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Abstract—Dynamic Spectrum Access is a key capability of 
Cognitive Radio (CR) networks to increase the efficiency in the 
use of the available spectrum resources. In this respect, this 
paper focuses on the spectrum selection problem when a number 
of radio links has to be established in a CR network to support 
applications with different bit rate requirements. A novel 
strategy based on a Partially Observable Markov Decision 
Process (POMDP) is proposed, whose target is to maximize a 
reward function that reflects the suitability of the available 
spectrum blocks to the application requirements. The proposed 
strategy combines partial observations of the interference state in 
the different spectrum blocks together with a statistical 
characterization of the interference dynamics. Thanks to this 
feature, the performance comparison of the algorithm against 
different reference strategies reveals that it achieves a very 
similar performance than a strategy operating under full 
knowledge of the real interference state of all the spectrum 
blocks, while at the same time it has much less requirements in 
terms of measurement needs and associated signaling. 

Keywords-spectrum selection; Partially Observable Markov 
Decision Process (POMDP) 

I.  INTRODUCTION 

Spectrum management is defined as the process of 
developing and executing policies, regulations, procedures, 
and techniques used to allocate, assign, and authorize 
frequencies in the radio spectrum to specific services and 
users. Regulatory bodies at international, European and 
national levels are actively working towards efficient and 
flexible spectrum regulation by fostering technology and 
service neutral spectrum management, spectrum trading  and 
promotion of collective use of spectrum as well as shared use 
of spectrum [1]. In such regulatory framework, spectrum 
usage efficiency can be enhanced through the combination of 
Dynamic Spectrum Access (DSA) and CR (Cognitive Radio) 
technology [2][3]. CR has emerged as an intelligent radio that 
automatically adjusts its behavior based on the active 
monitoring of its environment. In that respect, spectrum 
selection refers to choosing the most appropriate portion of 
radio electrical spectrum to be used in DSA/CR 
communication systems. Several research works have 
addressed the spectrum selection problem highlighting the 
importance of having efficient decision-making criteria. Some 
of these works rely on databases that record historical 
information about the occupation in the different channels 
[4][5]. This type of information can be used to build predictive 
models on spectrum availability [6]. In [7] an adaptive 

spectrum decision framework is presented taking into account 
different type of applications while in [8] a radio resource 
management method using both long and short term history 
information is analysed. Finally, in [9] the use of 
reinforcement learning for the detection of spectral resources 
in a multi-band CR scenario was investigated.  

In order to perform an efficient spectrum selection, the 
cognitive cycle paradigm that includes observation, analysis, 
decision and action is exploited in this paper. The observation 
of the radio environment and the analysis of such observations 
will lead to acquire knowledge about the state of the potential 
spectrum blocks that can be selected (e.g. the amount of 
measured interference, their occupation, etc.) as well as their 
dynamic behavior (e.g. how the interference changes with 
time). Observations of the radio environment typically involve 
making measurements at the terminal side and reporting back 
to the infrastructure side, then resulting very costly in terms of 
signaling overhead, battery consumption, etc. Consequently, 
decision-making strategies able to efficiently operate with the 
minimum amount of measurements would be of high interest. 
In this respect, Partially Observable Markov Decision 
Processes (POMDPs) [10] become a powerful decision 
making tool since they allow achieving an optimized 
performance by combining observations at specific periods of 
time with a statistical characterization of the system dynamics. 
Some works in the literature have used POMDPs in similar 
contexts. In [11] an opportunistic spectrum access approach to 
channels that can be either busy or idle is proposed, assuming 
a single unlicensed user. In [12] the problem was extended to a 
multi-user scenario through a collaborative approach in which 
users need to exchange information about their belief vectors 
at each time slot to generate consistent actions.  

In this framework, this paper proposes an algorithm that 
enables an efficient spectrum selection in the presence of 
external interference variations in different candidate spectrum 
blocks. The proposed solution considers a centralized entity, 
which is in charge of deciding the appropriate spectrum block 
to be assigned to a number of radio links intended to support 
different applications with specific bit rate requirements. The 
problem is formulated as a POMDP in which the agent 
responsible for the spectrum selection decisions does not have 
a full knowledge about the state of all the available spectrum 
portions, but it relies only on observations at some instants.  

The contributions of this paper and novelties with respect 
to previous works in this area can be summarized as follows: 
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performance in terms of the expected long-term total system 
reward TR(t) accumulated over a certain time horizon tending 
to infinity. For this purpose, the decision-making entity would 
ideally need to know the actual interference state of all the 
spectrum blocks at time t. However, this would impact in 
terms of increasing signaling overheads and battery 
consumption to perform all the required observations (i.e., 
measurements) and report them to the decision-making entity. 
To overcome this issue, this paper proposes to make the 
decisions based on a statistical characterization of the 
interference state of the different spectrum blocks rather than 
on actual exhaustive observations. In the proposed solution, 
observations about the interference state of the spectrum 
blocks are carried out only at specific time instants defined 
according to a certain observation strategy. In this case, due to 
the partial knowledge that the decision making process has 
about the actual interference state of the spectrum blocks, the 
spectrum selection process can be modeled as a POMDP and 
the statistical characterization of the spectrum blocks at time t 
is given in terms of the so-called belief vector (t)=[bi,k(t)] 
where component bi,k(t) is the probability that the i-th block 
will be in state Si(t)=k at time t.    

In a POMDP the complexity associated to finding the 
optimal policy that maximizes the expected long-term system 
reward is usually prohibitive, mainly because the number of 
states (K+1)M grows exponentially with the number of 
spectrum blocks. Consequently, this paper proposes to use 
instead the so-called Myopic Policy that maximizes the 
immediate system reward TR(t+Δt). It is worth mentioning that 
myopic policies have been found in some works to be optimal 
under certain conditions [13]. More specifically, considering 
that the spectrum block selection is made in time t for just one 
link j and among the set of available blocks so the selection 
will not impact on the immediate reward of any other link, the 
myopic spectrum selection policy becomes: 

 
 

 
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The expected reward  , , ij i S t tE r 
 
  is computed using the 

belief vector values at time t and the state transition 
probabilities that the spectrum block i is in state k at time t and 
jumps to state k’ in the next period t+∆t. Then, the decision 
policy is formulated as: 
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The reward is a metric between 0 and 1 capturing how 
suitable the i-th spectrum block is for the j-th radio 
link/application, depending on the bit rate that can be achieved 
in this block with respect to the bit rate required by the 
application Rreq,j. Based on the formulation defined in [14], the 
reward function considered in this paper is given by: 
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where Rj,i,k denotes the achievable bit rate by the j-th link 
in the i-th spectrum block given that it is in state k. The 

relationship between achievable bit rate and interference state 
is a decreasing function assumed to be known for each link. 
Uj,i,k is the following utility function that relates the achievable 
and the required bit rates: 
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 and  are shaping parameters to capture different degrees 
of elasticity with respect to the bit rate requirements and  is a 
normalization factor given by: 
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The proposed formulation of the reward function rj,i,k 
increases with the available bit rate Rj,i,k up to the maximum at 

,req jR and then it starts to smoothly decrease reflecting that it 

becomes less efficient from a system perspective to have an 
available bit rate much higher than the required one.    

Based on all the above, the implementation of the spectrum 
selection decision making following (3) requires that the KD 
in Fig. 1 stores the state transition probabilities for the 

different spectrum blocks , '
i
k kp , the values of the reward rj,i,k 

that the different radio links can obtain in each spectrum block 
for each interference state, and the belief vector values bi,k(t). 

Concerning , '
i
k kp and rj,i,k, they could in practice be 

obtained based on some initial acquisition mechanisms 
including measurements of the different links and spectrum 
blocks. The details on how to perform this acquisition as well 
as the capability to update the stored values whenever relevant 
changes are detected are out of the scope of this paper. Just as 
a reference, some previous works that have addressed the 
dynamic acquisition of unknown transition probabilities in 
POMDP systems are [15][16]. 

Concerning the belief vector values bi,k(t), they should be 
dynamically updated with time resolution ∆t in accordance 
with the discrete-time Markov process that models the 
interference state in each spectrum block. To perform this 
update, the knowledge about the real interference of the 
spectrum blocks obtained through observations (i.e. 
measurements) performed at certain time instants can be 
exploited to obtain a more accurate estimation of the 
probability that the i-th block will be in state k at a later time. 
More precisely, let define as oi(t) the observation made at time 
t in the spectrum block i. This observation provides the actual 
interference state of the spectrum block, that is oi(t)=k. Using 
the available observations oi(t), the values of bi,k(t) are updated 
for all the spectrum blocks every t as follows: 
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(7) 

 

The first condition in (7) corresponds to the spectrum 
blocks for which an observation is performed at time t 
providing the actual interference state of the spectrum block 
(i.e. oi (t)=k). Then, the probability bi,k’(t+∆t) that spectrum 



block i will be in state k’ in the next time period t+∆t is simply 

given by the state transition probability , '
i
k kp . In turn, the 

second condition in (7) corresponds to those spectrum blocks 
for which no observation has been performed at time t. In this 
case, the actual interference state is not known and thus the 
value bi,k’(t+∆t) is computed probabilistically from the belief 
values bi,n(t) and the state transition probabilities to state k’. 

According to the above, an observation strategy is required 
to determine the time instants in which the observations of the 
different spectrum blocks are carried out. In the context of this 
paper, it is assumed that observations are executed 
periodically every Tobs for all spectrum blocks.  

It is worth mentioning that this paper assumes that the 
network operates in a stationary environment, so that the 
values of the state transition probabilities and the rewards for 
the different links/spectrum blocks do not change. In case of 
non-stationary environments, some additional mechanisms 
would be needed to detect that the operational conditions of 
the network have changed and to trigger the necessary 
acquisition mechanisms to obtain the new values of these 
parameters. However, such mechanisms are out of the scope 
of this paper and are left for future work. 

III. EVALUATION SCENARIO 

This section describes the specific scenario and simulation 
assumptions that have been considered to evaluate the 
performance achieved by the proposed algorithm. 

A. Simulation parameters 

A set of M = 5 spectrum blocks have been considered. 
Blocks B1 and B5 belong to the ISM band at 2.4 GHz with 
bandwidth 20 MHz. Spectrum blocks B2, B3 and B4 belong to 
the white spaces in the TV band operated opportunistically at 
frequencies 400, 800 and 600 MHz, respectively. Their 
bandwidths are 16, 24 and 16 MHz, respectively. 

Three different interference states are considered for the 
five spectrum blocks. The average durations of these states for 
each spectrum block are presented in Table I. 

TABLE I.  DURATIONS OF THE INTERFERENCE STATES FOR THE 
DIFFERENT SPECTRUM BLOCKS 

State B1 B2 B3 B4 B5 
Si=0  40 min 4 min 4 min 40 min 32 min 
Si=1 12 min 4 min 12 min 4 min 4 min 
Si=2 12 min 40 min 24 min 12 min 4 min 

A set of L = 3 links is considered in the evaluation. Each 
link generates sessions whose duration is exponentially 
distributed with average T=30 s. The time between the end of a 
session and the beginning of the next one is also exponentially 
distributed with average Tinter varied in different simulations. 
The bit rate requirement for the link 1 is Rreq,1=200 Mb/s, while 
for links 2 and 3 it is  Rreq,2= Rreq,3=100 Mb/s. Table II presents 
the values of the achievable bit rates Rj,i,k and associated 
rewards rj,i,k for each link in the different spectrum blocks and 
interference states. Parameters =1 and =5 have been 
considered to compute the reward. 

The periodicity Tobs between observations in the POMDP-

based approach is varied in the different simulations. 
Performance has been obtained with the simulator operating in 
steps of ∆t=1 s during TSIM=604800 time steps. 

TABLE II.  BIT RATES (MB/S) AND REWARD VALUES OF THE LINKS IN 
THE DIFFERENT SPECTRUM BLOCKS 

Link 
Spectrum 

Block 
State Si=0 State Si=1 State Si=2 

Rj,i,0 r j,i,0 Rj,i,1 r j,i,1 Rj,i,2 r j,i,2 

1 

B1 264 0.92 150 0.85 87 0.21 
B2 297 0.86 246 0.95 87 0.21 
B3 365 0.74 308 0.84 73 0.11 
B4 281 0.89 228 0.98 70 0.10 
B5 264 0.92 69 0.09 20 0.00 

2, 3 

B1 145 0.87 40 0.16 8 0.00 
B2 204 0.68 151 0.85 12 0.00 
B3 263 0.55 184 0.68 6 0.00 
B4 185 0.73 132 0.92 6 0.00 
B5 145 0.87 4 0.00 0.45 0.00 

B. Benchmarking 

The performance of the proposed POMDP-based approach 
following selection policy of (3) has been compared against 
the following reference strategies: 

 Full Observation spectrum selection algorithm (FO). This 
algorithm performs an observation of the actual 
interference state Si(t) for all the available spectrum blocks 
(i.e. those that are not allocated to any link) whenever a 
new link establishment is required. Then, the spectrum 
block that provides the highest reward is allocated, that is:  
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   , ,1,...,
 available

arg max
ij j i S ti M

i

a t r

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(8)

 

 Steady state probabilities-based spectrum selection 
algorithm (PR). This algorithm makes the decisions based 
on static information stored in the database about the 
statistic behavior of the different spectrum blocks. This is 

captured by means of the steady state probabilities 
i
k that 

measure the probability that the spectrum block i will be in 
state k. The decision policy is then formulated in a similar 
way as for the POMDP-based algorithm in  (3) but with the 

static values of 
i
k  instead of the dynamic values of the 

belief vector, that is: 
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i M
k ki
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(9)

 

 Random spectrum selection algorithm. In this case, 
whenever a new link has to be established, the spectrum 
block is selected randomly among those that are not 
currently allocated to any other link.  

C. Key Performance Indicators (KPIs) 

The assessment of the proposed framework has been 
carried out in terms of the following KPIs: 

 Average satisfaction probability: It is the fraction of time 
that the established sessions in the links achieve a bit rate 
higher or equal than the requirement Rreq,j. The result is the 
average for all the links along the total simulation time.  



 Average system reward: It is the reward obtained by the 
active links depending on their allocated spectrum blocks 
and corresponding interference state averaged along the 
total simulation time TSIM. The result is averaged for all the 
L links, that is:  

    _ , ,
1          1

link j active at t

1 1

ACT

SIM

i

TL

R Avg j i S t
j tT j

T r
L  

  
 

(10)  

where TACT(j) represents the total number of simulation time 
steps in which the j-th link has been active.  

 Observation rate: It is the average number of observations 
per second that are performed to determine the interference 
state of the different spectrum blocks. This KPI is only 
applicable to FO and POMDP algorithms, while PR and 
Random strategies do not require observations of the 
system during their operation.  

IV. PERFORMANCE EVALUATION RESULTS 

The performance of the different algorithms in terms of 
average reward and satisfaction probability is presented in Fig. 
2 and Fig. 3, respectively, as a function of the observation 
period Tobs that is a key parameter of the POMDP-based 
spectrum selection algorithm (hence, the selected Tobs values do 
not affect the performance of the other strategies). Tinter=10 s is 
considered in these results. As it can be observed, the 
performance obtained by the POMDP-based algorithm is a 
decreasing function of the observation period Tobs. In particular, 
for low values of Tobs the reward and the satisfaction 
probabilities are very similar to the ones obtained by the FO 
strategy that has a perfect knowledge of the different spectrum 
blocks. However, this similar performance is achieved by the 
POMDP with much less requirements in terms of observations, 
as it can be noticed in Fig. 4 that depicts the observation rate as 
a function of Tobs for both FO and POMDP algorithms. For 
instance, when Tobs is 60 s, POMDP achieves a reduction of 
around 68% with respect to FO in terms of observation rate, 
while the performance of POMDP in terms of reward and 
satisfaction probability is only about 3% smaller than the 
performance achieved by FO. Further reductions in terms of 
observation rate can be achieved when increasing Tobs, as seen 
in Fig. 4. 

Concerning the comparison against the PR algorithm, it can 
be observed in both Fig. 2 and Fig. 3 that for low values of the 
observation period, POMDP achieves a significant 
improvement in both the reward and the satisfaction (e.g. for 
Tobs=60 s there is an improvement of 32%). Then, for large 
values of Tobs the performance of both PR and POMDP tends to 
converge to similar values. The reason is that the dynamic 
update of the belief vector values for the POMDP-based 
algorithm according to (7) tends to converge towards the steady 
state probabilities when there are very large periods without 
any observations, that is  ,

i
i k kb t   for Tobs. 

Consequently, in such a case the decision making criteria of 
POMDP and PR given by (3) and (9) become the same.    

Finally, focusing now on the comparison against the 
Random algorithm, it can be observed in Fig. 2 and Fig. 3 that 
POMDP achieves a very significant improvement in terms of 

both reward and satisfaction probability, in the order of 43% 
and 46%, respectively, for the case of Tobs=60 s.  

 
Figure 2.  Average reward as a function of the observation period Tobs 

 
Figure 3.  Average satisfaction probability as a function of the observation 

period Tobs 

 
Figure 4.  Observation rate as a function of the observation period Tobs 

Fig. 5 and Fig. 6 present the impact of varying the time Tinter 
between the end of a session and the beginning of the next one, 
in terms of average reward and observation rate, respectively, 
for all the considered algorithms. For the POMDP-based 
algorithm, Tobs=60 s and Tobs=180 s are considered. It can be 
observed in Fig. 5 that the reward tends to increase with Tinter 
for all the strategies and that the reward obtained by the 



POMDP strategy is still very close to the one achieved by FO, 
while requiring a much lower observation rate as seen in Fig. 6. 
Moreover, the POMDP allows still obtaining a significant 
improvement with respect to PR and Random algorithms for 
both values of Tobs.    

 
Figure 5.  Average reward as a function of the time between sessions 

 

Figure 6.  Observation rate as a function of the time between sessions 

V. CONCLUSIONS 

In this paper a novel POMDP-based framework for 
spectrum selection in wireless cognitive radio networks has 
been presented. The proposed framework operates in a 
centralized way making use of the knowledge stored in a 
database that contains the statistical characterization of the 
interference variations existing in the available spectrum 
blocks. The proposed approach inherently considers 
heterogeneity in the bit rate requirements of the applications to 
be established by maximizing a reward function that considers 
the different suitability of each spectrum block to each radio 
link/application. To highlight the efficiency of the proposed 
approach, a comparison has been performed against different 
references. It has been obtained that the proposed POMDP-
based algorithm allows obtaining similar performance in terms 
of reward and satisfaction as the full observation scheme that 
makes decisions based on knowing the real interference state in 
all the available spectrum blocks, in spite of requiring a much 
lower measurement rate since only partial observations of the 
system at specific time instants are carried out. In addition it 
achieves a significant performance gain in terms of reward with 
respect to a random spectrum selection and to a strategy that 
makes decisions based on static knowledge of the spectrum 
block statistics.  

Based on the promising results obtained, future work will 
deal with performing a further optimization of the observation 
strategy, with the inclusion of spectrum handover mechanisms 
in the proposed approach and with the development of 
strategies for dynamically acquiring and maintaining the state 
transition probability values stored in the knowledge database. 
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