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Abstract—This paper considers the problem of how to quickly
and accurately identify spectrum holes from downlink orthogonal
frequency division multiple access (OFDMA) signals in frequency
selective fading environment. We assume that the subcarrier
assignment of primary users (PUs) in an OFDMA system is
a priori known to the detector. Under this assumption, we
formulate the original problem as the problem of detecting
presence/absence of PUs, which requires less computational
complexity than its original counterpart. We propose a spectrum
sensing algorithm to detect presence/absence of a PU. In the
proposed algorithm, we first apply the Thomson’s multitaper
spectrum estimation (MTSE) method to obtain spectral estimates
at certain subcarriers of interest, and then we perform a simple
threshold test. We present closed form results for false-alarm
and miss-detection probabilities of the proposed algorithm. We
study impacts of system/MTSE parameters on the detection
performance via Monte Carlo simulation.

I. INTRODUCTION

A major challenge for cognitive radio (CR) is to develop

efficient spectrum sensing algorithms that are able to quickly

and accurately identify spectrum holes in various wireless

environments [1] [2]. In recent years, there has been a signif-

icant amount of research effort devoted to such development.

Loosely speaking, spectrum sensing techniques can be clas-

sified into two categories: narrow-band (single-band) sensing

and wide-band (multi-band) sensing.

Although most previous works have focused on narrow-

band (single-band) spectrum sensing, wide-band (multi-band)

spectrum sensing has recently received increasing research

attention [3] [4] [5] [6]. More specifically, the work [3] applies

a single detector to sequentially detect candidate channels

while in [4], multiple sensors with one per candidate channel

are employed to simultaneously observe candidate channels.

However, when the number of the channels is large, the former

suffers from large switching delays introduced by frequently

altering observing central frequencies, while the latter has high

implementation/operation complexities. Moreover, based on

the Thomson’s multitaper spectral estimation (MTSE) method,

an optimal wide-band detector is proposed in [5] and a

wavelet-threshold wide-band sensing technique is proposed

in [6]. However, neither of these works considers orthogonal

frequency division multiple access (OFDMA) signaling and

the effects of frequency selectivity on the detection of primary

signals.

In this paper, we consider the problem of how to quickly and

accurately identify spectrum holes from downlink OFDMA

signals in frequency selective fading environment. We assume

that the detector has a priori knowledge on the subcarrier

assignment of primary users (PUs) in the system. In an

OFDMA system, a set of subcarriers is allocated to a PU and

user activities at this set of subcarriers are strongly correlated.

The original sensing problem boils down to a problem of

detecting presence/absence of PUs. When the number of

subcarriers assigned to a PU is large, the new problem requires

less computational complexity than its original counterpart

because sensing a small part of these subcarriers may be

sufficient to achieve a desirable detection performance. To

detect presence/absence of a PU, we propose a spectrum

sensing algorithm. In the proposed algorithm, we first compute

multitaper spectrum estimates at certain subcarriers of interest,

and then we perform a simple threshold test. We present closed

form results for false alarm and miss detection probabilities

of the proposed algorithm. We study impacts of different

system/MTSE parameters on the detection performance via

Monte Carlo simulation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink OFDMA-based primary system that

supports maximum Np PUs (indexed by m ∈ {1, . . . , Np}),
which share Nc sub-carriers (indexed by k ∈ {1, . . . , Nc}).
The Nc sub-carriers are divided to a number of resource blocks

(RBs), each of which has Ns contiguous sub-carriers. Let A be

the index set of active users with |A| denoting its cardinality.

Without loss of generality, we assume that the mth user is

an active user. The information symbol stream of the mth

PU is parsed into blocks, each containing Q symbols. Let

S
(n)
m denote the nth Q × 1 such block of the mth user. The

qth information symbol from this block is denoted by S
(n)
m,q,

i.e., S(n)
m = [S

(n)
m,1, S

(n)
m,2, . . . , S

(n)
m,Q]. We model primary signal

samples S
(n)
m,q as independent and identically distributed (i.i.d.)

random variables (RVs) with means zero and variances σ2
m.

Via serial-to-parallel conversion and subcarrier mapping,

information symbols from |A| active users are fed as inputs to

corresponding subcarriers of an Nc-point inverse fast Fourier

transform (IFFT) processor. We use κm,q to denote the subcar-

rier index of the qth symbol of the mth PU. Let X(n) be the

input vector to the IFFT, whose kth entry X
(n)
k represents

the information symbol at the kth subcarrier of the IFFT.

Specifically, we can express X
(n)
k as

X
(n)
k =

{

S
(n)
m,q if k = κm,q for m ∈ A and q ∈ Q

0 otherwise
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where Q := {1, . . . , Q}. The output vector of the IFFT

is obtained as x
(n) = FH

Nc
X

(n), where FH
Nc

denotes the

conjugate transpose of the normalized FFT matrix of size Nc.

After parallel-to-serial conversion, a cyclic prefix of length

Ng is appended in front of x(n). The ith entry of the resulting

vector is given by x
(n)
i = N

− 1
2

c
∑Nc

k=1 X
(n)
k ej2πik/Nc , if −

Ng + 1 ≤ i ≤ Nc and x
(n)
i = 0, otherwise. Let xs be the

serialized version of the blocks x(n) and let Nu be the length

of a transmission block, i.e., Nu = Ng +Nc. Specifically, xs

is defined as follows xs := x
(n)
i , where s := nNu+i. Here we

assume that the channel between the primary transmitter and

the detector at the secondary user (SU) is time-invariant and

frequency selective. Let h = [h0, . . . , hL] denote the sampled

impulse response of the channel, where L is the channel length

and hl is the lth channel tap. The tth received signal sample

at the detector is given as

rt = ej2πδt/Nc

L
∑

l=0

hlxt−l + wt (1)

where δ denotes a normalized frequency offset, and wt is

additive white Gaussian noise (AWGN) with variance σ2
w.

Here, we assume that 1) the primary signal xt is independent

of wt; 2) δ is much smaller than the subcarrier spacing; 3) the

channel impulse response h is perfectly known to the detector;

and 4) the SU has a priori knowledge on primary system

specifications, such as the central frequency, the sampling

period, the subcarrier spacing and assignment, and etc.

Remark 1: Assumption 3) is made primarily for deriving an

exact error performance of our detection method, which will be

presented in Section IV. For certain cellular systems based on

3rd generation partnership project (3GPP) long term evolution

(LTE) or IEEE 802.16 standards, system specifications such

as the subcarrier assignment, preamble, and frame structure,

are publicly available. Assumption 4) can be satisfied by

exploiting such information.

During a given time period, certain PUs are not active

and thus the spectrum bands allocated to these PUs become

available for secondary use. Due to the assumption that users’

activities are independent, we only need to focus on a single

active PU. Without loss of generality, we consider the mth

PU. Mathematically, the problem of detecting the mth PU can

be formulated as a binary hypothesis testing problem as

H0 : X(n)
κm,q

= 0, q ∈ Q

H1 : X(n)
κm,q

= S(n)
m,q, q ∈ Q.

III. MULTITAPER SPECTRAL ESTIMATION

We next review the Thomson’s MTSE method and some

necessary statistical properties of MTSE [7].

A. Preliminary

The MTSE method employs several orthogonal tapers (win-

dows). Let {at,p}
N
t=1, p = 1, . . . , P , be P orthogonal tapers

of length N , which satisfy
∑N

t=1 at,lat,p = 1 if l = p

and
∑N

t=1 at,lat,p = 0 if l 6= p. In practice, two families

of orthogonal tapers, called the Slepian tapers [7] and the

sinusoidal tapers [8], are commonly used. Here we assume

that the sampling interval is unity. In particular, the sinusoidal

taper is given in an analytical form as

at,p =

√

2

N + 1
sin

(

πpt

N + 1

)

(2)

where t = 1, . . . , N and p = 1, . . . , P . For a stationary

discrete time series {rt}
N
t=1, the pth taper spectral estimator

(eigenspectra) is given by

R̂p(f) =
∣

∣

∣

N
∑

t=1

at,prte
−j2πtf

∣

∣

∣

2

, |f | <
1

2
.

The multitaper spectral estimate is the average of P taper

spectrum estimates and is given by R̂(f) =
∑P

p=1 R̂p(f)/P .

Let 2W be the resolution bandwidth. The parameter P is often

selected to be 2NW−1 for Slepian tapers and 2W (N+1)−1
for sinusoidal tapers.

B. Statistical Properties of MTSE

We adopt the assumption in [9] that the spectrum varies

slowly over (f −W, f +W ). Let R(f) denote the true power

spectral density (PSD) function of rt.
1) Mean, Variance, and Convergence: For a large N ,

the mean and variance of R̂(f) can be approximated as

E[R̂(f)] ≈ R(f), and var[R̂(f)] ≈ R2(f)/P , and R̂(f)
converges in distribution to R(f)χ2

2P /(2P ) as N approaches

∞ for f ∈ (0, 1/2) [9].

2) Covariance of Multitaper Spectrum Estimates at Two

Distinct Frequencies: We now further assume that the time

series rt is a realization of a Gaussian process with mean

zero. Let fi and fj be two distinct frequencies. If R(f) is

slow varying over (fi −W, fj +W ), the covariance of R̂(fi)
and R̂(fj) can be written as [9]

Γij ≈















R2(fi)

P 2

P
∑

l,p=1

Λl,p(∆ij) if |∆ij | ≤ 2W

0 if |∆ij | > 2W

(3)

where Γij := cov[R̂(fi), R̂(fj)], ∆ij := fi − fj and

Λl,p(∆ij) :=
∣

∣

∑N
t=1 at,lat,pe

j2π∆ij t
∣

∣

2
.

IV. THE MTSE BASED DETECTION METHOD

To detect the presence/absence of a PU, we propose a

Multitaper spectrum estimation based Threshold Test (MTT)

as follows:

T :=

Nf
∑

u=1

R̂(fu)
H1

T
H0

ηth (4)

where {fu}
Nf

u=1 denotes a set of sampling frequencies from

the allocated spectrum of a PU, Nf denotes the number of the

sampling frequencies, and ηth denotes a threshold. Without

loss of generality, we assume that the frequencies {fu}
Nf

u=1

are equally spaced, and the frequency separation is denoted

by ∆, i.e., ∆ := |fu+1 − fu|.



Like energy detection, the threshold test in (4) has a simple

test statistic and performs a threshold comparison to determine

hypothesis H0 or H1. There are, however, some important

differences between energy detection and MTT. First, the

terms in the test statistic of energy detection is often assumed

to be i.i.d. and the number of the terms is typically large. As

a result, the central limit theorem (CLT) can be applied to

approximate the probability density function (PDF) of the test

statistic. In the threshold test (4), the terms {R̂(fu)}
Nf

u=1 are

not necessarily independent and the number of these terms

is not necessarily large. Thus, CLT is no longer applicable.

The PDF of the test statistic in (4) is much more complicated

than that in energy detection. Secondly, for a given signal-to-

noise ratio (SNR), the detection error performance of energy

detection is determined by the threshold and the number of

the terms in the test statistic. Besides these two parameters

ηth and Nf in (4), the detection error performance of MTT

is also determined by the number of samples, N , the number

of tapers, P , and the frequency separation, ∆. As discussed

earlier, {R̂(fu)}
Nf

u=1 are Chi-square distributed for a large N
and they are not necessarily independent. Statistically, the test

statistic T is nothing but a sum of the correlated Chi-square

RVs. We next will present results on the PDF of T in [10].

A. The Sum of Correlated Chi-Square Random Variables

We use γu as a shorthand notation to represent R̂(fu).
Let R denote the Nf × Nf covariance matrix of the vector

[γ1, . . . , γNf
] with rij denoting its (i, j)th entry. Let C be a

matrix that relates to R as cij =
√

rij/P , i, j = 1, . . . , Nf ,

where cij is its (i, j)th entry. Let {λl}
Ne

l=1 be Ne distinct

eigenvalues of C and let {ml}
Ne

l=1 be their corresponding

multiplies. Note that each γs has the same P . Extending

the result in [10, Eq. (20)], we obtain the PDF of T as

f(T ) =
∑Ne

l=1

∑Pml

r=1 βlrp(T ; l, r), where βlr is defined as

for r = Pml, βlr =
(

Ne
∏

k=1,k 6=l

(1− sλk)
−Pmk

)∣

∣

∣

s=1/λl

,

for 0 < r < Pml, βlr =
1

(Pml − 1)!(−λl)Pml−r

dPml−r

dsPml−r

Ne
∏

k=1,k 6=l

(1 − sλk)
−Pml

∣

∣

∣

s=1/λl

and p(T ; l, r) is defined as

p(T ; l, r) =
1

λl(r − 1)!

(

T /λl

)r−1

e−T /λl .

In particular, when {γu}
Nf

u=1 are i.i.d., we have Ne = 1 and

m1 = Nf . Accordingly, the PDF of T reduces to

f(T ) =
1

λ1(NfP − 1)!

(

T /λ1

)NfP−1
e−T /λ1 .

Note that in this case, we have var[rii] = R2(fi)/P . Since R

is a diagonal matrix with the diagonal entries var[rii], C is

also a diagonal matrix with the diagonal entries R(fi)/P as

cii =
√

rii/P .

B. The False-Alarm Probability

Under H0, the detector observes AWGN wt. Hence, the true

PSD R(f) is constant and is equal to σ2
w . According to (3)

and the fact that cij =
√

rij/P , we obtain cij as

cij =











σ2
w

P

√

∑N
l,p=1 Λl,p(Dij)

P
, if Dij ≤ 2W

0, if Dij > 2W

(5)

where Dij := |i− j|∆. The false-alarm probability is defined

as the probability of the event that a PU is determined to be

active while actually the PU is inactive. Mathematically, the

false alarm probability is given by PFA = P (T > ηth|H0) =
∫∞

ηth
f(T |H0)dT . We next present the following result on the

false-alarm probability PFA.

Proposition 1: The false alarm probability PFA is given by

PFA =

Ne
∑

l=1

Pml
∑

r=1

βlr
Γ(r, ηth/λl)

(r − 1)!
(6)

where Γ(·, ·) denotes the upper incomplete Gamma function,

i.e., Γ(s, x) is defined as Γ(s, x) =
∫∞

x ts−1e−tdt, and Ne,

ml and λl are the corresponding parameters for the matrix C

given in (5). In particular, if {R̂(fu)}
Nf

u=1 are i.i.d., then PFA

is given by

PFA =
Γ(NfP, ηth/λ1)

(NfP − 1)!
(7)

and for given Nf , P and PFA, the threshold can be determined

as ηth = Γ−1(NfP, PFA(NfP − 1)!)λ1, where Γ−1 denotes

the inverse of the incomplete Gamma function Γ(s, x) with

respect to the second parameter x.

C. The Miss-Detection Probability

We now compute the miss-detection probability. Under

H1, the received signal samples in (1) can be rewritten as

rt =
∑L

l=0 hlut−l + wt, where ut := xte
j2πδt/Nc . Recall

that S
(n)
m,1, . . . , S

(n)
m,Q are i.i.d. RVs. Since Q is relatively large

in practice, the transmitted signal samples xt can be approxi-

mately modelled by a Gaussian random process. Since a linear

transform of a Gaussian process is still a Gaussian process,

the received samples rt can be also approximated treated as

a realization of a Gaussian process. Hence, the results on the

covariance of the MTSE between two distinct frequencies in

Section III hold. According to (3), we need to obtain the true

PSD, R(f), in order to compute an approximation of cij , This,

however, is infeasible in practice. Here, we use the unbiased

property of MTSE, i.e., E[R̂(f)] = R(f), to reexpress cij as

cij =











E[R̂(f)]

P

√

∑N
l,p Λl,p(Dij)

P
, if Dij ≤ 2W

0, if Dij > 2W.

(8)

We express the pth taper spectral estimate under H1 as

R̂p(f) = |
∑L

l=0 hlXp,l(f) + Wp(f)|
2, where Xp,l(f) :=

∑N
t=1 at,put−le

−j2πtf and Wp(f) :=
∑N

t=1 at,pwte
−j2πtf .



Using the facts that Xp,l(f) and Wp(f) are independent and

E1[|Wp(f)|
2] = σ2

w, we can write E1[R̂p(f)] as

E1[R̂p(f)] = E1[
∣

∣

L
∑

l=0

hlXp,l(f)
∣

∣

2
] + σ2

w ,

where E1[·] denotes the conditional expectation under H1.

Furthermore, we have

E1[|

L
∑

l=0

hlXp,l(f)|
2] =

L
∑

l1,l2=0

hl1h
∗
l2E1[Xp,l1(f)X

∗
p,l2(f)].

Let σ2
k be the transmitted signal power at subcarrier k, i.e.,

σ2
k = σ2

m if k = κm,q for m ∈ A and q ∈ Q and σ2
k = 0

otherwise. Under certain assumptions, we obtain the following

results on E1

[∣

∣

∑L
l=0 hlXp,l(f)

∣

∣

2]
.

Proposition 2: If N is sufficiently large and a multiple of

Nc, i.e., N = NlNc for a positive integer Nl, then

E1

[∣

∣

L
∑

l=0

hlXp,l(f)
∣

∣

2]
=

L
∑

l1,l2=0

hl1h
∗
l2

Nc
∑

k=1

σ2
ke

j
2πk(l1−l2)

Nc

Nl−1
∑

s=0

Ak,s(f ; p) (9)

where Ak,s(f ; p) =
∣

∣

∑Nc

i=1 asNc+i,pe
−j2πζki

∣

∣

2
with ζk := f−

k/Nc.

Lemma 1: For sinusoidal tapers, Ak,s(f ; p) is given by

Ak,s(f ; p) =
1

2(N + 1)

∣

∣

∣
Ξs,p

sin(π(Vp/2− ζk)Nc)

sin(π(Vp/2− ζk))

− Ξ∗
s,p

sin(π(Vp/2 + ζk)Nc)

sin(π(Vp/2 + ζk))

∣

∣

∣

2

where Ξs,p := ejπUs,pejπVp(Nc+1)/2 with Us,p := psNc/(N+
1) and Vp := p/(N + 1).

Corollary 1: For sinusoidal tapers, if Nc is less than or

equal to 1/2W , and N is a multiple of Nc and is much larger

than Nc, i.e., Nl ≫ 1, then

E1

[∣

∣

L
∑

l=0

hlXp,l(f)
∣

∣

2]
≈

Nl

N + 1

L
∑

l1,l2=0

hl1h
∗
l2

Nc
∑

k=1

σ2
k

ej2πk
l1−l2
Nc

∣

∣

∣

∣

sin(πζkNc)

sin(πζk)

∣

∣

∣

∣

2

.

In particular, if f = k0/Nc for some k0 ∈ {1, . . . , Nc},

E1

[∣

∣

L
∑

l=0

hlXp,l

( k0
Nc

)∣

∣

2]
≈ σ2

k0

∣

∣H
( k0
Nc

)∣

∣

2
(10)

where H(f) :=
∑L

l=0 hle
j2πlf .

Remark 2: Lemma 1 and Corollary 1 hold only for sinu-

soidal tapers. For the Slepian tapers, it is difficult to obtain

an analytical form of Ak,s(f ; p) and an analytical expression

of E1(|
∑L

l=0 hlXp,l(f)|
2). However, via simulation, a similar

result to the one in (10) can be observed.

Applying Corollary 1, we have E1(R̂p(i/Nc)) ≈
σ2
i |H(i/Nc)|

2 + σ2
w, which is independent of the taper in-

dex p for any i ∈ {1, . . . , Nc}. Since E1(R̂(i/Nc)) =
E1(R̂p(i/Nc)) and E1(R̂(i/Nc)) ≈ R(i/Nc), we have

R(i/Nc) ≈ σ2
k0
|H(i/Nc)|

2 + σ2
w. In practice, the frequency

response H(i/Nc) can be approximated as a constant over a

RB, which is much larger than 2W . Thus, the diagonal entries

cii are given by cii = (σ2
i |H(i/Nc)|

2 + σ2
w)/P .

The miss detection probability is defined as the probability

of the event that a PU is determined to be inactive while

actually the PU is active. Mathematically, the miss detection

probability is given by

PMD = P (T < ηth|H1) =

∫ ηth

0

f(T |H1)dT .

Proposition 3: The miss-detection probability PMD is

given by

PMD =

Ne
∑

l=1

Pml
∑

r=1

βlr

γ
(

r, ηth

λl

)

(r − 1)!
(11)

where γ(·, ·) denotes the lower incomplete gamma function,

i.e., γ(s, x) is defined as γ(s, x) =
∫ x

0
ts−1e−tdt, and Ne, ml

and λl are the corresponding parameters for C in (8).

Remark 3: For given PFA and PMD , the parameters N ,

Nf , P , and ηth can be obtained by using a trial and error

method in [11] (omitted due to limited space), which relies

heavily on Propositions 1 and 3.

V. SIMULATION RESULTS

We next provide several simulation examples to demonstrate

the effectiveness of the MTT method. In all the examples, we

choose Ns = Nf and ∆ = 1/Nc, and we use Slepian tapers

unless explicitly mentioned. We assume that E(|S
(n)
m,q|2) =

σ2
s independent of q. The SNR is defined as σ2

s/σ
2
w. We use

operating characteristic curves as our performance benchmark.
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Fig. 1. Impacts of the number of sampling points Nf and different tapers
(Nc = 64, N = 2048, P = 4, SNR = −5 dB).



TABLE I
COMPARISONS OF SIMULATION AND NUMERICAL RESULTS (N = 2048,

Nc = 256, P = 4, Nf = 8)

ηth 9.16 8.68 8.28 7.92 7.57 7.21 6.79

PFA(N) 0.20 0.30 0.40 0.50 0.60 0.70 0.80
PFA(S) 0.20 0.31 0.40 0.51 0.60 0.71 0.80

PMD(N) 0.29 0.20 0.14 0.092 0.059 0.035 0.018
PMD(S) 0.30 0.21 0.14 0.096 0.060 0.037 0.018

Example 1: In this example, we consider an AWGN chan-

nel with h0 = 1. We choose Nc = 64, N = 2048, P = 4,

and SNR = −5 dB. In this case, the frequency separation ∆
is 6.4W much larger than 2W , and thus multitaper spectral

estimates {γu}
Nf

u=1 can be considered to be independent. Fig.

1 depicts operating characteristic curves of the MTT using

Slepian tapers for various values of Nf . As can be seen

from this figure, the detection performance improves as Nf

increases. Fig. 1 also compares the detection performance

among Slepian tapers, sinusoidal tapers, and periodogram

(single taper). As shown in the figure, Slepian and Sinusoidal

tapers have almost the same performance and both perform

much better than the periodogram.

Example 2: Table I lists false-alarm and miss-detection

probabilities obtained from (6) and (11) and from the Monte

Carlo simulation for N = 2048, Nc = 256, Nf = 8,

P = 4, and SNR = −5 dB. We consider a frequency selective

channel with L = 3 with known but randomly generated

channel coefficients, where h = [0.7288−0.5988i,−0.0520+
0.0247i, 0.081+ 0.1021i, 0.0208+ 0.0038i]. In this table, we

use PFA(N) and PMD(N) to denote false alarm probability

and miss detection probabilities obtained from (6) and (11),

respectively, whereas we use PFA(S) and PMD(S) to denote

false alarm and miss detection probabilities obtained by using

Monte Carlo simulation, respectively. As can be seen from

Table I, the simulation results match very well with the

numerical results obtained from (6) and (11).

Example 3: In this example, we consider a three tap fre-

quency selective fading channel with an exponentially decay-

ing power-delay profile (L = 3). We do not assume perfect

knowledge on h and we only assume that the total energy of

the channel coefficients is known and is equal to unity, i.e,,
∑3

l=0 |hl|
2 = 1. We choose Nc = 128, Q = 8, N = 2048, and

SNR = 0 dB. We study impacts of frequency diversity gains

on the detection performance. Let Nb denote the number of

RBs of a PU. We consider two cases: case 1) the PU has two

RBs each having 4 contiguous subcarriers, and two RBs are

separated by 60 subcarriers, and case 2) the PU has only one

RB that consists of 8 contiguous subcarriers. Potentially, case

1) has a larger frequency diversity gain than case 2). As shown

in Fig. 2, case 1) has a better detection performance than case

2) due to frequency selectivity of the channels.

VI. CONCLUSIONS

In this paper, we have investigated how to sense OFDMA

signals in frequency selective fading environment. Based on
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Fig. 2. Impacts of frequency selectivity on detection performance (Nc =
128, Q = 8, N = 2048, L = 3, and SNR = 0 dB).

the Thomson’s MTSE method, we have proposed a sim-

ple spectrum sensing algorithm to detect spectrum holes of

downlink OFDMA primary systems. We have derived closed

form results for false-alarm and miss-detection probabilities

of the proposed algorithm. We have investigated impacts of

various parameters on the detection performance. In this work,

impacts of timing and frequency offsets on the detection

performance are not taken into account and they are currently

under investigation.
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