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Abstract— Detection of potential transmitters' location isone of
the vital aspects for efficient practical deploymeh of secondary
spectrum access solutions. It requires accurate andp-to-date
radio environmental estimation. Spatial interpolation techniques
can allow partial or complete insight into the rado field, the
interference and the possible geo-locations of vas field
transmitters depending on the number of radio measements
performed in sparse locations. This paper presentan effective
solution based on spatially interpolated Receivedighal Strength
(RSS) values for location estimation of radio tranmitters, which
operates on Radio Interference Field (RIF) maps olained by
interpolating measurement data from N sparsely distributed
sensors. In contrast to the known range based lodzétion
methods the developed technique also achieves highe
computational efficiency. The performance analysishows that
the proposed method is suitable for both outdoor ah indoor
environments and is capable of reliable detection fomultiple
sources even for low number of sensors.

Keywords- Radio intereference field, Localization, Cognitive
radio, I nterpolation.

l. INTRODUCTION

The emerging secondary spectrum usage notisedoon
the Cognitive Radio (CR) paradigm provides vialdkigon to
the spectrum scarcity problem. The key challengkiwis the
accurate detection and identification of vacant ctpen
opportunities. The Radio Environmental Map (REMhoept
fosters the process of spectrum holes identificatieyond the
existing detection-based methods [1]. It providdse t
secondary CR systems with partial or completeghtsinto
the radio interference distribution over an inspdcarea of
interest, location of potential transmitters antieotrelevant
information necessary for reliable operation of @&works
(CRNSs).

With the latest advances in the area of CRplajenents
(e.g. cognitive femto-cells), the transmitter ldzation
process has become a crucial method that enatdgsrdlcess
of dynamic spectrum access, self-organization
cooperation. The localization process carries \d&ia
information for both Primary User (PU) protectiomda
Secondary User (SU) service provision. PU locdbizat
enables the SU systems to achieve higher spectiilization
while maintaining the required PU protection, wizsr¢éhe SU
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angcalability of the location estimates [1,3].

localization provides better cooperation betweertipla SU
transmitters and increases the efficiency of thecspm
sharing concept.

This paper presents a simple and effectivetiphel radio
transmitters localization method based on the albati
interpolated Received Signal Strength (RSS) valudse
method operates on the Radio Interference Fiel#)(Riaps
obtained by interpolating data measurement fromraber of
sparsely distributed sensors in the area of intelteisacks the
temporal changes of the monitored radio environnreotder
to detect the activation of new interfering trangems. The
method adapts to the temporal changes in the radio
environment by searching for a solution which ojzegs some
predefined cost function. In contrast to the kndegalization
methods, the proposed method is computationallgiefit and
does not require complex hardware solutions likéerama
arrays (AoA based techniques) or high fidelity
synchronization (TDoA based techniques). Additibnathe
method is capable of detecting multiple transnstteithout
increasing its computational complexity or decregsits
precision.

The rest of the paper is organized as follows. iSedt
gives an overview of the related work on multipl@nsmitter
localization techniques. Section Il defines theteyn model,
while section IV elaborates on the proposed loetitin
method. Section V provides performance analysisthaf
proposed method. Finally, section VI concludespager.

Il.  RELATED WORK

The problem of multiple transmitters localirat attracts
increased interest lately [2]. The most commonsifastion
of known multiple radio transmitters localizati@thniques is
into the classes oinge-freeandrange-basedpproaches.

Range-free approaches use topological informatianfer
the locations of the multiple targets, thereforevirsgp any
special hardware costs, and trading off the acguratd
Rargesed
localization approaches derive the position of timknown
transmitters using range estimates from locatiorowkn
anchors, such as RSS, angle of arrival (AOA), toharrival
(TOA) or time difference of arrival (TDOA). In gera,
accurate range measurements require special hadwar



Therefore, less accurate but easily available R&®db
measurements are used extensively in many localizat
algorithms under probabilistic models. Ref. [2]adisses some
of the most popular location estimators. Maximurkelihood
(ML) is a common localization approach, that presd
transmitter location estimates with limited accyrbdecause it
results in a non-convex optimization problem. R§]
circumvents the non-convexity of the conventionall M
solution by applying the semi-definite relaxation the ML
estimator and develops a convex estimator. Sinjlgib]
elaborates a novel approximate ML approach (refetoeas
Weighted Least Squares - WLS) that alleviates tbae-n
convexity of the ML technique by reformulating theoblem
of localization under the equivalent exponentiahsformation
of the conventional path loss measurement model taed
unscented transformation. Ref. [6] presents a izatibn
solution specifically designed for dense indooriemments
with unknown path loss exponent. This algorithmelages
between the computational cost and localizatiorusmy by
establishing a neighbor selection scheme baseldeo¥dronoi
diagram to identify a subset of sensors to padi€ipin
localization. Linear Least Squares (LLS) localiaatapproach
as Best linear Unbiased Estimator (BLUE) is preseri [7].
Additionally, ref. [8] derives Maximum Likelihood ML)
localization algorithm and the associated perforreanounds
for jointly estimating a transmitter’'s position, iemtation,
beam width and transmit power, as well as the enwient’s
path loss exponent using RSS measurements.

Transmitter 3, respectively. The RIFs are obtaineyg
interpolating the measurement data froM spatially
distributed sensors using the modified Shepherdthaod [9]
for spatial interpolation. The new interferer caishanges in
the RIF (as evident from Fig. 2), i.e. the disttibn of the
interference power over the area of interest chadge to the
activation of Transmitter 3.
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a.Initial phase, M transmitters (M=2)  b. Latter phé[ée, M+1 ransmitters

Figure 1. Target scenario

a.Initial phase, M transmitters (M=2) Liatter phase, M+1 ransmitters
Figure 2. RIF for the targeted scenario on Fig. 1

Much of the work that has been done to address the The RIF changes can be efficiently tracked by defjran

localization problem points out themited accuracyof the
majority of localization algorithms (when dealingithv

appropriate qualitative measure which will be refdrto as a
tracking metric This tracking metric gives information on the

reasonable processing power) and the ever-inc@asiﬂnterferers presence in the area of interest. Maeoit is

requirements for computational resourckg the underlying
optimization algorithms (when trying to reduce
localization error). However, there is an incregsmumber of
secondary spectrum usage scenarios that signifyaahax the
localization precision constraints and require onérget
detection and, if possible, coarse location estomah a given
area. This paper targets such scenarios by dewgigimple
and efficient localization technique that requiresodest
computational power while providing effective targeesence
and location information.

The following section will explain in more detaithe
envisioned target scenario for the subsequent itotat
estimation method based on spatial interpolation.

The proposed method for presence detection andidaoca
estimation targets a similar scenario as the ongctil on
Fig. 1 and 2.

Fig. la represents an area of interest that Maactive
interferers at a specific time moment. In the cabéig. 1,
there are two transmitters denoted as Transmitteand
Transmitter 2. Fig. 1b shows the same system aftegrtain
time period when an additional transmitter denotasl
Transmitter 3 is activated. Fig. 2a and 2b showRHe maps
over the area of interest, before and after theeamce of

TARGET SCENARIO

possible to refine the tracking metric in ordetdoate regions

thein the area of interest where the highest amourthefRIF

changes are cumulated, thus providing estimatesthef
interferers location. The analysis in the followisgction
assumes an approach that conducts a statisticlgsemaf the
changes of the radio interference level in diffeqgoints when
adding new interferers in the area of interestelies on the
idea that the new interferers cause higher incredséhe
interference level at nearby points than at digteitts.

IV. INTERFERENCE LEVEL BASED LOCATION ESTIMATION OF

MULTIPLE TRANSMITTERS

This section gives a thorough theoretical analgdishe
problem of spatial interpolation based locationnesation of a
potential interferer. It explains the used assuomgtiand gives
an analytical modeling of the tackled problem.

A. RIF based localization with fixed regions

The inspected area of interest (i.e. the targenhate
previously analyzed) is monitored at two separate instants
denoted a$ andt'. The RIF of the area for both moments is
denoted as RIEY and RIF{), respectively. It is assumed that
the number of interferers at time instanis M and at time
instant t' is (M + 1). Without loss of generality, it is
additionally assumed that the area of interestsguare with
side lengthA. This area, i.e. the RIF, is divided in a mesh of



smaller and equal square regions, each with alsiugth a.
The ratioA/a defines the resolution of the mesh and (A/a)?
denotes the number of regions. The interferencel lav an
arbitrary pointp; in thei-th region is calculated for both Rtj(
and RIF{) and denoted ak(t,p) and I;(t'\p), i = 1, ..., 0
respectively, and expressed in the mW scale. Toe@se of
the interference level at an arbitrary poigtin the time

region. Thus, the probability of detecting the smaitter in the
k-thregion can then be calculated as:

Py, 281K = [ Ty, (X &)
A

interval ¢, t) for each region, due to the appearance of a newwhereA is the IT.

interferer in the area of interest, can be obtaimedubtracting
the interference level at the given popatin momentt from
the interference level at the same p@irih momentt'":

Ali(pi):li(tv!pi)_li(t! p.)i=1..0 1)
The average increase of the interference levehéi-th
region Al, is defined as:

L

1
i _IzAli.j (pi J )

i=1

Al 73

where L denotes the number of points per region. Fig. 3

depicts an example of an active transmitter andnitaence
on the regions of the RIF. In most of the cases, aherage
increase of the interference level will be highesthe region
that contains the interferer. However, in some sdsis can be
misleading due to the negative channel effects dik@dowing

or fading as well as the number and position of the The

interpolation points. In order to alleviate thesegative

effects, Al; must be compared to a reference level denoted Bl <AfK)i, | =

Interference Threshold (I A. If Al, 2 A, then the regiom
is a possible candidate for interferer holder.

—aH
1

P

Denotes the regions in which the changes
D of the interference level due to the new
interferer are negligible

Denotes the region with largest average
intreference level increase

. Denotes the regions with large average
D intreference level increase

Figure3. Radio transmission range of a single trétisr and influence on the
area regions

Denotes the transmission range of the
transmitter

The value of the IT depends on many aspects such as

transmitter power, path loss, number of sensoterpolation
technique fidelity, region size, the location ot tinterferer
within the specific region etc. The proposed |agion
method considers thaal;, i.e. the average increase of the

interference level in every region, is a randomalae with a
PDF denoted as,  (x)i=1..p0;rO0k. The notation assumes

that the transmitter is located at an arbitrannpdi in thek-th

In general, the random variablgs;i=1..p are

statistically dependent and there exists a certairel of

correlation between them. However, in order to fmev
analytical tractability and simplicity of the mathatical

model, this paper assumes that 3i\||i,:i=1---,p are

statistically independent random variables. Thebability of

correct location estimation of the transmitterhie k-th region

is given with:

P
Po.r = P(Al,, 2A[K) |_| P(Al;, <Alk) 4)

i=1 12k
where p(Al; <A|k) represents the probability of not

detecting the interferer in theth region when the interferer
has appeared at an arbitrary pafntn thek-th region

P(Al,, 2A 1K)
1...,0;j 2k can be calculated in terms

probabilities and

of the marginal distributionSfAI (X);j=1....p0;r Ok of the
random variablesmj,r; j=1...p,r Ok . The analytical form

of these PDFs is generally unknown, but can bemeséd
from multiple consecutive measurements, i.e. Rlpsn&ig. 4
shows that the histogram i.e. the ePDF aif follows the

Normal distribution. Therefore, eq. (4) becomes:

A_1uj,r
o, N2

1

A_
Poyr =Eerfc( Her

ak,r\/i

where 4, . and gy, denote the mean and variance ofkHh

) ﬁ (1- erfc( y G
J=L 2k

region, while ;. and ;. denote the mean and variance of
the remaining regions.

Probability Density Function
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Average Increase of the interference level
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knowledge. Hence, the method does not cope witlesiret
propagation phenomena (e.g. deep fading, hiddeminaft
problem etc.). Furthermore, the typical scenanpw/iich the
transmitter is located near the edge of the regéasults in
significant increase of the probability of detegtirthe
transmitter in the neighboring regions, thus, adicay to (4)
the performance of the technique deteriorates.

A possible way to mitigate the negative dfeof the
channel variability and the prediction error intneed by the
underlying spatial interpolation technique androréase the

° 458 % W B W7 probability of correct location estimation is theage of non-

Average Increase of the interference level fixed dynamic area division scheme, referred ta adoving
(b) Outdoor Interferer Container (MIC)approach. MIC performs quick

search for more optimal area division scheme (wkéleping

Figure 4. Normalized histogram for tketh region the region size fixed) usually by moving and placithe

The probability of correct transmitter localizationthek- ~ region containing the transmitter maximizing thehability
th region can be calculated by averaging (4) ovepadisible ~of correct location estimation. The work presentedthis
locations I of the interferer within the given region. paper employs a simple two-step MIC algorithm.idtily, the
Assuming thatr is a random variable uniformly distributed Proposed technique is executed by using fixed dreigion
over each region (denoting its PDF with):i =1...,0), the sche_me,_ which results_ in |dent|fy|r_lg_ the reglon_r((nted with
k) with highest probability of containing the trarger. Then,
the algorithm calculates the probability of locatiestimation
for the neighboring regions and slightly moves oagk

_ towards the neighboring region with the highestpiulity of
Pog = J.Ple’rfk(r)dr (6) transmitter detection. This essentially resultsaimew area
division scheme. The algorithm concludes with riedating
the probability of locating the transmitter for timew area
division scheme. As evident in Section V, the penfances of

estimation in regiork averaged over all possible interferer the |ocalization technique are drastically improveuier the
locations within the same region. Furthermore, @ssg that  MIC approach.

Probability Density Function

probability of correct interferer detection and dbization in
thek-th region can be calculated as:

regk

where R, denotes the probability of correct location

the interferer can appear in each regionj...p with equal It is important to note that the introduction the MIC

probability, the probability of correct interferdetection and solution increases the computational complexityhef overall
localization is given by: detection and localization technique. However, the

performance gain obtained by implementing MIC castify

P :EZPZP _ (7) the increased computational cost especially whesratimg

b pE D with low percentage of sensors and large regionsrebler,

the MIC approach allows for design of various difet
The value ofA can be calculated from the likelihood ratio algorithms (e.g. an iterative approach etc.).

of the Al,and Al PDFs: V.  PERFORMANCE EVALUATION
fa, (D) This section gives an insight into the performancethe
——=1 (®) proposed localization method by analyzing fiiebability of
fmm (B) transmitter location estimationn terms of the number of

] ) ] sensors, channel and error in range estimatiorurAisg) that
wherek denotes the region that contains the transmitted, a the estimated location of the transmitter is posid in the

thej denotes the region whose PDF has the highest mean center of the region, then the maximal error in gen
r?gx{,uj,r}. Based on the assumption that the PDFs follow th@gtimation will be E:a\/E/Z, where a denotes the side

normal distribution, eq. 5\ can be computed as: length of the region. To obtain relevant resultsnié Carlo
simulations are carried out for all performanceriost Table

~ 2 . . .
(Bt ) _(A max{y;, ) ©) 1 lists the used simulation parameters.
207 -1 _ 20° -1
e or wk,r =e I E[Tj p TABLE I. SIMULATION PARAMETERS
Simulation parameters
B. RIF based localization with movable regions Interpolation technique IDW modified Sheppard's
The localization approach presented previoisimostly Indoor parameters
empirically based and it does not require any $jgechannel Propagation model Multl—waSIL ;vc;t: v\ll?ngénormal




Simulation parameters
Interpolation technique IDW modified Sheppard’s

Pathlosss exponent 35
Operating frequency 2.4GHz
Transmit power 10dBm
Area side length (A) 40m
Initial number of transmitters 2

Outdoor parameters

Propagation model Hata with log-normal

shadowing
Transmltterr]:iglhgtht — receiver 30m —2m
Operating frequency 915MHz
Transmit power 49dBm
Area side length (A) 600m
Initial number of transmitters 3

Fig. 5 depicts the probability of location estinoati(Pp),
for different dimensions of the regions, in deperweof the
relative number (to the total number of area mesintp) of
randomly scattered sensors. The area mesh poiptesent
the unobserved area locations, i.e. the intermmigtbints. It is
evident that the method performs better for largegion
dimensions due to the higher error in range esitimat
Furthermore, when using the MIC approach, the perdmce
of the method is substantially increased. The testdm Fig.
5 pinpoint the possible applicability of the sphieerpolation
based location estimation, i.e. scenarios thatireqonly a
rough estimation of the location of the new trarisems and
the swiftness of the localization is not of the roast
importance (e.g. cognitive femto-cells).
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Figure 5. Probability of location estimation vsnmher of sensors for
indoor environment and scattered positioning (B5Sthadowing Variance)

Fig. 6 depicts the probability of location estinoatiin
dependence of the relative number of sensors #dcat a
grid). Similar conclusions as for Fig. 5 apply. Atitchally, it
is evident that the method’s performance is nofossly
affected by the positioning type (i.e. scatteredgadded)
which can be beneficial in many realistic scenavibere the
positioning of the sensors is random i.e. scattered

Fig. 7 gives the dependence of the probabilityoaftion
estimation on the shadowing variance for indooriremment.
Higher level of the shadowing variance significaritecreases

the performance of the localization method for denal
regions. It is evident that when the region sizedssiderably
large, the method proves to be resistant to thelcshiag
effect. Moreover, when utilizing the MIC approacthe
method proves to be more resistant for high valofeshe
shadowing effect.
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Figure 6. Probability of location estimation vsnmuer of sensors for indoor
environment and gridded positioning of the seng@&dB Shadowing
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Figure 7. Probability of location estimation vsadbwing variance for indoor
environment and gridded positioning of the senf®25% relative number of
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Fig. 8 depicts the probability of location estinoatiin

dependence of the shadowing variance for outdoor
environments.
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Figure 8. Probability of location estimation vsadbwing variance for
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synchronization etc.). The computational efficiemomes in

It is evident that when using the MIC approach, therade-off with the localization precision of the timed,

proposed method can reliably detect the transmittenore
than 70% of the cases on a resolution scale ofoappately
100m for a shadowing variance of 4dB. This perforosais
more than adequate when considering an outdoorc€Rasio,
€.g. opportunistic access on television white sp4t¥'WS).
Fig. 9 shows the cumulative distribution functiohtbe
error in range estimation for indoor environmemt.order to
achieve small range estimation error, the methqdires high
number of sensors.
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Figure 9. Cumulative distribution function of thea in range estimation for
indoor environment (6.5 dB Shadowing Variance)

As evident, the proposed method can reliably detleet
transmitter in more than 70% of the cases on dutgn scale
of approximately 5m (a typical room) for a relatiwember of
sensors below 2%. In terms of a femto-cell scendhig can
be interpreted as the capability of the femto-ctlgletect a
new transmitter. For example, if every apartmerd touilding
has one femto-cell capable of RSS measurements aralv
transmitter becomes active, then the proposed rdethith
detect the transmitter on a scale of a room in ntioae 70%
of the time and on a scale of an apartment (reisolwf more
than 9m) in more than 99% of the time.

VI. CONCLUSION

Detection of unused spectrum allows CR users tgq)

opportunistically reuse the available spectrum ateliate the
spectrum scarcity problem. The process of transmitt
localization can increase the radio environmentaraness of
the CR systems and improve the overall spectruiniefty.
This paper proposes a novel method for locaticimesion
of radio transmitters in a CR based environmenttilizes the
RIF maps obtained by interpolating RSS measurerdatd
from a number of sparsely distributed sensors.Kdntost of
the existing localization algorithms, the proposedthod is
computationally efficient and does not depend ompex
hardware solutions (e.g. antenna arrays, high ifidel

however the results show that its performance ialsie for
CR scenarios (e.g. cognitive femto-cells, TVWS )etMain
limitation of the method is the fidelity of the usrtlying
interpolation technique and the introduced inteatfoh error.

Future work will focus on detailed assessment &eaknt
interpolation techniques and their impact on thecigion of
the method. It will also investigate the effect \afriety of
scenarios targeting different propagation modelw@sas the
number and distribution of the transmitters.
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