: if T e
j = (cx AND cy, v

xy
j ) then

9: Add a virtual vertex xy to Vc if it does not exist
10: Add an edge e(j,xy) to E and record the weight

vxy

11: else
12: Add an edge e(j,x) to E and record the weight

vx

13: end if
14: end for
15: end for
16: MWM(G)= G′(V ′b , V

′
c , E

′)
17: for each e(b,c) e ∈ E′, b ∈ V ′b , c ∈ V ′c do
18: L← vc/|c|
19: end for
20: Sort L in decreasing order
21: Φ =Greedy Alloc(L, V ′c , C)
22: Output: Φ

Equality holds if and only if vGj /|TG
j | =

vGj′/|TG
j′ |, ∀j, j′ ∈GRE. Moveover, we represent the

upper bound by setting vGj = vGj′ = V G/n′ |TG
j | = |TG

j′ | =

MG/n′, ∀j, j′ ∈GRE, and MG is the total number of
allocated channels in greedy algorithm. Finally we have

V ∗ 6

√
(
V G

n′
)2 · n′

√
(
MG

n′
)2 · n′ =

MG

n′
· V G 6

m

n′
· V G

(13)
We should notice the approximation ratio m

n′ only indicates the
worst case. Taking removed common bidders into account, we
can revise (14) as

V ∗ 6 (
m

n′
− ε) · V G, (14)

so that Theorem 1 is proved. The value ε is based on the ratio
of common bidders in OPT and GRE.

In the numerical evaluation, we compare our result with
optimal value. It shows that the actual approximation ratio is
close to the optimal one.

D. Integrated bid
An integrated bidding format can be reconstructed to a

unified form, which enables the auctioneer to extract bundle
information from the buyers’ bids. We call reconstructed bids
as trans-bids, denoted by trj . The bundles in trans-bid are
connected by OR operator, in the form of either atomic bid
or additive bid. To realize the constraint that each buyer gets
at most one bundle in its request, we firstly map trans-bids
into a bipartite graph and find out the optimal matching. Then
we use the same method in Subsection IV-C to eliminate the
overlapping on requests. The pseudo-code of the approximate
allocation algorithm is shown in Algorithm 2.

Our algorithm consists of three steps:

1) we generate a bipartite graph based on trans-bids.
The initial vertex sets in the graph are buyers and
channels. We check each buyer’s trans-bid sequen-
tially. If the unit connected by OR is an atomic
bid, we directly add an edge between buyer and the
channel. If it is an additive bid, we add a virtual
vertex in the channel vertex set and add an edge.
The weight on the edge is the valuation of that

bid. For instance, if the trans-bid of a buyer is
(c1, v1) OR (c2 AND c3, v2), we add an edge
between the buyer and channel c1 with the weight v1.
Following we add a virtual node 23 in the channel
vertex set, and add an edge between the virtual node
and buyer. The weight on this edge is v2. If a virtual
node is already added, we could directly add an edge
and record the weight;

2) we generate a bipartite graph. We apply the same
method in Section IV-B to find maximum weighted
matching. There may exist virtual nodes in optimal
matching and there are overlapping on requests;

3) we use a greedy algorithm same as that in Section
IV-C to eliminate the overlapping on requests. Note
that although it may find an optimal matching in step
2, we cannot guarantee the optimality of Algorithm
2 due to the limitation of the greedy algorithm.

V. NUMERICAL EVALUATION

In this section, we compare our algorithms with the optimal
solution via numerical tests. The optimal value is obtained by
Integer Programming module in LINGO 1, in which Branch-
and-Bound algorithm is used. The performance metrics are
social welfare and spectrum utilization ratio.

We need to emphasis that, under the alternative bid, the
social welfare achieved by MWM method is optimal, and
as long as the number of bidders is sufficient, the spectrum
utilization ratio can always approximates 1. Therefore we do
not make a comparison for the alternative bid. The main
focus is on the greedy algorithm for additive bid and the
approximation algorithm for integrated bid. We set the number
of channels for SUs to be m = 128. The maximal requirement
for any bidder is 10 bundles. The items in the bundle are
also randomly selected among 1 to m. We further assume that
the bidder’s valuation for each bundle is uniformly distributed
between [0, 1] [7].

Under the additive bid, we assume the number of SUs
varies from 100 to 500 at a step size of 50. Fig. 3 depicts
the comparison between result of Algorithm 1 and optimal
value on social welfare. We can see Algorithm 1 continually
has a high approximation ratio, around 95% of the optimal
value. Fig. 4 shows a similar trend on spectrum utilization
ratio. we can notice, with the number of SUs increasing,
the spectrum utilization ratio also increases gradually, but the
marginal utility of utilization ratio from increasing 50 SUs
is decreasing. We infer that, finally it would reach an upper
bound and keep constant.

We set the number of SUs varies from 100 to 250 under
integrated bid. In Fig. 5, we show the comparison on social
welfare. The approximation ratio is lower than that of Al-
gorithm 1, but always larger than 0.5. It means Algorithm
2 can achieve at least half of the optimal value on social
welfare. Moreover Algorithm 2 also has a good performance
on spectrum utilization ratio in Fig. 6.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first define four bidding formats to fully
represent on SUs’ requirements on the channel selection. We

1LINGO is an optimization modeling and solving software for linear,
nonlinear and integer programming.
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propose algorithms to maximize social welfare for each biding
format:under the alternative bid, we use MWM method to
find the optimal match; under the additive bid, we design a
greedy algorithm to maximize social welfare while satisfying
the allocation constraints; under integrated bid, we introduce
the process of reconstruction, then propose an approximation
algorithm for the channel allocation. The approximation algo-
rithm combines MWM and greedy algorithm, in which MWM
is used for filtering bundles and the greedy algorithm used for
eliminating overlapping. The numerical evaluation show that
the proposed mechanism achieves at least 50% of the optimal
value.

For the future work, we will refine the bidding language
in combinatorial auction to CRN and develop auction algo-
rithms with more flexibility on the channel selection and less
computation complexity for the large bidding size.
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