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Abstract—Recent studies showed that, in practical situations,
the primary user (PU) access to the channel is better modeled
as a time dependent random process. Taking this into account,
we address the optimal rate adaptation problem of a cognitive
radio (CR) link. A secondary user (SU) link detects an idle
channel and starts the transmission with the goal of transmitting
a given amount of data packets within a given time. During the
transmission, and taking into account frame retransmission, the
transmitter dynamically adapts the frames rate, from a finite
number of available rates. If the PU accesses the channel, the SU
immediately stops the transmission. The problem is formulated
as an episodic Markov decision process (MDP). We show that
selecting the best stationary policy (using the same rate for the
whole transmission) can perform close to optimal.

I. I NTRODUCTION

Recently, IEEE 802.22 working group has released the
first cognitive radio (CR) standard for wireless regional area
networks [1]. This standard supports rate adaptation using
adaptive modulation and coding. It also allows secondary
users (SU) to support frame retransmission through an ARQ
mechanism.

This work focuses on opportunistic spectrum access (OSA)
in hierarchical CR networks where the SU’s only use the
licensed spectrum when primary users (PU) are not transmit-
ting. We consider noncooperative spectrum sharing where each
SU makes its own decision on the spectrum access strategy,
based on its own delay constrains and local observation of
the spectrum dynamics. We assume that the SU’s can adapt
the transmission rate according to the current delay constrain,
the channel fading conditions and the PU’s channel access
statistics. We also assume that the SU’s support ARQ protocol,
so when a frame is decoded with error, its data is retransmitted
in a further frame.

Models for channel occupancy patterns commonly used
to date in CR research are usually limited in scope and
based on oversimplifications or assumptions. Recently, in [2]
a complete study on spectrum occupancy patterns of the PU
in CR links was conducted. In order to propose realistic and
accurate models of such patterns, several practical networks
were measured and modeled. In this work we make use of
some of the proposals in [2] to model the PU access to channel
as a time dependent random process. This is the main novelty
of this work.

Rate adaptation of SU links in CR has been widely
addressed in the technical literature, [3], [4], [5]. However,

none of the above works consider frames retransmission. In [6]
frames retransmission was taken into account, but assuminga
memoryless channel occupancy model and with no delay con-
strain. To the best of our knowledge, optimal rate adaptation
while considering retransmissions of failed frames, with delay
constrain and over time-dependent channel occupancy models
has not been addressed so far in the context of OSA.

We formulate this rate adaptation problem as an episodic
Markov decision process (MDP) [7], [8], [9]. The optimal rate
adaptation policy can be easily obtained by any conventional
dynamic programming (DP) algorithm, as well as the proba-
bility of successful transmission.

The aim of this work is not to propose a practical rate adap-
tation scheme, we only intend to explore the possible solutions
to this problem and to find theoretical performance bounds.
The proposed scheme is not feasible as a practical system
because it would require accurate and complete information
about the channel occupancy patterns as well as the frame
error rates.

The remaining of this paper is organized as follows. We
present the system model in section II and in section III
we introduce the MDP formulation. In IV we provide some
insight on MDP problems solving and in section V we present
a simple way to compute success and fail probabilities. In
sectionVI we present numerical results to evaluate an compare
the optimal rate adaptation with stationary policies (the frame
rate is fixed for the transmission of the entire file). Finally,
section VII presents the conclusions of this work.

II. SYSTEM MODEL

We consider an SU that periodically senses the channel.
Once it detects that the channel is idle, it begins the transmis-
sion of a fixed size file comprisingNp packets. Each of these
fixed size packets is encoded in a single frame. The SU has the
capability of adapting its transmission rate, i.e. the duration of
each frame.

The objective of the SU is to maximize the probability
of transmitting theNp packets within a given time,Tt, and
before a PU reclaims the channel. To achieve this goal the SU
has to select a transmission rate for each frame. The SU has
K different types of frames available, each one with duration
Tk and frame error rate (FER)pk, wherek ∈ {1, . . . K}. We
assume that, the channel, the transmit power, and the SNR at
the receiver remain constant during the sojourn time of the
PU’s idle state, i.e. the FER remains constant.
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In the subsequent we will consider discrete time steps of
duration T seconds, whereT represents the g.c.d. (greatest
common divisor) of the frame durations. Hence, we define the
discrete time duration of each type of frame astk = Tk/T
and the total number available time slots for the transmission,
Nt, asNt = ⌊Tt/T ⌋.

We consider a traditional and ideal ARQ mechanism to
detect frame transmission errors. When the receiver receives a
frame, it sends back an ACK packet to the transmitter through
an instantaneous error-free feedback channel to inform whether
the frame has been correctly decoded or not. Whenever a
frame is decoded with error, the corresponding packet must
be retransmitted in a further frame.

Channel access model

Figure 1 depicts the channel occupation process. The chan-
nel state changes alternatively between idle and busy periods
over time and the duration of the idle/busy periods is given by
two random variables denoted bydi and db respectively. Let
Fi(di) andFb(db) be the corresponding cumulative distribution
functions (CDF). Several realistic and accurate models have
been proposed for these CDFs for different radio networks
[2]. Without loss of generality, in this work we modeleddi as
a generalized exponential (GE) random variable with CDF

Fi(di) =
[

1− e−λ(di−µ)
]α

, (1)

wheredi ≥ µ > 0, λ > 0 andα > 0.

Let us consider an idle period starting at timet0 = 0 (see
figure 2), and letβ(d|t0) denote the conditional probability
that the channel remains idle at timet0 + d given that it was
idle at timet0. Using Bayes’ theoremβ(d|t0) is given by

β(d|t0) =







1− Fi (t0 + d)

1− Fi (t0)
, t0 > 0

1− Fi (d), t0 = 0

(2)

Generally,β(d|t0) depends ont0, i.e. the channel access
probability has memory. The well known exponential dis-
tribution is an exception to this rule. Continuing with the
GE distribution example, notice that forα = 1 and µ = 0
the GE distribution becomes the exponential distribution with
parameterλ. If we deriveβ(d|t0) for the exponential case

β(d|t0) =
1−

(

1− e−λ(t0+d)
)

1−
(

1− e−λ(t0)
) = e−λd, (3)
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Fig. 3. β(d = 1ms | t0) for the GE distribution (λ = 5, µ = 0.5ms and
α = 0.5) and the memoryless exponential (λ = 5).
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Fig. 4. Example withNp = 3, Nt = 5, K = 2 and t = [1, 2].

we prove that it is not dependent ont0, i.e. it is a mem-
oryless channel. The memoryless exponential model has been
extensively used in the literature, however in many practical
cases it is not a realistic model.

Figure 3 depicts the probability that the channel remains
idle during the transmission of frame of duration1ms at time
t0, β(d = 1ms | t0), for the GE distribution (withλ = 5,
µ = 0.5ms andα = 0.5), and for the memoryless exponential
distribution (withλ = 5).

III. MDP FORMULATION

In this section we formulate the rate adaptation problem as
an MDP.

A. Stages

Each stage of the problem corresponds to a frame trans-
mission. The duration of each stage depends on the type of
frame selected,tk. The process can finish in three different
ways: 1) The SU has successfully transmitted theNp packets,
2) A PU has reclaimed the channel so the transmission has
been interrupted, and 3) The allocated time,Nt, is over and
the transmission has been interrupted.



TABLE I. T RANSIENT STATES CHILDREN GENERATION.

% Compute child states of (i, j)

tmin = min(t) ∀ k ∈ {1, 2, . . . , K}

for k = 1, . . . , K

if i + tk ≤ Nt − tmin · (Np − j)
if (i + tk, j) /∈ S → S = S ∪ (i + tk, j)

end

if i + tk ≤ Nt − tmin · (Np − (j + 1))
if j + 1 < Np

if (i+tk, j+1) /∈ S → S = S∪(i+tk, j+1)
end

end

end

B. Actions or controls

The available actions are theK transmission rates. Each
action k ∈ {1, 2, . . . ,K} is associated with a frame error
probability, pk, and a frame durationtk.

C. States

We will relay on a simple example for an easier statement
of the problem. Let us consider that we intend to transmit 3
data packets,Np = 3, in not more than5 time slots,Nt = 5
and to do so we have available 2 different types of frames,
K = 2, with durations of 1 and 2 time slots,t = [1, 2],
and FERs,p1 and p2, p = [p1, p2]. Figure 4 shows the state
transitions diagram. The system states can be classified in
two types, transient states which are represented by labeled
ellipses, and final states which we represent with rounded
labeled squares. The arrows represent the possible transitions
between states. For clarity, transitions to terminal stateF1 are
not shown in figure 4 but are possible from any transitional
state regardless of the action being taken.

Transient States:Each transient state,(i, j), is described
by two parameters, the elapsed time since the PU liberated the
channel,0 ≤ i ≤ Nt, and the number of packets successfully
transmitted,0 ≤ j ≤ Np. Regarding the example in figure 4,
we can look at the transient states as if they were in aNp×Nt

grid. States in the same row share the same elapsed time,i,
while states in the same column share the same number of
successfully transmitted packets,j.

Notice that, given the time and number of packets restric-
tions as well as the available frames durations, not all the pairs
(i, j) are possible states. This leads to a finite state spaceS.
For instance, in our example, state(3, 0) is not a valid transient
state because it is not possible to transmit 3 packets when there
is only 2 time steps left.

Figure 5 shows all possible transitions from a given state
(i, j), the algorithm in Table I describes how the child states
of state(i, j) can be obtained. Beginning with state(0, 0), the
complete set of transient states can be generated recursively in
this manner.

Final States: We consider the following final states:

• Busy Channel (F1): A PU has accessed the channel,
the SU stops the transmission so it does not interfere
with the PU. All the previously transmitted packets
are considered to be lost.

i, j

i+ t1, j i+ t1, j + 1

i+ t2, j i+ t2, j + 1

i+ tK , j i+ tK , j + 1

F1

F2

S

Fig. 5. Possible transitions from state(i, j).

• Time-out (F2): Not all theNp packets have been (or
can be) transmitted before the time runs out. State
F1 groups all those(i, j) pairs in which time-out is
inevitable.

• Success (S): The Np packets have been successfully
transmitted within the allocated time.

The final states are absorbing, so once the system falls in a
final state it remains in it indefinitely. Notices that the setof
available actions may not be the same for all the states. In our
example, action 2 is not allowed in state(4, 2) because there is
not enough time available to take action 2. For a given transient
state only actions than can lead to another transient state or to
the successful state are allowed.

D. Transition Probabilities T

We denote the probability of transitioning from states to
states′ when actionk is perform byτ(s, s′, k) = Pr(s

′|s, k).

Transient States: From state(i, j) the following transi-
tions have to be considered (any other transition has probability
zero):

• If the channel remains idle, the transmission of a frame
of type k fails, and(i+ tk, j) ∈ S, then:

Pr((i+ tk, j)|(i, j), k) = β(tk · T |i · T )pk. (4)

On the other hand, if(i+ tk, j) /∈ S, then it means a
time-out is inevitable and therefore:

Pr(F2|(i, j), k) = β(tk · T |i · T )pk. (5)

• If a frame of typek is transmitted successfully and
the destination state(i+ tk, j + 1) ∈ S, then

Pr((i+tk, j+1)|(i, j), k) = β(tk·T |i·T )(1−pk). (6)

However, if j + 1 = Np, the destination state isS,
and therefore:

Pr(S|(i, j), k) = β(tk · T |i · T )(1− pk). (7)



• If the PU accesses the channel:

Pr(F1|(i, j), k) = 1− β(tk · T |i · T ) (8)

Final States: As its name implies, the only possible tran-
sition is to stay in the same state with probability 1 regardless
of the chosen action:

Pr(s|s, k) = 1, (9)

for s ∈ {F1, F2, S} andk ∈ {1, . . . ,K}.

E. Rewards R

Every time an actionk is perform, and, as a result a
transition between statess ands′ occurs, a rewardRt(s, s

′, k)
is received. The reward is 0 for all transitions except those
that reach the success state from the last column of the state
diagram,(i,Np−1), in such case, the assigned reward is 1. In
our example, only transitions from states (2,2), (3,2) and (4,2)
to S are rewarded with 1.

IV. SOLVING THE MARKOV DECISION PROCESS

Solving an MDP implies finding a policy for the decision
maker, in this case the SU link, a functionπ(s) that specifies
the action to be taken in each states. The goal is to find the
optimal policy,π(s)∗, that maximizes the cumulative reward
over a potentially infinite horizon of time steps. Associated
to a policy π(s), there is always a value function,V (s)π(s),
which is defined as the cumulative reward expected to be earn
when starting in states and following policyπ thereafter.

Solving an MDP is finding an optimal policyπ(s)∗, which
maximizesV (s) so V π(s)∗ ≥ V π for every state and for
any other possibleπ. The most common approach for solving
MDPs are the Dynamic Programing algorithms (DP). Among
this family of algorithms we chose value iteration, [10], for
our simulations.

In the previous section, we set all the rewards in our
model to 0 except those associated with transitions to final
stateS from nonterminal states, which were given 1. Under
this particular choice of rewards [10], the value function
V π(s) equals the probability of reaching stateS from state
s following policy π.

Going back to the example in figure 4, and, regarding that
the process always starts in state(0, 0), it is easy to see that
V ((0, 0)) is the probability of reachingS. When we obtain
the optimal policy, what we are really doing is maximizing
the value function and hence, the probability of reaching final
stateS.

V. PROBABILITY OF THE FINAL STATES

Our interest is on computing the probabilitiesPr(F1),
Pr(F2) and Pr(S) of reaching statesF1, F1 and S, after
theNt time steps for a general policy, and particularly for the
optimal one. To describe how this probabilities are computed
we will again relay on the example in figure 4. Traveling
column wise down and then right we associate an index to
each one of the transient states. For instance, state(0, 0) is
number 1 and state(4, 2) is state 9. We also index final states
F1, F1 andS as 10, 11 and 12 respectively.

Let Pπ denote the12 × 12 state transition probabilities
matrix whose entries areτπs→s′ = Pr(s′|s, π(s)) for a given
policy π:

Pπ =























0 τπ1→2 τπ1→3 · · · τπ1→F1 0 0

0 0 τπ2→3 · · · τπ2→F1 τπ2→F2 0

...
...

...
.. .

...
...

...
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1























(10)

Then, it is possible to compute the probability of being in each
one of the states after theNt time steps as:

[Pπ]
Nt =









0 0 · · · Pr(F1) Pr(F2) Pr(S)
0 0 · · · 0 0 0
...

...
. ..

...
...

...
0 0 · · · 0 0 0









(11)

The probabilities or reaching each one of the states after
the Nt time steps is given by the corresponding elements of
the first row of (11). Since we have a time limit ofNt time
steps, after that time the process can only be in one of the 3
final states.

VI. N UMERICAL RESULTS

In this section we present numerical results to illustrate
the performance of the optimal rate adaptation scheme. We
choose the GE channel access model in figure 3 (λ = 5, µ =
0.5ms andα = 0.5) and we considerK = 3 available rates.
The frame durations are4, 3 and 2ms (hencet = [4, 3, 2]
and T=1ms) and the corresponding frame error rates arep =
[0.001, 0.01, 0.3].

Figure 6 shows the probability of successful transmission
as a function of the number of packets that conform the file,
Np, assuming that the available time isTt = 120ms. The
probability is evaluated for theK = 3 possible stationary
policies, (always transmit the same type of frame) as well as
for the optimal policyπ∗. Clearly, the time restriction is very
loose, meaning that the probability of time-out (reaching state
F2) is, in practice 0, therefore, it behaves as if there were no
time restriction at all. For this reason it is enough to represent
only Pr(S) sincePr(F2) = 1 − Pr(S) in this case.We see
how the optimal policy behaves like the stationary policy 3,
this suggest that the optimal policy is stationary or at least
very close to stationary.

Next, we set a much more restrictive time limit,Tt =
60ms. In this case the restriction is tighter, specially for frame
types 1 and 2. Figure 7 shows the probabilitiesPr(F1),
Pr(F2) andPr(S) versus the number of packets. We can see
how the time restriction makes reachingS impossible with
stationary policies with frame types 1 or 2 forNp greater than
16 and 21 respectively. We can also see that now the optimal
policy is not stationary but it is still quite close to it.

To illustrate this fact we show a state-action diagram in
figure 8 for Np = 20 and Tt = 60ms. Each square in
the diagram represents a state of the MDP and it is colored
depending on the optimal type of frame according toπ(s)∗,
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the empty squares represent states that are not included in the
model. Figure 8 shows that the optimal policy is not stationary.
In [6] it was proven that memoryless channels occupancy
models, such us the exponential, lead to optimal policies that
are always stationary. In this work we generalize to more
complex models and we also include a time restriction, this
two changes lead to nonstationary optimal policies. However,
figure 7 shows that the stationary policyk = 3 achieves close
to optimal performance.

Finally, we study the effect ofTt value for a fixedNp =
20. Figure 9 shows the probabilitiesPr(F1), Pr(F2) and
Pr(S) as a function of the available timeTt between 30 and
90ms. Again, the optimal policy behaves only slightly better
than the best stationary policy. We have observed this kind of
behavior for a range of different channel occupancy models
with realistic parameters.

VII. C ONCLUSIONS

In this work we have study the rate adaptation problem
of SU links in hierarchical CR networks from a cross layer
perspective. We consider that the SU opportunistically accesses
the channel with the goal to transmit a given number of packets
in a given time during the sojourn time of the PU’s idle state.
Unlike other related works we have adopted a more general an
realistic channel access model. We consider that the probability
that the channel remains idle during the transmission of a frame
depends not only on the frame duration but also on the elapsed
time since the PU liberated the channel.

Numerical results showed that even thought the channel
memory induces not stationary policies, in practice, the actual
performance degradation is negligible. Therefore, we can con-
clude that in practice the problem is reduce to the selectionof
the best stationary policy.

Stationary policies have an additional advantage, it is not
necessary to solve the MDP problem and it is possible to
obtain a close form expression to computePr(S), Pr(F2)
andPr(F2).

We have also show how the time restriction can influence
the system behavior, non the less, the optimal policy perfor-
mance remains close to the best stationary policy.
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