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Abstract—Dynamic Spectrum Access is a key capability of
Cognitive Radio (CR) networks to increase the efficiency in the
use of the available spectrum resources. In this respect, this
paper focuses on the spectrum selection problem when a number
of radio links has to be established in a CR network to support
applications with different bit rate requirements. A novel
strategy based on a Partially Observable Markov Decision
Process (POMDP) is proposed, whose target is to maximize a
reward function that reflects the suitability of the available
spectrum blocks to the application requirements. The proposed
strategy combines partial observations of the interference state in
the different spectrum blocks together with a statistical
characterization of the interference dynamics. Thanks to this
feature, the performance comparison of the algorithm against
different reference strategies reveals that it achieves a very
similar performance than a strategy operating under full
knowledge of the real interference state of all the spectrum
blocks, while at the same time it has much less requirements in
terms of measurement needs and associated signaling.

Keywords-spectrum selection; Partially Observable Markov
Decision Process (POMDP)

L INTRODUCTION

Spectrum management is defined as the process of
developing and executing policies, regulations, procedures,
and techniques used to allocate, assign, and authorize
frequencies in the radio spectrum to specific services and
users. Regulatory bodies at international, European and
national levels are actively working towards efficient and
flexible spectrum regulation by fostering technology and
service neutral spectrum management, spectrum trading and
promotion of collective use of spectrum as well as shared use
of spectrum [1]. In such regulatory framework, spectrum
usage efficiency can be enhanced through the combination of
Dynamic Spectrum Access (DSA) and CR (Cognitive Radio)
technology [2][3]. CR has emerged as an intelligent radio that
automatically adjusts its behavior based on the active
monitoring of its environment. In that respect, spectrum
selection refers to choosing the most appropriate portion of
radio electrical spectrum to be used in DSA/CR
communication systems. Several research works have
addressed the spectrum selection problem highlighting the
importance of having efficient decision-making criteria. Some
of these works rely on databases that record historical
information about the occupation in the different channels
[4][5]. This type of information can be used to build predictive
models on spectrum availability [6]. In [7] an adaptive

spectrum decision framework is presented taking into account
different type of applications while in [8] a radio resource
management method using both long and short term history
information is analysed. Finally, in [9] the use of
reinforcement learning for the detection of spectral resources
in a multi-band CR scenario was investigated.

In order to perform an efficient spectrum selection, the
cognitive cycle paradigm that includes observation, analysis,
decision and action is exploited in this paper. The observation
of the radio environment and the analysis of such observations
will lead to acquire knowledge about the state of the potential
spectrum blocks that can be selected (e.g. the amount of
measured interference, their occupation, etc.) as well as their
dynamic behavior (e.g. how the interference changes with
time). Observations of the radio environment typically involve
making measurements at the terminal side and reporting back
to the infrastructure side, then resulting very costly in terms of
signaling overhead, battery consumption, etc. Consequently,
decision-making strategies able to efficiently operate with the
minimum amount of measurements would be of high interest.
In this respect, Partially Observable Markov Decision
Processes (POMDPs) [10] become a powerful decision
making tool since they allow achieving an optimized
performance by combining observations at specific periods of
time with a statistical characterization of the system dynamics.
Some works in the literature have used POMDPs in similar
contexts. In [11] an opportunistic spectrum access approach to
channels that can be either busy or idle is proposed, assuming
a single unlicensed user. In [12] the problem was extended to a
multi-user scenario through a collaborative approach in which
users need to exchange information about their belief vectors
at each time slot to generate consistent actions.

In this framework, this paper proposes an algorithm that
enables an efficient spectrum selection in the presence of
external interference variations in different candidate spectrum
blocks. The proposed solution considers a centralized entity,
which is in charge of deciding the appropriate spectrum block
to be assigned to a number of radio links intended to support
different applications with specific bit rate requirements. The
problem is formulated as a POMDP in which the agent
responsible for the spectrum selection decisions does not have
a full knowledge about the state of all the available spectrum
portions, but it relies only on observations at some instants.

The contributions of this paper and novelties with respect
to previous works in this area can be summarized as follows:
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(i) a POMDP framework for multi-band spectrum selection is
presented that, as a difference from previous works, such as
[11][12], does not rely only on binary (i.e., idle/occupied)
measurements but it considers a generalization in which the
temporal variation of each spectrum block is able to capture
different degrees of interference; (ii) the proposed framework
inherently considers heterogeneity of the requirements for the
different users accessing the spectrum, so that not all the
channels are equally appropriate depending on application
needs; (iii) the proposed framework captures the multi-user
perspective in a centralized way hence having a single
decision making point and avoiding the inter-terminal
information exchange required in other collaborative
decentralized approaches such as [12].

The rest of the paper is organized as follows: in Section II
the system model is described and the considered spectrum
selection problem is formulated as a POMDP, presenting the
corresponding spectrum selection policy. Section III presents
the considered simulation model to evaluate the proposed
approach. Results are presented in Section IV. Finally, Section
V points out concluding remarks and future works.

II.  SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 illustrates the system model together with the
functional entities related with the spectrum selection problem
considered in this paper. The system is characterized by a set
of links j=1,..,L each one intended to support data
transmission between a pair of terminals and/or infrastructure
nodes. The radio link j will be characterized by a required bit
rate R,.,; The different links are controlled by a centralized
management entity residing at the infrastructure side.

The potential spectrum to be assigned to the different radio
links is organized in a set of i=1,..., M spectrum blocks. Each
one is characterized by a central frequency and a certain
bandwidth. From a general perspective, the spectrum blocks
can belong to different spectrum bands subject to different
interference conditions.

The available bit rate for the j-th link in the i-th spectrum
block R;; will depend on both the propagation conditions
between the j-th link transmitter and receiver as well as on the
interference experienced by the receiver in the i-th block.
Then, the spectrum selection problem considered here consists
in performing an efficient allocation of the spectrum blocks to
the radio links by properly matching the bit rate requirements
with the achievable bit rate in each spectrum block.

As illustrated in Fig. 1, the spectrum selection decision
making is executed in a centralized entity in the infrastructure
node that controls the existing links in the network. The overall
process follows the steps of the classical cognitive cycle, in
which the spectrum selection decisions are supported by the
information stored in a Knowledge Database (KD) that
includes the knowledge resulting from the analysis of the
measurements (observations) made on the different spectrum
blocks. Decisions made are translated into actions to configure
the existing links with the corresponding spectrum allocation.

The considered interference model denotes as
L i(t)=I4x; i 0i(t) the interference spectral density measured by
the receiver of the j-th link in the i-th spectrum block at a

given time due to other external transmitters (i.e. outside the
control of the decision making entity). In order to capture that
interfering sources may exhibit time-varying characteristics,
o(?) is a spectrum block-specific term between 0 and 1 (i.e.
o{(f)=0 when no interference exists and o;(f)=1 when the
interference reaches its maximum value /4, ).
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Figure 1. System Model.

For modeling purposes, it is considered that the set of
possible values of oy(¢) is translated into a discrete set of
interference states Si(¢)e{0,1,..., K} where state Si(t)=k
corresponds to o;.1<c(f)<o; for k>0 and to oi(f)=0y=0 for
k=0. Note also that ox=1. The system state at time ¢ is then
given by the M-column vector S(t)=[S«(?)].

Moreover, assuming that the state of each spectrum block
remains the same for a period At, the interference evolution for
the i-th block is modeled as a discrete-time Markov process
with the state transition probability from state k to &” given by:

Dy =Pr[S[(t+At)=k'|S/.(t)=k] (D

It is assumed that the state of the i-th spectrum block Si(¢)
evolves independently from the other blocks, and that the state
evolution is independent from the assignments made by the
spectrum selection algorithm.

The execution of the spectrum selection decision-making
algorithm results into actions corresponding to the allocation
of spectrum blocks to the different radio links. The action
made for link j at time ¢ is denoted as a/(f)e{l,..., M} and
corresponds to the selected spectrum block among those
currently available (i.e. not allocated to other links). It is
assumed that an action is taken for a given link at any time
that a data transmission session is initiated on this radio link.

As a consequence of the different actions and resulting
spectrum block assignments, each radio link with a data
session in course (i.e., an active link) will obtain a reward that
measures the obtained performance depending on the
interference state of the spectrum block at each time. Then, let

denote 7. .
Ji,S;

using its allocated spectrum block i and the interference state
is S(f). The total system reward T(?) is then given by the sum
of rewards of all the active links at time z.

(1) the reward that the j-th link gets at time # when

As a general target, the spectrum selection decision making
should follow the optimal policy that maximizes the



performance in terms of the expected long-term total system
reward Tx(f) accumulated over a certain time horizon tending
to infinity. For this purpose, the decision-making entity would
ideally need to know the actual interference state of all the
spectrum blocks at time ¢. However, this would impact in
terms of increasing signaling overheads and battery
consumption to perform all the required observations (i.e.,
measurements) and report them to the decision-making entity.
To overcome this issue, this paper proposes to make the
decisions based on a statistical characterization of the
interference state of the different spectrum blocks rather than
on actual exhaustive observations. In the proposed solution,
observations about the interference state of the spectrum
blocks are carried out only at specific time instants defined
according to a certain observation strategy. In this case, due to
the partial knowledge that the decision making process has
about the actual interference state of the spectrum blocks, the
spectrum selection process can be modeled as a POMDP and
the statistical characterization of the spectrum blocks at time ¢
is given in terms of the so-called belief vector Y(t)=[b; (1]
where component b;,(¢) is the probability that the i-th block
will be in state S{#)=k at time ¢.

In a POMDP the complexity associated to finding the
optimal policy that maximizes the expected long-term system
reward is usually prohibitive, mainly because the number of
states (K+1)" grows exponentially with the number of
spectrum blocks. Consequently, this paper proposes to use
instead the so-called Myopic Policy that maximizes the
immediate system reward Tg(z+A¢). It is worth mentioning that
myopic policies have been found in some works to be optimal
under certain conditions [13]. More specifically, considering
that the spectrum block selection is made in time ¢ for just one
link j and among the set of available blocks so the selection
will not impact on the immediate reward of any other link, the
myopic spectrum selection policy becomes:

a,(t)=arg Joax E[TR (¢+ At)] =arg max, E[rj s (HN)} ()

WS

i available i available

The expected reward E [rj,,,.,s‘m A[Jis computed using the

belief vector values at time ¢ and the state transition
probabilities that the spectrum block i is in state & at time ¢ and
jumps to state £’ in the next period ++Atz. Then, the decision
policy is formulated as:

K K
a; (t) =arg ,.51,111371‘4} by (t) z Prs T 3)
i available =0 k=0

The reward is a metric between 0 and 1 capturing how
suitable the i-th spectrum block is for the j-th radio
link/application, depending on the bit rate that can be achieved
in this block with respect to the bit rate required by the
application R,.,,;. Based on the formulation defined in [14], the
reward function considered in this paper is given by:

r.('//.hk
(5’1)1 ;(R/-t.k /R,.(,(N)
l1-e
ik = 2 @)
where R;;, denotes the achievable bit rate by the j-th link
in the i-th spectrum block given that it is in state k. The

relationship between achievable bit rate and interference state
is a decreasing function assumed to be known for each link.
U« 1s the following utility function that relates the achievable
and the required bit rates:

(&R, /R,)
1+(&=1){R 4 /R, ;)
I" and & are shaping parameters to capture different degrees

of elasticity with respect to the bit rate requirements and A is a
normalization factor given by:

&)

Joik

r
- 1/¢ (1-8)/¢
A=l-e & (6)

The proposed formulation of the reward function 7;;;
increases with the available bit rate R;;; up to the maximum at
R, and then it starts to smoothly decrease reflecting that it

becomes less efficient from a system perspective to have an
available bit rate much higher than the required one.

Based on all the above, the implementation of the spectrum
selection decision making following (3) requires that the KD
in Fig. 1 stores the state transition probabilities for the

different spectrum blocks p;{ > the values of the reward 7,

that the different radio links can obtain in each spectrum block
for each interference state, and the belief vector values b; x(¢).

Concerning p,i pand 7, they could in practice be

obtained based on some initial acquisition mechanisms
including measurements of the different links and spectrum
blocks. The details on how to perform this acquisition as well
as the capability to update the stored values whenever relevant
changes are detected are out of the scope of this paper. Just as
a reference, some previous works that have addressed the
dynamic acquisition of unknown transition probabilities in
POMDP systems are [15][16].

Concerning the belief vector values b;(?), they should be
dynamically updated with time resolution Af in accordance
with the discrete-time Markov process that models the
interference state in each spectrum block. To perform this
update, the knowledge about the real interference of the
spectrum blocks obtained through observations (i.e.
measurements) performed at certain time instants can be
exploited to obtain a more accurate estimation of the
probability that the i-th block will be in state & at a later time.
More precisely, let define as o/¢) the observation made at time
t in the spectrum block i. This observation provides the actual
interference state of the spectrum block, that is o,(¢)=k. Using
the available observations o,(f), the values of b, ;(¢) are updated
for all the spectrum blocks every At as follows:

P if (0, (1) = k)
b (t+At)=4% . ™

> phi-b,(t) otherwise

n=0

The first condition in (7) corresponds to the spectrum
blocks for which an observation is performed at time ¢
providing the actual interference state of the spectrum block
(i.e. 0; (f)=k). Then, the probability b;;(z+Af) that spectrum



block i will be in state k£’ in the next time period #+A¢ is simply
given by the state transition probability p]i - In turn, the

second condition in (7) corresponds to those spectrum blocks
for which no observation has been performed at time ¢. In this
case, the actual interference state is not known and thus the
value b, (t+At) is computed probabilistically from the belief
values b; ,(f) and the state transition probabilities to state k.

According to the above, an observation strategy is required
to determine the time instants in which the observations of the
different spectrum blocks are carried out. In the context of this
paper, it is assumed that observations are executed
periodically every T, for all spectrum blocks.

It is worth mentioning that this paper assumes that the
network operates in a stationary environment, so that the
values of the state transition probabilities and the rewards for
the different links/spectrum blocks do not change. In case of
non-stationary environments, some additional mechanisms
would be needed to detect that the operational conditions of
the network have changed and to trigger the necessary
acquisition mechanisms to obtain the new values of these
parameters. However, such mechanisms are out of the scope
of this paper and are left for future work.

III. EVALUATION SCENARIO

This section describes the specific scenario and simulation
assumptions that have been considered to evaluate the
performance achieved by the proposed algorithm.

A. Simulation parameters

A set of M = 5 spectrum blocks have been considered.
Blocks B1 and B5 belong to the ISM band at 2.4 GHz with
bandwidth 20 MHz. Spectrum blocks B2, B3 and B4 belong to
the white spaces in the TV band operated opportunistically at
frequencies 400, 800 and 600 MHz, respectively. Their
bandwidths are 16, 24 and 16 MHz, respectively.

Three different interference states are considered for the
five spectrum blocks. The average durations of these states for
each spectrum block are presented in Table I.

TABLE L. DURATIONS OF THE INTERFERENCE STATES FOR THE
DIFFERENT SPECTRUM BLOCKS
State Bl B2 B3 B4 B5
S=0 40 min 4 min 4 min 40 min 32 min
S=1 12 min 4 min 12 min 4 min 4 min
S=2 12 min 40 min 24 min 12 min 4 min

A set of L = 3 links is considered in the evaluation. Each
link generates sessions whose duration is exponentially
distributed with average 7=30 s. The time between the end of a
session and the beginning of the next one is also exponentially
distributed with average T, varied in different simulations.
The bit rate requirement for the link 1 is Ry, ;=200 Mb/s, while
for links 2 and 3 it iS R,er= Ry, 3=100 Mb/s. Table II presents
the values of the achievable bit rates R;;; and associated
rewards 7;, for each link in the different spectrum blocks and
interference states. Parameters I'=1 and &=5 have been
considered to compute the reward.

The periodicity 7,,, between observations in the POMDP-

based approach is varied in the different simulations.
Performance has been obtained with the simulator operating in
steps of A=1 s during Ts;,~604800 time steps.

TABLE II. BIT RATES (MB/S) AND REWARD VALUES OF THE LINKS IN
THE DIFFERENT SPECTRUM BLOCKS
Link Spectrum State S;=0 State S;=1 State S;=2
Block Riio | Tiio | Riia | Fiia | Riia | T2
Bl 264 | 092 | 150 | 0.85 87 0.21
B2 297 |1 0.86 | 246 | 0.95 87 0.21
1 B3 365 | 0.74 | 308 | 0.84 73 0.11
B4 281 0.89 | 228 | 0.98 70 0.10
B5 264 | 0.92 69 0.09 20 0.00
Bl 145 | 0.87 40 0.16 8 0.00
B2 204 | 0.68 151 0.85 12 0.00
2,3 B3 263 | 0.55 184 | 0.68 6 0.00
B4 185 | 0.73 132 | 0.92 6 0.00
B5 145 | 0.87 4 0.00 | 0.45 | 0.00

B. Benchmarking

The performance of the proposed POMDP-based approach
following selection policy of (3) has been compared against
the following reference strategies:

o Full Observation spectrum selection algorithm (FO). This
algorithm performs an observation of the actual
interference state Si(¢) for all the available spectrum blocks
(i.e. those that are not allocated to any link) whenever a
new link establishment is required. Then, the spectrum
block that provides the highest reward is allocated, that is:

a.(t)=arglmax r, ®)

J iell,..a) JSi0)
i available

o Steady state probabilities-based spectrum selection
algorithm (PR). This algorithm makes the decisions based
on static information stored in the database about the
statistic behavior of the different spectrum blocks. This is

captured by means of the steady state probabilities 7Zf;that

measure the probability that the spectrum block i will be in
state k. The decision policy is then formulated in a similar
way as for the POMDP-based algorithm in (3) but with the

static values of 7Z',’( instead of the dynamic values of the
belief vector, that is:

K

a. (t)=arg max
/( ) gie{l,...,M}
i available

K
7, z pll(,k' Tiik ©)
0 k=0

k=

e Random spectrum selection algorithm. In this case,
whenever a new link has to be established, the spectrum
block is selected randomly among those that are not
currently allocated to any other link.

C. Key Performance Indicators (KPIs)

The assessment of the proposed framework has been
carried out in terms of the following KPIs:

e Average satisfaction probability: It is the fraction of time
that the established sessions in the links achieve a bit rate
higher or equal than the requirement R, ;. The result is the
average for all the links along the total simulation time.



e Average system reward: It is the reward obtained by the
active links depending on their allocated spectrum blocks
and corresponding interference state averaged along the
total simulation time Ty, The result is averaged for all the
L links, that is:

1 L
Ty e =—
e L jZl:rch (1) t=1

link j active at t

1 Tsing

. (10)

_/',i‘S,v(t)

where Tc1(j) represents the total number of simulation time
steps in which the j-th link has been active.

e Observation rate: It is the average number of observations
per second that are performed to determine the interference
state of the different spectrum blocks. This KPI is only
applicable to FO and POMDP algorithms, while PR and
Random strategies do not require observations of the
system during their operation.

IV. PERFORMANCE EVALUATION RESULTS

The performance of the different algorithms in terms of
average reward and satisfaction probability is presented in Fig.
2 and Fig. 3, respectively, as a function of the observation
period T, that is a key parameter of the POMDP-based
spectrum selection algorithm (hence, the selected 7, values do
not affect the performance of the other strategies). 7},,,=10 s is
considered in these results. As it can be observed, the
performance obtained by the POMDP-based algorithm is a
decreasing function of the observation period 7. In particular,
for low values of T, the reward and the satisfaction
probabilities are very similar to the ones obtained by the FO
strategy that has a perfect knowledge of the different spectrum
blocks. However, this similar performance is achieved by the
POMDP with much less requirements in terms of observations,
as it can be noticed in Fig. 4 that depicts the observation rate as
a function of T, for both FO and POMDP algorithms. For
instance, when T, is 60 s, POMDP achieves a reduction of
around 68% with respect to FO in terms of observation rate,
while the performance of POMDP in terms of reward and
satisfaction probability is only about 3% smaller than the
performance achieved by FO. Further reductions in terms of
observation rate can be achieved when increasing 7, as seen
in Fig. 4.

Concerning the comparison against the PR algorithm, it can
be observed in both Fig. 2 and Fig. 3 that for low values of the
observation period, POMDP achieves a significant
improvement in both the reward and the satisfaction (e.g. for
T,5=60 s there is an improvement of 32%). Then, for large
values of T, the performance of both PR and POMDP tends to
converge to similar values. The reason is that the dynamic
update of the belief vector values for the POMDP-based
algorithm according to (7) tends to converge towards the steady
state probabilities when there are very large periods without
any observations, that is b (t)> 7} for T,,—>o0.

Consequently, in such a case the decision making criteria of
POMDP and PR given by (3) and (9) become the same.

Finally, focusing now on the comparison against the
Random algorithm, it can be observed in Fig. 2 and Fig. 3 that
POMDP achieves a very significant improvement in terms of

both reward and satisfaction probability, in the order of 43%
and 46%, respectively, for the case of T,,=60 s.
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Fig. 5 and Fig. 6 present the impact of varying the time T,
between the end of a session and the beginning of the next one,
in terms of average reward and observation rate, respectively,
for all the considered algorithms. For the POMDP-based
algorithm, T,,~60 s and T,,~180 s are considered. It can be
observed in Fig. 5 that the reward tends to increase with T,
for all the strategies and that the reward obtained by the



POMDP strategy is still very close to the one achieved by FO,
while requiring a much lower observation rate as seen in Fig. 6.
Moreover, the POMDP allows still obtaining a significant
improvement with respect to PR and Random algorithms for
both values of T,.
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V. CONCLUSIONS

In this paper a novel POMDP-based framework for
spectrum selection in wireless cognitive radio networks has
been presented. The proposed framework operates in a
centralized way making use of the knowledge stored in a
database that contains the statistical characterization of the
interference variations existing in the available spectrum
blocks. The proposed approach inherently considers
heterogeneity in the bit rate requirements of the applications to
be established by maximizing a reward function that considers
the different suitability of each spectrum block to each radio
link/application. To highlight the efficiency of the proposed
approach, a comparison has been performed against different
references. It has been obtained that the proposed POMDP-
based algorithm allows obtaining similar performance in terms
of reward and satisfaction as the full observation scheme that
makes decisions based on knowing the real interference state in
all the available spectrum blocks, in spite of requiring a much
lower measurement rate since only partial observations of the
system at specific time instants are carried out. In addition it
achieves a significant performance gain in terms of reward with
respect to a random spectrum selection and to a strategy that
makes decisions based on static knowledge of the spectrum
block statistics.

Based on the promising results obtained, future work will
deal with performing a further optimization of the observation
strategy, with the inclusion of spectrum handover mechanisms
in the proposed approach and with the development of
strategies for dynamically acquiring and maintaining the state
transition probability values stored in the knowledge database.
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