
Estimation-Based Noise-Robust Sensing
Andreas Polydoros* and Ioannis Dagres  

Institute of Accelerating Systems & Applications 
National Kapodistrian University of Athens 

Athens, Greece 
{polydoros, jdagres}@phys.uoa.gr 

 
 

Abstract— It is well known that noise-modeling uncertainties give 
rise to a fundamental limit on the sensitivity of energy-based 
detectors   (or related moment-based detectors), also known as 
the “SNR wall”. Similar “walls” appear also when localizing 
unknown sources for various applications (including cognitive 
radio), since localization techniques are based on tempo-spatial 
signal features. Low SNR regimes plus vague knowledge of the 
characteristics of the signal under detection in such applications 
motivate the exploration of techniques that are robust to such 
parameter uncertainties and therefore immune to such limits. A 
simple conceptual framework is proposed herein that naturally 
generates techniques with such immunity advantages for 
detecting the presence of an unknown source in broadband noise 
At the cost of longer observation time, they allow SNR-wall-free 
detection. They also lend themselves to precise analysis and 
parametric optimization.  
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I.  INTRODUCTION 
Source sensing, meant as classic binary hypothesis testing 

(presence detection) of a source in a given spectral band, an 
important function in cognitive radio and other applications, 
must typically be performed in the absence of detailed 
knowledge of at least some aspect of the system and signal 
model. This lack of knowledge may range from simply not 
knowing some of the channel characteristics, such as the 
channel complex gain in a flat-fading channel (but knowing 
precisely either the signal shape or some parts of the signal, 
e.g., its pilots or preambles), all the way to knowing nothing 
about the sought signal or the intervening channel. The latter 
case is the easiest to handle, meaning that then one can only 
resort to non-coherent, moment-based processing (energy 
detection, autocorrelation, spectral correlation/cyclo-stationary 
processing, etc.). This latter class of techniques is popular with 
the sensing community because it demands the least from the 
algorithm designer, although it is still subject to optimization 
of its various parameters (for instance, which correlation or 
cyclic-frequency terms to incorporate in the detection statistic 
and with what weight). Still, it has the appeal of simplicity, 
invoking the least set of assumptions, and it may work well for 
high enough SNR. In addition, energy (quadratic) detection is 
indeed mathematically optimal under very specific modeling 
assumptions (Gaussian signal in Gaussian noise). If the signal 
is not patently Gaussian but unknown in its features, it still 
makes sense as an "agnostic" solution [1]. The difficulty with 
energy detection is that it is brittle when the noise level is not 

precisely known, because then the false-alarm-based threshold 
cannot be set with accuracy. This leads to the known "SNR 
wall" phenomenon [2], [3]. Ways to somewhat bypass this 
sensitivity to the relative ignorance of the noise level have 
been explored in depth and tend to center on autocorrelation or 
spectral-correlation techniques that omit the zero-lag term, 
which includes the mean value of the noise level (although 
there is still dependence on the noise level to set the threshold, 
just less) [4]. 
On the other extreme, the signal may be known in shape, 
including the values of its data symbols for some duration (for 
instance, pilot symbols). This can be exploited in a matched-
filter or signal-correlation operation, akin to what is done in 
coherent receivers for digital communication operation. The 
result will be a coherent accumulation of voltage during this 
correlation interval and a concomitant increase in collected 
energy versus the purely sample-by-sample non-coherent 
processing of the energy detector (which suffers the so-called 
"non-coherent combining loss"). Therefore, matched filtering 
which exploits such knowledge will result in an SNR shift for 
performance (an SNR benefit). We note, however, a 
fundamental difference between coherent filtering in coherent 
comm. receivers and pseudo-coherent processing in sensing 
receivers: the latter cannot exploit the exact channel 
knowledge (gain and phase) enjoyed by a coherent comm. 
receiver due to the carrier synchronization/equalization pre-
processing that the comm. receiver enjoys. As a result, there 
will be a non-coherent (complex-norm) operation at the end of 
the sensing receiver processing, and therefore, in that sense, 
all sensing receivers are non-coherent in nature; there is no 
such thing as a fully coherent sensing receiver.  The only 
difference between classic non-coherent processing and 
matched-filter processing is whether the squaring operation 
takes place sample by sample or at the end of the observation 
interval. 

Here, a new framework for Constant-False-Alarm-Rate 
(CFAR), feature-based detection is proposed. We focus on 
(but are conceptually not limited to) spatial signal features that 
arise due to the reception of the signal at different points in 
space. These features allow detection (first, and that is the 
novelty) as well as subsequent localization of unknown 
sources based on an estimation pre-processor. The proposed 
family of statistical tests is based on the appropriate 
processing of the received samples in order to create 
successive and statistically independent estimates of signal 
features that have meaning if and only if a signal is present. 
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By first quantizing the feature range and subsequently 
estimating the most probable value for the feature under 
consideration, a histogram is created which signifies the 
relative probabilities for the different (discrete) sub-regions on 
the value of the feature. Based on an analytical description of 
this histogram, a test is created on the existence or not of the 
signal, as well as the value of the feature (as an immediate 
fridge benefit). The whole procedure takes therefore two steps: 
the first where successive estimates of a feature are made as if 
the signal exists and a second where these estimates are 
employed in order to decide on the binary hypothesis of the 
signal existence, as well as the feature value. A large number 
of tests that assume accurate knowledge of the noise level 
have been proposed [1][5]. These tests are expected to have 
better performance than the one proposed but suffer from SNR 
walls. Tests that are CFAR without the knowledge of the noise 
level have also been proposed, [4],[6], that use a self-
normalizing approach but are difficult to analyze and thus 
optimize. Here, by locating the position (in feature space) of 
the maximum of the histogram as the appropriate statistic for 
the final binary test, a decision is made on the existence of a 
signal, as well as on the value of the feature should the 
decision be positive; otherwise, this value is meaningless. It is 
also shown here that the analysis of the performance of this 
scheme is straightforward, thus allowing for subsequent 
optimization of the test. 

This paper is organized as follows: In section II the 
histogram test is described, which a fundamental part of the 
proposed approach.  Besides the description, an approximate 
analysis is provided along with simulation results for assessing 
its accuracy. Two application examples in Section III 
demonstrate the breadth of the concept, one for cyclic-prefix-
based (CP) detection plus one for time difference of arrival 
(TDOA) -based detection and localization. The details for 
proper data processing, together with an analytic performance 
description are provided.  Simulation results and final 
conclusions are given at section IV and V, respectively. 

II. THE HISTOGRAM TEST 
In this section we will describe a simple, non-linear test that 

will be used as the cornerstone for the proposed approach. 
Within this framework, different localization as well as feature 
estimation techniques already available in the literature can be 
employed. A test description is provided at a fairly abstract 
level, with specific instantiations described in the following 
Sections for clarity. 

A. Analysis 
We address the following binary hypothesis problem: 

under H0 (no signal present) we observe the outcome of a 
purely random choice between LN  events, denoted 
by  ( 1,..., )i Lh i N= , all with equal probability. Under H1 
(signal present) one specific event, denoted by ch , has a larger 
probability of occurrence than the rest. This is the simplest 
scenario that we analyse here; extensions to multiple events of 

higher probability are under investigation. Let ky  be the k-th 
observation. Then, k iy h=  where, for H0, 
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Here ( )ip h  is the probability of observing the event ih . After 

bN observations we wish to decide on the prevailing 
hypothesis for a given target probability of false alarm faP . At 
the same time, an estimate of the event with the highest 
probability of occurrence (under H1) is produced. 
The following test is proposed for the just-described joint 
detection /estimation problem: Define 

 ( )max hist( )T = y ≶ λ  (3) 

the test for the detection task, and ˆ = index( )c T for the 
estimation, where 1 2[ , ,..., ]

bNy y y=y is the total vector of 
observations, hist( )⋅ is the histogram operator, namely a 
counter for the number of occurrences for each of the LN  
events, max( )⋅  is an operator that provides the value of the 
largest number of the input vector and index( )⋅  is its index. 
Other tests could also be devised with possibly better 
performance, but the currently proposed test is simple and 
performs almost optimally in the parameter regions of interest.  
For H0, hist( )y  is a length- LN vector of random variables 

(rv), [0,1,.., ]i bh N∈ , each following a binomial distribution 
with probability density function (pdf ) 
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with 0,1,..., bx N= and its cumulative distribution function 
(cdf)  
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To analyze the performance of the proposed test, the cdf of the 
maximum of these LN  rv’s is required. A simple 
approximation can be provided by ignoring their correlation. 
The cdf of the maximum is given by 

 : ( ) ( ) L

L L

N
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Using this approximation, the Pf for a threshold value λ  is  

 ( ) 1 ( ) LN
fP Fλ λ= −  (8) 

Using the same rationale for the H1 case, the probability of 
detection ( dP ) is approximated by  

 1( ) 1 ( ) ( ) LN
d c iP F Fλ λ λ −= −  (9) 

B. Accuracy of approximations 
We now examine the accuracy of the above 

approximations for this type of test, since it is the most critical 
part for guaranteeing the level of false alarm while optimizing 
the probability of detection. The discrete distributions that 
describe both hypotheses are generated by LN  uniform and 
continuous rv’s, where the maximum is chosen at each sample 
test. In order to produce the required statistics for the H1 case, 
( 1)LN −  rv’s are generated with support in [0,1] plus one 
in [0 ,1 ]s s+ + , where s is chosen so that the probability of 
indeed  being the maximum in the set equals p.  This is done 
by solving numerically the following equation for 
p: (1 ) /LN

Lp s N s= − + . 
By producing the LN rv’s for each hypothesis and choosing the 
index i of the maximum, we can produce the ih ’s that fit the 
above scenario for any arbitrary values of p , LN , bN .  
We now demonstrate the approximation of the analysis and 
the performance of the test for some indicative values of the 
aforementioned parameters. In Fig. 1 we demonstrate the 
accuracy of (8) for 100LN =  and 10,100bN = , 1000 .  
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Figure 1.  Probability of false alarm vs lamda 

In Fig. 2, we demonstrate the accuracy of (9) for 10LN = , 
100bN =  and 0.2,0.4cp =  and 0.6 . We conclude that the 

proposed analysis follows the simulation results with very 
high accuracy for the discussed cases; all other simulations 
performed extensively have the same behavior (not shown 

here). All basic tools are now in place to achieve a target 
ROC, with the classic definition of ROC ( , )f dP P= . We now 
proceed to show specific instantiations of the theory for 
detection (only) as well as joint detection/localization in 
examples of common interest. 
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Figure 2.  Probability of detection vs lamda 

III. APPLICATION EXAMPLES 

The first example involves the detection of an OFDM 
source based on its cyclic prefix (CP). The second involves the 
joint detection/localization of a source based on time TDOA 
estimation. Both examples can be treated in a unified manner 
under the proposed framework. The only difference (besides 
parameterization constraints) is what feature is chosen to 
represent the test. In the first example it is the symbol 
synchronization time, while in the second it is the TDOA 
between two different points in space. Both exhibit a 
periodicity: due to the symbol rate in the first case and due to 
the spatial coherence bandwidth of a source in the second.     

A. Cyclic prefix based OFDM detection 
Let cpN  be the cyclic prefix length, FFTN  the FFT length, 

and S totalN −  the total number of OFDM symbols received.  
We assume the signal bandwidth and the above parameters 
known. The proposed processing is depicted in Fig. 3. Since 
the starting time of a symbol is unknown, the ambiguity range 
is cp symN N+ , equal to the previously defined LN . For each of 
the LN  possible events, the following two vectors are 
defined: 1, [..., ( ( )),...]i cp symy i k N N= + +r  and 2, 1, cpi i N+=r r , 

with (0,.. )S totalk N −∈ ; (1,.. )cp symi N N∈ + . Classic estimation 
of the symbol starting time involves the inner product of 1,ir  
with 2,ir  for all possible candidate values of i. In low SNR, it 
has been shown [8] that it suffices to use the real part of the 
inner product, i.e.   

 1, 2,
ˆ arg(max( ( )))H

i it real= r r  (10) 
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Figure 3.  Proposed processing for cp-based detection example 

As shown in Fig. 3, xcN is the number of samples employed 
here for each estimate (1 xc sN N≤ ≤ ). The constraint imposed 
by the finite number of samples is described by the following 
inequality b xc sN N N≤ . We can now compute, for any set of 
desirable parameters, the threshold that guarantees the 
desired faP . In addition, knowledge of the SNR level, with any 
level of accurancy, enables parameter optimization for a target 
ROC. 

B. TDOA based source detection/localization  
Here the proposed framework is adopted as a test for 

detecting a source via TDOA estimation. The envisioned 
scenario assumes multiple pairs of sensors doing an identical 
test, then properly combining the individual TDOA estimates 
for a final statistic. The focus here is on the intermediate step 
of individual TDOA estimations, not the final geometric 
transformation of these multiple estimates to localization. 
Let 1r  , 2r  be the two received sequences by two spatially 
distinct sensors, both of which either observe noise only or 
signal plus noise. The signal, if present, is modeled as a white 
process (extension to colored signals is straightforward). Then, 
employing classic cross-correlation-based estimation as shown  
in (10), the lag corresponding to the maximum value is the 
candidate TDOA estimate. 

This is conceptually equivalent to an autocorrelation- 
feature detection test, since it is still the same (noiseless) 
signal that is received at both sensors under H1. Instead of 
trying to solve for the optimal detector under some (partial) 
knowledge of the noise statistics, the proposed framework is 
again engaged, leading to a true CFAR test because the faP  is 
fully independent of the noise level. Fig. 4 demonstrates how 
statistically independent TDOA estimates can be generated. 
Clearly, at least two estimates are needed for non-trivial tests.   
Let LN be the range of values of TDOA, sN  be the total 
number of samples, bN  be the number of TDOA estimates, 
and xcN  be the number of samples used for producing each 
estimate. These parameters are constrained by the inequality 

b xc L sN N N N+ ≤ . 
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Figure 4.  Proposed processing for TDOA-based detection example 

The previous description of the histogram-based test indicates 
that the probability of successful detection dP  can be 
maximized for a given faP level, under parametric choices that 
are subject to some constraints. From an estimation-only point 
of view, TDOA accuracy increases with xcN . But since at least 
two estimation samples are needed for a non-trivial test, a 
certain degradation of TDOA estimation accuracy is expected. 
It will soon be evident that a trade-off exists between the two 
tasks of detection (signal detectability) and final estimation 
(localization accuracy). We note, however, that such a trade-
off is eventually artificial and rather created by system-level 
constraints such as processing complexity, data-exchange 
bandwidth, etc. It is not a fundamental law, in other words, 
since estimation/localization can be re-performed after 
successful detection by optimally employing the whole data 
set. In that sense, parameter estimation is understood here 
chiefly as a detection pre-processor, leading to the concept of 
estimation-based detection.  

IV. PERFORMANCE ASSESSMENT 
To analyze performance, the description of the test statistics 
should be derived. The distribution of the sum of products of 
normal r.v’s resulting from the cross-correlation  operation has 
been described in [8], where a Gaussian approximation is used 
based on the central-limit theorem. In [8], a CP-based detector 
is described, leading to an analysis that is applicable to the 
present one. As mentioned before, at low SNR, only the real 
part of the cross-correlation need to be employed with very 
small degradation in performance. The relevant test statistics 
can be approximated as 2(0, ),N iσ ∀  for the H0 case, while 
for the H1, 2( , )N μ σ for i c=  and 2(0, ) for N i cσ ≠ , 
where 2 2 / 2n LNσ σ≈ , 2

sμ σ= , with 2
nσ  the variance of the 

complex additive Gaussian noise and 2
sσ the variance (power) 

of the Gaussian-modeled signal. For H0, since all ih ’s possess 
the same distribution, the probability that any one of them 
corresponds to the maximum has been derived in Section II.. 
Thus, Pfa is described by (7). For H1, the probability of 
choosing the right lag, ( )cp h , must be derived in order to be 
able to compute and optimize Pd. This probability is, in fact, 
the familiar probability of correct decision of M-ary 
orthogonal signals in additive Gaussian noise, given by 
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Figure 5.  Sample size versus SNR 

Many approximations are known for computing the above 
integral [9]. Unfortunately, they all target bit error 
probabilities which must be very small to be useful, thus not 
suited for the present detection problem. Numerical algorithms 
for approximating (11) for the parameter ranges of interest 
have been employed in this paper.  
An identical line of performance analysis applies to both 
examples. Here, due to space limitations, we analyze only the 
first. We employ typical OFDM values from the DVB 
standard, such as 1024cpN = , 8192FFTN = or from the LTE 
standard, such as 36cpN = , 512FFTN = . Fig. 5 plots the 
required sample size as a function of SNR for achieving a 
given ROC. The purpose is to access the new test performance 
as compared to the radiometer when the latter operates either 
under ideal conditions (perfectly known noise level) or non-
ideal ones (uncertainty in the noise level), thus demonstrating 
the immunity of the proposed class of tests to noise 
uncertainty. We conclude that the new tests are comparatively 
inefficient under ideal conditions (an SNR loss versus the 
ideal radiometer under no noise-level uncertainty). But when a 
u-parameterized uncertainty on the noise level exists, the 
radiometric detectors are ‘tuned’ to the worst-case noise level 
for guaranteeing the faP level (see [3] for details). Then, the 
proposed scheme becomes superior and exhibits no wall; the 
only effect is an SNR loss, proportional to u (in dB). The 
worst case plotted is for u=1 dB, causing a radiometric SNR 
wall at about -3 dB, while the proposed test improves 
continuously with SNR.  
Since non-radiometric detectors in general are affected by 
limited processing time due to channel coherence, Figure 6 
demonstrates the performance degradation of the proposed 
scheme based on a maximum interval for coherent processing. 
It can be seen that a maximum value for xcN results in a slope 
change at a certain SNR point. Performance degrades, but still 
no SNR wall appears.  
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Figure 6.  Sample size versus SNR 

V. CONCLUSIONS  
A new framework for source detection and approximate 

localization has been proposed, based on a simple idea: first 
estimate appropriately-chosen parameters and then use the 
results to perform detection (a reversal of usual thinking). The 
test uses successive and independent estimates of signal 
features to decide upon the presence or absence of a signal. A 
highly accurate approximate analysis of the proposed test has 
been provided, enabling performance characterization and 
optimization. Two application examples have been provided 
that demonstrate the use of the concept. Extensions of the test 
for more challenging scenarios of multiple sources as well as 
realistic system models are currently under investigation.   
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