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Abstract— Detection of potential transmitters' location is one of 
the vital aspects for efficient practical deployment of secondary 
spectrum access solutions. It requires accurate and up-to-date 
radio environmental estimation. Spatial interpolation techniques 
can allow partial or complete insight into the radio field, the 
interference and the possible geo-locations of various field 
transmitters depending on the number of radio measurements 
performed in sparse locations. This paper presents an effective 
solution based on spatially interpolated Received Signal Strength 
(RSS) values for location estimation of radio transmitters, which 
operates on Radio Interference Field (RIF) maps obtained by 
interpolating measurement data from N sparsely distributed 
sensors. In contrast to the known range based localization 
methods the developed technique also achieves higher 
computational efficiency. The performance analysis shows that 
the proposed method is suitable for both outdoor and indoor 
environments and is capable of reliable detection of multiple 
sources even for low number of sensors. 

Keywords- Radio intereference field, Localization, Cognitive 
radio, Interpolation. 

I. INTRODUCTION  

     The emerging secondary spectrum usage notion based on 
the Cognitive Radio (CR) paradigm provides viable solution to 
the spectrum scarcity problem. The key challenge within is the 
accurate detection and identification of vacant spectrum 
opportunities. The Radio Environmental Map (REM) concept 
fosters the process of spectrum holes identification beyond the 
existing detection-based methods [1]. It provides the 
secondary CR  systems with partial or complete insight into 
the radio interference distribution over an inspected area of 
interest, location of potential transmitters and other relevant 
information necessary for reliable operation of CR networks 
(CRNs).  
     With the latest advances in the area of CRN deployments 
(e.g. cognitive femto-cells), the transmitter localization 
process has become a crucial method that enables the process 
of dynamic spectrum access, self-organization and 
cooperation. The localization process carries valuable 
information for both Primary User (PU) protection and 
Secondary User (SU) service provision. PU localization 
enables the SU systems to achieve higher spectrum utilization 
while maintaining the required PU protection, whereas the SU 

localization provides better cooperation between multiple SU 
transmitters and increases the efficiency of the spectrum 
sharing concept.  
     This paper presents a simple and effective multiple radio 
transmitters localization method based on the spatially 
interpolated Received Signal Strength (RSS) values. The 
method operates on the Radio Interference Field (RIF) maps 
obtained by interpolating data measurement from a number of 
sparsely distributed sensors in the area of interest. It tracks the 
temporal changes of the monitored radio environment in order 
to detect the activation of new interfering transmitters. The 
method adapts to the temporal changes in the radio 
environment by searching for a solution which optimizes some 
predefined cost function. In contrast to the known localization 
methods, the proposed method is computationally efficient and 
does not require complex hardware solutions like antenna 
arrays (AoA based techniques) or high fidelity 
synchronization (TDoA based techniques). Additionally, the 
method is capable of detecting multiple transmitters without 
increasing its computational complexity or decreasing its 
precision. 

The rest of the paper is organized as follows. Section II 
gives an overview of the related work on multiple transmitter 
localization techniques. Section III defines the system model, 
while section IV elaborates on the proposed localization 
method. Section V provides performance analysis of the 
proposed method. Finally, section VI concludes the paper. 

II. RELATED WORK 

     The problem of multiple transmitters localization attracts 
increased interest lately [2]. The most common classification 
of known multiple radio transmitters localization techniques is 
into the classes of range-free and range-based approaches. 

Range-free approaches use topological information to infer 
the locations of the multiple targets, therefore saving any 
special hardware costs, and trading off the accuracy and 
scalability of the location estimates [1,3]. Range-based 
localization approaches derive the position of the unknown 
transmitters using range estimates from location known 
anchors, such as RSS, angle of arrival (AOA), time of arrival 
(TOA) or time difference of arrival (TDOA). In general, 
accurate range measurements require special hardware. 
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Therefore, less accurate but easily available RSS-based 
measurements are used extensively in many localization 
algorithms under probabilistic models. Ref. [2] discusses some 
of the most popular location estimators. Maximum Likelihood 
(ML) is a common localization approach, that provides 
transmitter location estimates with limited accuracy because it 
results in a non-convex optimization problem. Ref. [4] 
circumvents the non-convexity of the conventional ML 
solution by applying the semi-definite relaxation to the ML 
estimator and develops a convex estimator. Similarly, [5] 
elaborates a novel approximate ML approach (referred to as 
Weighted Least Squares - WLS) that alleviates the non-
convexity of the ML technique by reformulating the problem 
of localization under the equivalent exponential transformation 
of the conventional path loss measurement model and the 
unscented transformation. Ref. [6] presents a localization 
solution specifically designed for dense indoor environments 
with unknown path loss exponent. This algorithm leverages 
between the computational cost and localization accuracy by 
establishing a neighbor selection scheme based on the Voronoi 
diagram to identify a subset of sensors to participate in 
localization. Linear Least Squares (LLS) localization approach 
as Best linear Unbiased Estimator (BLUE) is presented in [7]. 
Additionally, ref. [8] derives Maximum Likelihood (ML) 
localization algorithm and the associated performance bounds 
for jointly estimating a transmitter’s position, orientation, 
beam width and transmit power, as well as the environment’s 
path loss exponent using RSS measurements.  

Much of the work that has been done to address the 
localization problem points out the limited accuracy of the 
majority of localization algorithms (when dealing with 
reasonable processing power) and the ever-increasing 
requirements for computational resources by the underlying 
optimization algorithms (when trying to reduce the 
localization error). However, there is an increasing number of 
secondary spectrum usage scenarios that significantly relax the 
localization precision constraints and require only target 
detection and, if possible, coarse location estimation in a given 
area. This paper targets such scenarios by developing simple 
and efficient localization technique that requires modest 
computational power while providing effective target presence 
and location information. 

The following section will explain in more details the 
envisioned target scenario for the subsequent location 
estimation method based on spatial interpolation. 

III.  TARGET SCENARIO 

The proposed method for presence detection and location 
estimation targets a similar scenario as the one depicted on 
Fig. 1 and 2. 

Fig. 1a represents an area of interest that has M active 
interferers at a specific time moment. In the case of Fig. 1, 
there are two transmitters denoted as Transmitter 1 and 
Transmitter 2. Fig. 1b shows the same system after a certain 
time period when an additional transmitter denoted as 
Transmitter 3 is activated. Fig. 2a and 2b show the RIF maps 
over the area of interest, before and after the appearance of 

Transmitter 3, respectively. The RIFs are obtained by 
interpolating the measurement data from N spatially 
distributed sensors using the modified Shepherd's method [9] 
for spatial interpolation. The new interferer causes changes in 
the RIF (as evident from Fig. 2), i.e. the distribution of the 
interference power over the area of interest changes due to the 
activation of Transmitter 3.  

 

 
  a.Initial phase, M transmitters (M=2)            b. Latter phase, M+1 ransmitters 

Figure 1. Target scenario 
 

 
a.Initial phase, M transmitters (M=2)            b. Latter phase, M+1 ransmitters 

Figure 2. RIF for the targeted scenario on Fig. 1 
 

The RIF changes can be efficiently tracked by defining an 
appropriate qualitative measure which will be referred to as a 
tracking metric. This tracking metric gives information on the 
interferers presence in the area of interest. Moreover, it is 
possible to refine the tracking metric in order to locate regions 
in the area of interest where the highest amount of the RIF 
changes are cumulated, thus providing estimates of the 
interferers location. The analysis in the following section 
assumes an approach that conducts a statistical analysis of the 
changes of the radio interference level in different points when 
adding new interferers in the area of interest. It relies on the 
idea that the new interferers cause higher increase of the 
interference level at nearby points than at distant points. 

IV.  INTERFERENCE LEVEL BASED LOCATION ESTIMATION OF 

MULTIPLE TRANSMITTERS   

This section gives a thorough theoretical analysis of the 
problem of spatial interpolation based location estimation of a 
potential interferer. It explains the used assumptions and gives 
an analytical modeling of the tackled problem. 

A. RIF based localization with fixed regions 

The inspected area of interest (i.e. the target scenario 
previously analyzed) is monitored at two separate time instants 
denoted as t  and t'. The RIF of the area for both moments is 
denoted as RIF(t) and RIF(t'), respectively. It is assumed that 
the number of interferers at time instant t is M and at time 
instant t' is (M + 1). Without loss of generality, it is 
additionally assumed that the area of interest is a square with 
side length A. This area, i.e. the RIF, is divided in a mesh of 



smaller and equal square regions, each with a side length a. 
The ratio A/a defines the resolution of the mesh and ρ = (A/a)2 
denotes the number of regions. The interference level at an 
arbitrary point pi in the i-th region is calculated for both RIF(t) 
and RIF(t') and denoted as I i(t,pi) and I i(t',pi), i = 1, ..., ρ, 
respectively, and expressed in the mW scale. The increase of 
the interference level at an arbitrary point pi in the time 
interval (t, t') for each region i, due to the appearance of a new 
interferer in the area of interest, can be obtained by subtracting 
the interference level at the given point pi in moment t from 
the interference level at the same point pi in moment t': 
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The average increase of the interference level in the i-th 
region 

iI∆ is defined as: 
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where L denotes the number of points per region. Fig. 3 
depicts an example of an active transmitter and its influence 
on the regions of the RIF. In most of the cases, the average 
increase of the interference level will be highest in the region 
that contains the interferer. However, in some cases this can be 
misleading due to the negative channel effects like shadowing 
or fading as well as the number and position of the 
interpolation points. In order to alleviate these negative 
effects, iI∆  must be compared to a reference level denoted as 

Interference Threshold (IT) - ∆ . If ∆≥∆ iI , then the region i 

is a possible candidate for interferer holder. 

 
Figure3. Radio transmission range of a single transmitter and influence on the 

area regions 
 

The value of the IT depends on many aspects such as 
transmitter power, path loss, number of sensors, interpolation 
technique fidelity, region size, the location of the interferer 
within the specific region etc. The proposed localization 
method considers that iI∆ , i.e. the average increase of the 

interference level in every region, is a random variable with a 
PDF denoted as krixf rI i

∈=∆ ;,...,1);(, ρ . The notation assumes 

that the transmitter is located at an arbitrary point r  in the k-th 

region. Thus, the probability of detecting the transmitter in the 
k-th region can then be calculated as: 
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where ∆  is the IT. 

       In general, the random variables ρ,...,1;, =∆ iI ri
 are 

statistically dependent and there exists a certain level of 
correlation between them. However, in order to provide 
analytical tractability and simplicity of the mathematical 
model, this paper assumes that all ρ,...,1;, =∆ iI ri

 are 

statistically independent random variables. The probability of 
correct location estimation of the transmitter in the k-th region 
is given with: 
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where )|( , kIP rj ∆<∆  represents the probability of not 

detecting the interferer in the j-th region when the interferer 
has appeared at an arbitrary point r  in the k-th region.  

The probabilities )|( , kIP rk ∆≥∆  and 

kjjikIP rj ≠=∆<∆ ;,...,1,);|( , ρ  can be calculated in terms 

of the marginal distributions krjxf
rjI ∈=∆ ;,...,1);(
,

ρ  of the 

random variables krjI rj ∈=∆ ;,...,1;, ρ . The analytical form 

of these PDFs is generally unknown, but can be estimated 
from multiple consecutive measurements, i.e. RIF maps. Fig. 4 
shows that the histogram i.e. the ePDF of 

iI∆ follows the 

Normal distribution. Therefore, eq. (4) becomes: 
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where rk ,µ  and rk ,σ  denote the mean and variance of the k-th 

region, while rj ,µ  and rj ,σ  denote the mean and variance of 

the remaining regions.  

 
(a) Indoor 

(3) 
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(b) Outdoor 

Figure 4. Normalized histogram for the k-th region 

The probability of correct transmitter localization in the k-
th region can be calculated by averaging (4) over all possible 
locations r  of the interferer within the given region. 
Assuming that r  is a random variable uniformly distributed 
over each region (denoting its PDF with ρ,...,1);( =irf i

), the 

probability of correct interferer detection and localization in 
the k-th region can be calculated as: 
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where iDP |  denotes the probability of correct location 

estimation in region k averaged over all possible interferer 
locations within the same region. Furthermore, assuming that 
the interferer can appear in each region ρ,...,1=i  with equal 

probability, the probability of correct interferer detection and 
localization is given by: 
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The value of ∆  can be calculated from the likelihood ratio 
of the kI∆  and jI∆ PDFs: 
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where k denotes the region that contains the transmitter, and 
the j denotes the region whose PDF has the highest mean i.e. 
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. Based on the assumption that the PDFs follow the 

normal distribution, eq. 5, ∆  can be computed as: 
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B. RIF based localization with movable regions 

      The localization approach presented previously is mostly 
empirically based and it does not require any specific channel 

knowledge. Hence, the method does not cope with undesired 
propagation phenomena (e.g. deep fading, hidden terminal 
problem etc.). Furthermore, the typical scenarios in which the 
transmitter is located near the edge of the region results in 
significant increase of the probability of detecting the 
transmitter in the neighboring regions, thus, according to (4) 
the performance of the technique deteriorates.  
      A possible way to mitigate the negative effects of the 
channel variability and the prediction error introduced by the 
underlying spatial interpolation technique and to increase the 
probability of correct location estimation is the usage of non-
fixed dynamic area division scheme, referred to as a Moving 
Interferer Container (MIC) approach. MIC performs quick 
search for more optimal area division scheme (while keeping 
the region size fixed) usually by moving and placing the 
region containing the transmitter maximizing the probability 
of correct location estimation. The work presented in this 
paper employs a simple two-step MIC algorithm. Initially, the 
proposed technique is executed by using fixed area division 
scheme, which results in identifying the region (denoted with 
k) with highest probability of containing the transmitter. Then, 
the algorithm calculates the probability of location estimation 
for the neighboring regions and slightly moves region k 
towards the neighboring region with the highest probability of 
transmitter detection. This essentially results in a new area 
division scheme. The algorithm concludes with re-calculating 
the probability of locating the transmitter for the new area 
division scheme. As evident in Section V, the performances of 
the localization technique are drastically improved under the 
MIC approach.  
     It is important to note that the introduction of the MIC 
solution increases the computational complexity of the overall 
detection and localization technique. However, the 
performance gain obtained by implementing MIC can justify 
the increased computational cost especially when operating 
with low percentage of sensors and large regions. Moreover, 
the MIC approach allows for design of various different 
algorithms (e.g. an iterative approach etc.).  

V. PERFORMANCE EVALUATION 

This section gives an insight into the performances of the 
proposed localization method by analyzing the probability of 
transmitter location estimation in terms of the number of 
sensors, channel and error in range estimation. Assuming that 
the estimated location of the transmitter is positioned in the 
center of the region, then the maximal error in range  

estimation will be 2 2aξ = , where a  denotes the side 

length of the region. To obtain relevant results, Monte Carlo 
simulations are carried out for all performance metrics. Table 
1 lists the used simulation parameters. 

TABLE I.  SIMULATION PARAMETERS 

Simulation parameters 

Interpolation technique IDW modified Sheppard’s 

Indoor parameters 

Propagation model 
Multi-wall with log-normal 

shadowing 

(6) 

(7) 

(8) 

(9) 



Simulation parameters 

Interpolation technique IDW modified Sheppard’s 

Pathlosss exponent 3.5 

Operating frequency 2.4GHz 

Transmit power 10dBm 

Area side length (A) 40m 

Initial number of transmitters 2 

Outdoor parameters 

Propagation model 
Hata with log-normal 

shadowing 
Transmitter height – receiver 

height 
30m – 2m 

Operating frequency  915MHz 

Transmit power 49dBm 

Area side length (A) 600m 

Initial number of transmitters 3 

 
Fig. 5 depicts the probability of location estimation (PD), 

for different dimensions of the regions, in dependence of the 
relative number (to the total number of area mesh points) of 
randomly scattered sensors. The area mesh points represent 
the unobserved area locations, i.e. the interpolation points. It is 
evident that the method performs better for larger region 
dimensions due to the higher error in range estimation. 
Furthermore, when using the MIC approach, the performance 
of the method is substantially increased. The results from Fig. 
5 pinpoint the possible applicability of the spatial interpolation 
based location estimation, i.e. scenarios that require only a 
rough estimation of the location of the new transmitters and 
the swiftness of the localization is not of the outmost 
importance (e.g. cognitive femto-cells).  

 
Figure 5. Probability of location estimation vs. number of sensors for 

indoor environment and scattered positioning (6.5 dB Shadowing Variance)  
 

Fig. 6 depicts the probability of location estimation in 
dependence of the relative number of sensors (located in a 
grid). Similar conclusions as for Fig. 5 apply. Additionally, it 
is evident that the method’s performance is not seriously 
affected by the positioning type (i.e. scattered or gridded) 
which can be beneficial in many realistic scenarios where the 
positioning of the sensors is random i.e. scattered. 

Fig. 7 gives the dependence of the probability of location 
estimation on the shadowing variance for indoor environment. 
Higher level of the shadowing variance significantly decreases 

the performance of the localization method for smaller 
regions. It is evident that when the region size is considerably 
large, the method proves to be resistant to the shadowing 
effect. Moreover, when utilizing the MIC approach, the 
method proves to be more resistant for high values of the 
shadowing effect. 

 
Figure 6. Probability of location estimation vs. number of sensors for indoor 

environment and gridded positioning of the sensors (6.5 dB Shadowing 
Variance) 

 

 
Figure 7. Probability of location estimation vs. shadowing variance for indoor 
environment and gridded positioning of the sensors (6.25% relative number of 

sensors) 
 

Fig. 8 depicts the probability of location estimation in 
dependence of the shadowing variance for outdoor 
environments.  

 
Figure 8. Probability of location estimation vs. shadowing variance for 

outdoor environment and gridded positioning of the sensors (6.25% relative 
number of sensors) 



 
It is evident that when using the MIC approach, the 

proposed method can reliably detect the transmitter in more 
than 70% of the cases on a resolution scale of approximately 
100m for a shadowing variance of 4dB. This performance is 
more than adequate when considering an outdoor CR scenario, 
e.g. opportunistic access on television white spaces (TVWS).  

Fig. 9 shows the cumulative distribution function of the 
error in range estimation for indoor environment. In order to 
achieve small range estimation error, the method requires high 
number of sensors.   
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Figure 9. Cumulative distribution function of the error in range estimation for 

indoor environment (6.5 dB Shadowing Variance) 
 
As evident, the proposed method can reliably detect the 

transmitter in more than 70% of the cases on a resolution scale 
of approximately 5m (a typical room) for a relative number of 
sensors below 2%. In terms of a femto-cell scenario, this can 
be interpreted as the capability of the femto-cells to detect a 
new transmitter. For example, if every apartment in a building 
has one femto-cell capable of RSS measurements and a new 
transmitter becomes active, then the proposed method will 
detect the transmitter on a scale of a room in more than 70% 
of the time and on a scale of an apartment (resolution of more 
than 9m) in more than 99% of the time.  

 

VI. CONCLUSION 

Detection of unused spectrum allows CR users to 
opportunistically reuse the available spectrum and alleviate the 
spectrum scarcity problem. The process of transmitter 
localization can increase the radio environmental awareness of 
the CR systems and improve the overall spectrum efficiency. 

This paper proposes a novel method for location estimation 
of radio transmitters in a CR based environment. It utilizes the 
RIF maps obtained by interpolating RSS measurement data 
from a number of sparsely distributed sensors. Unlike most of 
the existing localization algorithms, the proposed method is 
computationally efficient and does not depend on complex 
hardware solutions (e.g. antenna arrays, high fidelity 

synchronization etc.). The computational efficiency comes in 
trade-off with the localization precision of the method, 
however the results show that its performance is suitable for 
CR scenarios (e.g. cognitive femto-cells, TVWS etc.). Main 
limitation of the method is the fidelity of the underlying 
interpolation technique and the introduced interpolation error.  

Future work will focus on detailed assessment of different 
interpolation techniques and their impact on the precision of 
the method. It will also investigate the effect of variety of 
scenarios targeting different propagation models as well as the 
number and distribution of the transmitters.   
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