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Abstract—  Cognitive  Radio  systems  rely  heavily  on  artificial 
intelligence capabilities to perform a variety of tasks.   Sharing 
spectrum  resources  more  efficiently,  self  organization,  and 
interference mitigation are just a few examples.  For many CR 
applications,  a  primary  goal  is  to  decentralize  and  distribute 
network functions among participant nodes.  As a consequence, 
any given node in a CR network may be required to coordinate 
with  not  only  its  peers,  but  also  with  a  number  of   unknown 
transmitters.  Thus,  it  is  desirable  that  individual  nodes  be 
capable  of  predicting  future states  of  non-peer  transmitters  in 
order to better optimize their own operation.  In this paper we 
introduce  methods  for  identifying  cognitive  behavior  in  an 
unknown transmitter and predicting likely future states based on 
physical spectrum observations.  We discuss the problem in the 
context of our Universal DSA Network Simulation (UDNS) and 
present two behavior classification algorithms used to this end.  

(Coginitive  Radio,  Behavior  Classification,  Naive  Bayes,  
AODE, Dynamic Spectrum Access)

I.I. INTRODUCTION

Cognitive Radio (CR) is a term used to describe a broad 
range  of  applications  whereby  a  radio  transceiver  may 
dynamically alter certain parameters or behaviors in a manner 
which allows it  to optimize some aspect(s)  of  its  operation. 
Generally,  this  process  involves  some  combination  of 
spectrum  sensing,  decision  making  and  adaptive  behavior 
which  is  governed  by  an  artificial  intelligence  or  machine 
learning  mechanism,  called  a  Cognitive  Engine  (CE). 
Through  the  use  of  CEs  and  specially  adapted  networking 
protocols,  the  responsibility  of  coordinating  transmission 
between  and  within  discrete  wireless  networks  can  be 
increasingly shifted to network nodes themselves – making the 
need  for  centralized  infrastructure  and  spectrum  licensing 
progressively more obsolete.  However, while the CR concept 
shows promise towards providing novel solutions to numerous 
wireless networking problems, the reduced reliance on central 
control networks and block licensing will present entirely new 
challenges  for  designing  multiple  access  and  network 
coordination protocols.

Currently, much of the elementary research in the CR field 
revolves  around  the  broad  concept  of  Dynamic  Spectrum 
Access  (DSA)  –  i.e.,  the  ability  to  find  and  make  use  of 
currently unoccupied spectrum.  In turn, DSA applications are 
often  discussed  within  the  context  of  licensed,  or  Primary 
Users  (PUs)  which  have  priority  on  a  given  channel,  and 
unlicensed,  or  Secondary  Users  (SUs)  which  may  use 

spectrum opportunistically – only in the absence of primary 
users.  Assuming a CR user can detect the transmission of a 
static, non-cognitive PU, avoiding interference is a relatively 
simple  proposition.   However,  this  scenario  is  clearly 
oversimplified.  In most non-trivial applications, we must also 
consider  the  presence  of  non-peer  SUs  which  may also  be 
attempting to opportunistically access spectrum resources.

Conventional  wisdom  suggests  that  we  could  simply 
consider any unknown transmission to originate from a PU, 
and  avoid  it  as  such.   This  tactic  may  be  suitable  in  the 
presence of few SUs, but will scale poorly in the presence of 
many SUs since non-peer transmitters have no way of directly 
coordinating their DSA behavior.  In this situation, non-peer 
SUs may respond to the introduction of  a  wideband PU or 
jamming signal by continuously hopping to the same vacant 
channel.  This represents a likely scenario if it is assumed that 
each SU network is sensing the same spectrum, in a similar 
manner  as  other  nearby  SU  networks.  Upon  detecting 
unknown transmissions on a  newly established  channel,  the 
network  nodes will  assume a  PU is  present  and vacate  the 
channel  once  again.   This  process  may  potentially  occur 
repeatedly  if  non-peer  SU  networks  continue  to  select  the 
same next frequency over multiple channel selection events. 
Such  behavior  is  clearly  inefficient  from  a  media  access 
standpoint,  as  channel  evacuation  behavior  introduces 
significant network overhead, which reduces throughput.  The 
channel evacuation loop scenario is especially inefficient if we 
consider  the  presence  of  vacant  spectrum  which  was  not 
selected  by  a  SU network  for  one  reason  or  another.   To 
remedy this problem, we propose the integration of predictive 
machine  learning  algorithms into  the  CE framework  which 
will  enable  a  CR  to  observe  an  unknown  transmitter, 
determine  if  it  possess  adaptive  capabilities,  and  infer 
information  about  these  capabilities  towards  the  goal  of 
predicting likely future states (e.g. - next channel selection). 
Based on these predictions, a CR network can tailor its own 
operation in  a  manner  which will  reduce  the  probability  of 
interference  with  non-peer  SUs,  while  maximizing  the  time 
between  channel  evacuation/selection  events  in  a  congested 
network.   This  paper  presents  preliminary  work  on  the  CR 
behavior classification problem by considering the simple case 
of classifying channel selection behavior heuristically.  Using 
simulation, we present a basic classification framework built 
around  two  common predictive  algorithms,  and  qualify  the 
utility of our framework for predicting future CR behaviors.
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II.II. PREVIOUS WORK

A.A. Universal DSA Network Simulation (UDNS)

For  this  work,  we  employ a  MATLAB  simulation 
framework  called  the  Universal  DSA  Network  Simulation 
(UDNS) as a testing platform.  The UDNS was developed by 
Wireless@VT as a tool to analyze the performance of different 
SU DSA channel selection strategies in the presence of several 
PUs  [2],  and  was  modified  to  support  our  predictive 
classification research  [6].  Prior to running a simulation, the 
user must define the channel, PU and SU parameters for each 
scenario  to be simulated.  PUs are assigned fixed channels, 
SUs are  assigned  a  channel  selection method,  and both are 
assigned  an  activity  lambda  which  defines  how  often  a 
transmitter  will access the current channel.  In addition, each 
PU  and  SU  is  assigned  an  SNR  value  which  defines  how 
visible the transmissions are to the SU energy detectors.  

When a scenario is  executed,  the PUs begin to simulate 
transmission  according  to  their  configured  parameters  for 
several  iterations  before  the  SUs  come online.   This  delay 
provides  the  SUs  with  an  opportunity  to  observe  the  PU 
transmissions,  and  aggregate  channel  observations  before 
making a selection.  Once online, if an SU detects the presence 
of a PU on its current channel, it will evacuate the channel and 
make  a  new  selection  according  to  its  selection  algorithm. 
Each time a SU selects a new channel, the SU ID number is 
recorded, along with the current state of each channel over the 
corresponding  iteration.   The  resulting  channel  state  matrix 
entries correspond to the channel energy, time since the last 
hop, and the access/occupancy rates of the SU on the given 
channel.  Following the simulation, this information is passed 
to the preprocessor.  

B.B. Channel Selection Methods

Five  channel  selection  algorithms  are  used  during  the 
simulation, based on our previous work with the UDNS [2]. 
The  selection  algorithms  available  in  the  simulation  are  as 
follows:

● Random selection:  SU selects a channel at random 
regardless of occupancy rate or channel energy.

● Least energy:  SU selects the channel with the least 
energy at the time of selection.

● Least  recently  occupied:   SU selects the channel  it 
has occupied least recently.

● Least  frequently  accessed:   SU selects  the  channel 
with the lowest observed activity.

● Least frequently occupied:  SU selects the channel it 
has occupied least often.

These algorithms represent a survey of some basic channel 
selection strategies which may be encountered in a typical CR 
deployment scenario, though they do not represent a complete 
list  by  any  means.   In  a  real  world  deployment,  channel 
selection behavior will be only one observable manifestation 
of data link and CE behavior,  which may be classified in a 
similar manner.

III.III. PREDICTIVE BEHAVIOR CLASSIFICATION

Predictive  behavior  classification  is  a  well  studied  topic 
with applications in a wide variety of fields – from financial 
analysis  to  traffic  modeling  [1].   Despite  this,  behavior 
classification in the context of CR networks has received little 
literature attention thus far.  As previously stated, the goal of 
our  research  is  to  apply  these  well  understood  machine 
learning  and  data  mining  principles  in  order  to  classify 
unknown transmitters, and identify their adaptive or cognitive 
capabilities.  In this preliminary work, we approach the topic 
by defining two problems.

1) Given sufficient observation (training) time, can we  
predict the channel selection algorithm in use by several  
transmitters  through  observation  of  their  hopping  
patterns?

2) Given sufficient observation (training) time, can we  
predict the current channel selection algorithm in use by  
a single SU for which the channel selection algorithm in  
use is changed over time?

We present multiple simulations based on these scenarios 
which  will  demonstrate  the  application of  our  classification 
framework for CR behavior prediction, as well as provide a 
basis for future research.  To perform the actual classification, 
we use two classifiers, as well as a preprocessor – the details 
of which are described in the following sections. 

A.A. Naive Bayes Classifier

One  of  the  simplest,  yet  most  widely  implemented 
probabilistic classification algorithms is the Naïve Bayes (NB) 
classifier [7].  These classifiers directly apply Bayes' Theorem 
over a set of empirical input attributes by making a “naïve” 
assumption of independence between each observed attribute. 
By  making  this  assumption,  the  conditional  likelihood 
function can be tractably estimated according to (1).

(1)

Where  C is the class being tested and An are the  attribute 
observations corresponding to the event being classified.  This 
expression (1) estimates the likelihood of a class based on the 
product of  the conditional  probabilities between  a class and 
each  observed  attribute.   Combining  (1)  with  the  known 
priors,  p C  ,  for  our  class  and  attribute probabilities 
(determined from the training set), the NB probability  model 
can be expressed as (2).

(2)

In addition to the attribute independence assumption, the NB 
classifier  requires  inferring  or  generating  a  probability 
distribution for each attribute model.  For the NB case, we use 
a  Gaussian  distribution  to  approximate  the  conditional 

p C∣A1 , A2 , ... , An=

p C ∏
i=1

n

p Ai∣C 

p A1 , A2 ,... , An

p  A1 , A2 , ... , An∣C ∝∏
i=1

n

p Ai∣C 



likelihood  parameters,  p  Ai∣C  .  The  NB  classifier  is 
analyzed using both the raw observations, as well as with the 
preprocessed data.  Since the classifier is common and simple 
to  implement,  it  provides  a  useful  baseline  level  of 
effectiveness  for  our  behavior  classification  concept  as  a 
whole.  

B.B. Averaged One-Dependence Estimation Classifier

The primary weakness of the NB classifier is the attribute 
independence assumption required to make estimation of the 
conditional  likelihood  function  tractable.   Simply  put,  any 
conditional dependence among discrete attributes will result in 
a corresponding increase in classification bias, and a decrease 
in the overall accuracy of the resulting classifier.  One method 
for  reducing the bias of a  Bayesian classifier  is  to use One 
Dependence Estimation (ODE) to approximate the conditional 
likelihood function [8].  ODE supports a weaker independence 
assumption  by  estimating  dependence  of  pair-wise  attribute 
combinations during training, and constructing the probability 
model according to these pairs, rather than individual attribute 
observations alone.  This can be thought of as a special case of 
the NB classifier, where the priors and likelihood function are 
conditioned  by  a  single  parent  attribute, A p ,  before 
posterior estimates are computed.  

(3)

An  Averaged  One-Dependence  Estimator  (AODE)  averages 
ODE posterior estimates for all possible parent attributes and 
class labels, and returns a posterior estimate for each class – In 
contrast  to  the  NB  classifier,  which  returns  only  the  most 
likely class label.

  (4)

As  a  consequence,  not  only  does  AODE reduce  estimation 
bias over conventional NB, it also provides a useful means of 
determining the confidence level of the returned maximum a-
posteriori class label.  For our implementation, the joint and 
conditional probability terms, p  A j∣C , Ai and p C , A j  
required  to  compute  (4),  are  approximated  using  a  joint 
frequency table and m-estimation, as described in [3].   Our 
AODE  implementation  does  not  estimate  the  likelihood 
function  according  to  a  continuous  probability  distribution 
model  like  NB,  and  can  therefore  only  handle  empirically 
discrete or discretized continuous inputs.  In order to handle 
the requirement for discrete data,  and reduce the number of 
attribute dimensions, a preprocessor is used to condition the 
attribute  observations  prior  to  training  and  prediction.   It 
should  be  noted  that  this  is  a  limitation  of  our  AODE 
implementation  only,  and  does  not  reflect  a  universal 
limitation  of  the  classifier.   Though  it  is  most  commonly 
implemented for discrete cases,  as in [3], several  algorithms 
for a continuous or hybrid AODE classifiers are presented in 
the literature [5], and are a topic of interest for our continuing 
research.  

C.C. Preprocessing

When the simulation is run, each time a SU is forced off a 
channel by a PU, the SU ID, as well as information about each 
channel  is  recorded  in  two  arrays.   The  first  array  records 
information about the time and frequency with which the SU 
has accessed the current channel, and the second array records 
the energy level, total access rate and total occupancy rate for 
each channel at the current time step.  These arrays may be 
used  to  directly  train  the  NB  classifier,  however  we  can 
improve  the  classification  accuracy  significantly  by  first 
passing the simulation outputs through a preprocessor.   The 
preprocessor allows us to exploit heuristics within the data set 
in order to reduce the dimensionality of the probability model, 
which in turn will generally reduce the bias of the classifier 
[7].  

Our approach is similar  to the clustering,  or latent  class 
approaches described in [9] and [4].  For each recorded SU 
event, the channel parameters are interpreted to fit within one 
or  more  latent  class  labels  based  on  the  channel  selection 
strategies we wish to classify.  For example, if an SU selects a  
new channel that is both the one with the least energy and the 
one  it  has  least  recently  occupied,  the  preprocessor  output 
vector  for  this  event  will  contain  non-zero  attribute  entries 
corresponding  to  these  latent  classes.   By  performing  this 
attribute  hard-coding,  we  generate  a  superposition  mapping 
raw attributes  to  latent  class  attributes  which  reflect  all  the 
relevant  information  from  the  simulation  output,  without 
completely  discarding  potentially  useful  attributes.   This 
produces  a  10  fold  reduction  in  dimensionality  for  our 
simulation, which will significantly improve the classification 
accuracy of the NB classifier, and allows us to implement a 
computationally  efficient  AODE  classifier  which  does  not 
require the estimation of multivariate probability distributions 
as described in [5].

IV.IV. EXPERIMENTAL SETUP

Using the UDNS, we construct two scenarios  for testing 
our classification strategies,  as  described in  section 3.   Ten 
arbitrary  channels  are  configured,  having  additive  noise 
properties between -3 and 0 dB, and one PU is configured for 
each  channel.   The  PU  configuration  properties  include 
transmit and idle rates, apparent SNR (as seen by the SUs) as 
well  as  the  symbol  rate,  modulation and  RRC alpha  value. 
These values are used to model the basic behavior of a static 
PU  transmitter.   The  SUs  are  configured  with  similar 
properties, but additionally require an entry for which channel 
selection strategy to simulate, as well as a list of channels to 
monitor.   Assigning  symbol  rate,  modulation  and  SNR 
properties  to  the  SUs  and  PUs  allows  for  a  more  realistic 
simulation in which each PU transmission, as seen by the SUs, 
is  not  simply  a  binary  on-off  state,  but  is  rather 
deterministically sensed by SU energy detectors.  Depending 
on the channel and PU configuration for a given time step, this 
accounts for the possibility of false alarm and missed detection 
events  that  will  occur  in  a  real  CR network.   Though  not 
specifically  addressed  in  this  paper,  detection  and 
identification  of  false  alarm events  within a CR network  is 
another  research  topic that  we aim to address  using similar 
classification strategies in subsequent work.  

Two  separate  experiments  are  presented.   For  the  first 
experiment,  five  SUs are  configured,  each  using  a  separate 

p C∣A1 , ... , An=
pC , Ap∏ p A p∣C , Ai

p A1 , A2 , ... , An
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∑
j=1

n

pC , A j∏
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n

p A j∣C , Ai

p A1 , A2 , ... , An



channel  selection  strategy  as  defined  in  section  2.b.   The 
simulation  is  run  until  10,000  channel  selection  events  are 
recorded, at which point the simulation output is run through 
the preprocessor and training routine.  The goal for the first 
experiment  is  to  determine  the  accuracy  with  which  the 
classifiers can correctly predict the channel selection strategy 
for  a  given  SU channel  selection  event,  in  the  presence  of 
several  users.  We qualify the classifier as a function of the 
training set length (n), in terms of the probability of correctly 
classifying  the  final  1000 recorded  SU events.   The  first  n 
simulated events and their  a-priori class labels are used for 
training, and the events to be classified are drawn from the end 
of the list in order to ensure there is no overlap between the 
two data sets.

For the second experiment  a  single SU is configured  to 
randomly choose a new channel selection strategy every  500 
events.   Ten  PUs  are  additionally  configured  in  the  same 
manner  as  the  first  scenario.   The  output  from  the  first 
simulation, where each radio was assigned a  separate,  static 
selection algorithm is used to train the classifier for the second 
experiment.  The goal of this scenario is to determine how the 
classifier responds to a variable selection strategy in a single 
radio, as well as qualifying which errors the classifier makes 
most frequently (e.g. - which channel selection strategies are 
most difficult to differentiate).  In the interest of space, only 
the AODE classifier is presented for this scenario, and will be 
used to predict the channel selection method for each decision 
event,  independent  of each previous event.  The accuracy of 
classification  will  be  based  on  how  many  predictions  the 
classifier  correctly  makes  over  5000  decisions,  after  5000 
training events are recorded.  

A.A. Results

The results from the individual experiments are presented 
in  the  figures  below.   Figure  1  shows  the  classification 
accuracy  for  the  AODE  classifier,  as  well  as  for  the  NB 
classifier  with  and  without  preprocessing,  as  described  in 
section 3.c.  The minimum training length for the NB classifier 
is  around  200  events  in  order  to  ensure  that  the  in-class 
variance  estimate  for each attribute is non-zero.  The AODE 
implementation has no such requirements, but in the interest of 
visual consistency, only a subset of the results are displayed in 
the plot.  For the first experimental scenario, figure 1 confirms 
the utility of both the NB and AODE classifiers in predicting 
the  correct  channel  selection  strategy  with  reasonable 
accuracy.  Comparing the NB output for the non-preprocessed 
case to the preprocessed case additionally confirms that our 
latent  class  clustering  algorithm functions as  expected,  and 
produces classification results with higher accuracy and lower 
variance  due  to  the  reduction  in  attribute  dimensions. 
Compared  to  the NB  classifier,  the AODE  case  shows  a 
moderate,  but  consistent  improvement  in  classification 
accuracy, in addition to a slight reduction in variance between 
training sets.

Figure 2 illustrates  the ability  of the  AODE  classifier  to 
track changes in channel selection behavior for a single SU in 
the presence of several PUs.  The Y-axis represents one of the 
four  channel  selection  algorithms  used  in  this  simulation 
(random  selection  excluded),  while  the  X-axis  represents 
simulation  time.   The  thick  dashed  line  shows  the  actual 
progression between individual selection algorithms, while the 
lighter solid  line represents  the predicted  class  for  each SU 

decision event.  Channel selection index 1 corresponds to the 
least  energy algorithm, and index 2,  3 and 4 correspond to 
least  frequently  accessed,  least  recently  accessed  and  least 
occupied  rate  algorithms respectively.   A divergence  of  the 
solid line from the dashed line indicates a classification error 
and shows which class was incorrectly selected.  

Figure 1.  Classification Accuracy

Figure 2.  AODE Predicted Channel Selection Divergence

From figure 2, it is clear that the classifier performs better 
for  some  selection  strategies  than  it  does  for  others  – 
specifically, the least occupied rate algorithm is occasionally 
wrongly  predicted  as  the  least  recently  occupied  algorithm. 
This is not unexpected, as the two algorithms which are most 
commonly  confused are  the  two  most  similar  algorithms 
considered – and it is likely that the least recently occupied 
channel is also the channel that the SU has accessed the least 
for many events.  For this simulation, Figure 2 shows a total of 
51  errors  over 5000  events  classified,  for  an  accuracy  of 
greater than 98%.  This represents a best case scenario where 
there is only a single SU to be classified.  As illustrated in the 
first experiment, the  classification accuracy is reduced  when 
additional SUs must be classified at once. 



B.B. Conclusions

This paper summarizes our preliminary proof of concept 
work  in  analyzing  the  utility  of  behavior  classification 
techniques for predicting the future states of a CR transmitter. 
Two  predictive  algorithms  are  analyzed  for  this  purpose  – 
Naïve Bayes and Averaged One-Dependence Estimation – and 
their  relative  performance  compared.   Using  the  AODE 
classifier and a basic clustering preprocessor, we were able to 
demonstrate  up to  80% accuracy  in  classifying  the  channel 
selection strategy of  several  SUs (figure 1),  and up to 98% 
accuracy in classifying a single SU which changes it's channel 
selection strategy over time (figure 2).  We believe behavior 
classification represents a powerful tool with potential benefits 
for a number of CR areas, such as improving spectrum sharing 
efficiency in heterogeneous white space networks, as well as 
Electronic Countermeasures (ECM) applications.

C.C. Future Work

We hope to expand the scope of this work in several ways 
by expanding the UDNS and tuning the classification models 
to identify other cognitive capabilities, in addition to channel 
selection strategy.  We plan to work the preliminary methods 
presented here into a larger classification framework,  which 
will  use  tree-augmented  machine  learning  to  classify  many 
other parameters of an unknown transmitter, including a more 
complete  classification  of  the  PHY  and  MAC  layer 
technologies in use.  Additionally, we plan to develop and test 
DSA  protocols  and  CE  algorithms  which  exploit  these 
predictive  capabilities  for  more  efficient  spectrum  sharing, 
towards  solving  the  repeated  evacuation  problem  identified 
previously.   We  will  also  explore  the  application  of  our 
classification  framework  for  the   identification  and 
classification  of  false  alarm events  in  CR networks.  Future 
work on the classification algorithms themselves will involve 
exploring  the  computational  trade  offs  between  different 
classifiers, such as those presented here.  We will also explore 
additional  preprocessing  methods,  such  as  tree-based 
augmentation, in addition to our current clustering approach. 
We  believe  there  is  significant  potential  in  this  relatively 
unstudied  area,  and  hope to  establish  a  basis  for  additional 
research within the CR community.  
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