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Abstract—Post-disaster situation requires quick and effective
rescue efforts by the first responders. Generally the rescue
teams use wireless radios for intra-agency communications.
Lack of collaboration among different rescue agencies may
create interference among the emergency radios. Identification
of some physical parameters of these active radios is necessary
for collaboration. Carrier frequency and bandwidth can be
estimated by spectrum sensing, whereas modulation classification
requires further signal processing and classification operations.
Processing speed and performance of the classification system
can be controlled by appropriate selection of signal parameters,
signal processing techniques and the classification algorithms.
A wireless disaster area emergency network (W-DAEN) can be
installed in the disaster area to detect and capture data (time
samples) of the occupied frequencies. This study consists of
some simulation results of a machine learning based cooperative
automatic modulation classification technique by using six unique
features. The classification performance and processing time
of the proposed algorithm is quite satisfactory for real-time
classification system.

I. INTRODUCTION

After big disasters (natural or manmade) generally a number

of rescue teams come to the site in the first hour. In some

countries emergency frequencies are pre-allocated for the first

responders for better management. For example in Japan the

emergency frequencies are allocated by different states to the

local emergency responders. But for a big disaster rescue

teams come from all over the world and setup their own

wireless networks. At present most of the emergency radios are

normally set to use pre-defined PHY parameters. In emergency

situation, interferences occur when two or more networks try

to use same carrier frequency for individual communications

in close proximity. This interference among the corresponding

radios is a big hindrance to the rescue operations. A central

database that can collect, maintain and update the information

of active emergency radio can help in such cases. Rescue

teams may check the availability of corresponding frequencies

before setting up their networks in the disaster area to avoid

the interference. A conceptual architecture and description of

Wireless Disaster Area Emergency Network (W-DAEN) is

available in [1].

The organization of this paper is as follows. A brief back-

ground of the automatic modulation classification (AMC) is

presented in section II. Introduction of the network architecture

and system model is discussed in section III. Section IV con-

sists of the methods of parameter extraction and classification

algorithm. Simulation results are presented in section V while

the concluding remarks are added in section VI.

II. REVIEW OF AUTOMATIC MODULATION CLASSIFICATION

Modulation classification techniques are mainly divided into

two categories (in terms of used parameters), i) maximum

likelihood and ii) feature based. Azzouz and Nandi [2] have

proposed some features and algorithms to classify both analog

and digital modulation signals.The features are derived from

the instantaneous amplitude, frequency and phases of the

received signals. References [3], [4] discussed about two

classification approaches with the proposed features. The key

features used by Azzouz and Nandi are later used by [5],

[6] and many more. But in reality, accuracy of these features

depend on some factors such as noise, carrier offset error,

symbol rate estimation error that effect the success rate.

Hossen et.al [7] also proposed an ANN based classification

system by using the statistical signal characterization (SSC)

parameters [8]. The SSC parameters are very good to observe

the amplitude and frequency variations in the received signal.

However, magnitude of the SSC parameters are sensitive to

noise. So these parameters alone are not so useful in low SNR

cases. In fact very few literature are available that can classify

signals with very low SNR. Fortunately for the proposed

scenario (disaster area) the sensors are expected to receive high

SNR signal (because of the presence of line-of-sight). Effect of

carrier frequency offset (CFO) of the receiver is another issue

that will effect the accuracy of the SSC calculations. Moreover,

SSC parameters can not retrieve the phase information, which

is necessary to classify M -ray PSK and MSK signals. Time-

frequency based features have shown good performance on

retrieving the phase information from the received signal.

Methods based on Wigner-Ville distribution (WVD) and Cross

Margenau-Hill distribution (CMHD) are quite useful [9]. For

an online classification system computation complexity and

processing time are two essential issues. The SSC parameters

along with two time-frequency based features have been

chosen because of the calculation simplicity.

III. SYSTEM MODEL

In post-disaster scenario, rescue teams start working in the

whole area. So, spectrum sensing is needed to detect the

presence of rescue teams in the area. W-DAEN [1] will collect
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Fig. 1. Simulation model

signal samples from occupied channels and forward to the

processing block for modulation classification. Architecture

and implementation of the sensor network is beyond the scope

of this paper. In this study a simulation has been carried out

for the modulation classification system. Information signal

m(t) is modulated with a carrier signal c(t). The effect of the

environment i.e fading, attenuation etc. degrades the received

signal power. Moreover, the noise generated by the receiver

hardware makes it worse. For the narrow-band signal the

dynamic effect of wireless channel is discarded, instead a slow

fading channel is assumed. So the signal to noise ratio (SNR)

due to the receiver thermal noise is a sufficient parameter

to check the classification performance. For simplicity the

whole receiver architecture is not developed in the simulation.

The intermediate frequency (IF) signals were generated for

different modulation schemes and fed directly to the AMC

unit. Block diagram of the system model is presented in fig.

1.

The formulation used to generate the modulated signals are

presented here. The received signal can be represented by

r(t) = s(t) + w(t) (1)

where s(t) is the modulated signal and the w(t) is gaussian

noise.

The signal s(t) varies with different modulation schemes.

For example in case of analog modulations

sAM(t) = [1 + km(t)] cos(2πfct) (2)

sFM(t) = cos[2πfct+ kf

∫ t

∞

m(τ)dτ ] (3)

where, k and kf are the modulation index for AM and FM

respectively. fc denotes the carrier frequency. m(t) is a real

speech signal. The difference between these two schemes can

be checked by simply finding the amplitude and frequency

variations. Modulated signal s(t) can be written in a more

generic form as

s(t) = Im(t) cos(2πfct)−Qm(t) sin(2πfct) (4)

here Im(t) and Qm(t) are “in-phase” and “quadrature” com-

ponents of the message signal m(t) respectively. For digital

modulations the information signal md(t) can be represented

by

md(t) =
∑

i

γig(t− iT ) (5)

Here, γi is the symbol value at time i, T is symbol duration

and g is shaping pulse with window width T . In case of ASK
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Fig. 2. Data processing steps

signals the quadrature component of s(t) in equation 4 is zero,

and can be written as:

sASK(t) =
∑

i

αxg(t− iT ) cos(2πfct+ ψc) (6)

where, {αi ∈ (0, 1)}, and ψc is carrier phase that may

vary in dynamic channel environment and introduce non-zero

quadrature component. For FSK signals

sFSK(t) = cos(2πfct+ ψ(t)) (7)

here, ψ(t) is the integral over time of the message signal

md(t). So these two signals can also be separated by looking

at the amplitude and frequency variations. In PSK signals the

amplitude in the symbol duration becomes constant but the

“in phase” and “quadrature” signals are dependent.

sPSK(t) =
∑

i

g(t− iT ) cos(2πfct+ ψi) (8)

Here, the symbol ψi takes the values (0 + (2mi +1) π
M
) with

0 ≤ mi ≤ (M −1) and M is the modulation level. For BPSK

and QPSK the value of M is 2 and 4 respectively. In this study

following assumptions are made for the received signal

1) The received signals are narrowband and real.

2) The s(t) received by the modulation classifier is already

down-converted to a known intermediate frequency(IF)

with an unknown offset.

3) The message signal is independent and identically dis-

tributed (i.i.d.)

4) Modulation types are AM, FM, 2ASK, 2FSK, BPSK,

QPSK, π/4QPSK and MSK

IV. MODULATION CLASSIFICATION

To mitigate the effect of RF impairments from the IF signal

some pre-processing is necessary before the feature extraction.

Compensation for frequency offset and symbol timing error

should be done. Figure 2 shows the flow of signal processing

in the considered system.

A. Carrier and symbol rate estimation

The carrier offset occurs due to the modulation frequency

mismatch between the transmitter and receiver. Discrete

Fourier transform (DFT) and Fast Fourier transform (FFT)

based approaches are widely used to estimate the frequencies

in a signal. But these processing requires a prior knowledge

of the symbol rate. Data aided (DA) techniques where known

pilot symbols are transfered periodically to align with the



carrier [10] are widely used in communication systems. But

in modulation classification environment no communication

with the emergency emitters make the DA infeasible. Non data

aided (NDA) methods are developed to overcome this problem.

Correlation and cyclostationarity based approaches [9], [11],

[12] are becoming popular for this purpose. A correlation

based approach is considered here. Signal generated by the

transmitter with a carrier fc is

s(t) = Is(t) cos(2πfct)−Qs(t) sin(2πfct) (9)

So, the following “in-phase” and “quadrature” signals are

extracted by the receiver

Ir(t) = Is(t) cos(2π(fc − frc)t)−Qs(t) sin(2π(fc − frc)t)

Qr(t) = Is(t) sin(2π(fc − frc)t) +Qs(t) cos(2π(fc − frc)t) (10)

Here, frc is the receiver frequency. Hence, the received com-

plex envelope becomes,

r(t) = Ir(t) + iQr(t) = s(t)e2jπ(fc−frc)t (11)

In ideal case, fc = frc, so r(t) = s(t). But in reality fc =
frc +∆f . Now, the received signal becomes,

r(t) = s(t)e2iπ∆ft (12)

For an M−ray PSK signal, the s(t) can be expressed as

equation 5 So, the received signal becomes

r(t) =
∑

i

γih(t− iT )e−2jπ∆ft + w(t) (13)

Where, h(t) is the convolution of the g(t) and the channel

impulse response with the awgn w(t). The non-conjugate

autocorrelation of the squared received signal R{r(t)2} can

be written as

R{r(t)2} = R{γMi }
∑

i

(h(t− iT ))2e−4iπ∆ft (14)

This function can be represented by the Fourier series with

the major coefficient at the frequency M(∆f). Here, M is the

modulation level. So the frequency offset can be calculated by

finding the maxima of the fourier transform of the rM (t). To

increase the accuracy of carrier offset estimation, the received

signal sequence has been divided into some segments. And the

offset is calculated for each segment. Mean of these values are

taken as the final CFO.

∆f̂ =
1

Ns

Ns
∑

i=1

∆fi (15)

here, Ns is the number of signal segments. The signal r(t)
is then corrected by again modulating with a signal of ∆f̂
frequency. The bandwidth is simply calculated from the signals

spectrum obtained from the filter. For the digital modulated

signals the symbol rate estimation is an important parameter

for time-frequency analysis. Moreover the calculation of over-

sample rate is necessary for the fifth and sixth features. The

algorithm discussed in [13] has been adopted here. The steps

to estimate the symbol rate are

Fig. 3. SSC amplitude and period

• Calculate the Hilbert transform of r(t)
• Find FFT of squared envelope with M points and find the

maximum n of the absolute value.

• Then estimate the symbol rate as Rs =
∣

∣n.fs/M
∣

∣. fs is

the rough sampling rate.

B. Feature extraction

A total of six parameters are used to classify eight mod-

ulation schemes. In SSC waveforms are characterized as a

function of their relative amplitudes and phases by exploiting

the fact that a signal consists of a set of consecutive segments.

Each segment has amplitude and period characteristics that are

unique for particular frequency combinations and statistically

well-behaved [8] i.e. the mean and variance of the segments

are consistent. One pre condition of such analysis is the

proper, adequate and accurate sampling of the received signal.

As mean and variance of the segments are consistent for

a certain type of waveform these characterization can be

used to classify the received signal. Four SSC parameters

are amplitude mean, period mean, amplitude deviation and

period deviation. These parameters can be observed from Fig.

3. The waveform is a combination of multiple frequencies

represented by a series of extrema. SSC segments are defined

by the area bounded by two consecutive extrema (maxima

and minima). A waveform with ’N ’ extrema (N/2 Maxima

+ N/2 Minima) has ’N − 1’ SSC segments. In the figure

six extrema produces five SSC segments. Extrema amplitude

and periods are denoted as (a0−a5) and (t0−t5) respectively.

However, the detection of the extrema is sensitive to the carrier

frequency estimation. Mathematically, the segment amplitudes

and periods are calculated by following equations in (16).

Ai = |ai − ai−1|

Ti = |ti − ti−1| (16)

where,

Ai, Ti = Amplitude and period of the i-th segment,

ai, ti = Amplitude and period at the concluding extremum of

the segment, and

ai−1, ti−1 = Amplitude and period at the beginning extremum

of the segment respectively.



These two values are used to calculate first four features by

the following four equations in (17).

AM =

( NS
∑

i=1

Ai

)

/NS; AD =

( NS
∑

i=1

|Ai −AM|

)

/NS

TM =

( NS
∑

i=1

Ti

)

/NS; TD =

( NS
∑

i=1

|Ti − TM|

)

/NS (17)

here,

AM= Amplitude mean, TM= Period mean,AD= Amplitude de-

viation, TD= Period deviation,NS= Number of SSC segments.

SSC parameters can distinguish among the modulation

schemes with amplitude and frequency variations only. To

classify different MPSK signals time-frequency based pa-

rameters are used [9]. WVD represents good time-frequency

resolution. WVD can be written as

Ws(t, f) =

∫

∞

−∞

S(f + α/2)S∗(f − α/2)ej2πtαdα (18)

Here, S(f) is the Fourier transform of s(t) and ∗ means

complex conjugate. The instantaneous frequency can be ob-

tained by taking the first moment of WVD with respect to the

frequency.

fm(t) =

∫

∞

−∞
f.Ws(t, f)df

∫

∞

−∞
Ws(t, f)df

(19)

So for signal with variable frequency there will be multiple

steps. Therefore the fifth feature is obtained by applying a

median filter to equation 19

mf =
1

N

N
∑

i=1

∣

∣

∣

∣

fm(i)−
1

N

N
∑

j=1

fm(j)

∣

∣

∣

∣

(20)

This feature is helpful to distinguish between FSK and MSK

signals. CMHD of a signal can preserve the phase information.

The CMHD is represented as [14]

Cs(t, f) =
1

2

∫

∞

−∞

{

[s(t+ τ) + s(t)ej2πfcτ ]e−j2πfct
}

e−j2πfτfτ

(21)

The CMHDs, show terms that are related to phase or amplitude

information of the signal under analysis, in a row along time

at the carrier frequency. This row can be extracted from the

CMHD as

g(t) =
∣

∣Cs(t, f = fc)
∣

∣ (22)

Therefor the sixth feature is calculated by

mp =

√

√

√

√

1

N

N
∑

i=1

g2m(i)−

(

1

N
|gm(i)|

)2

(23)

Here, gm is the maximum value of all the received symbols.

r(t)
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Fig. 4. Decision tree steps

C. Classification algorithm

Feature based modulation classification are best suited when

the set of target modulation schemes are known apriori. The

algorithm implemented here has four steps.

1) Carrier estimation and readjustment

2) SSC and time-frequency based key feature extraction

3) Training the system with known signals

4) Classification of unknown data.

The extracted features are then used for the classifications.

For the proposed system the target modulation classes (ana-

log and digital) are assumed to be known in advance. The

extracted six features are used in four steps for classification.

1) Separate signals with fixed and variable amplitude (using

AM and AD)

2) Separate signals with single and multilevel frequencies

(using TM, TD and mf).

3) Check the amplitude and frequency levels to distinguish

among analog and digital schemes (SSC features)

4) Separate the PSK schemes by checking phase levels

(using mp)

These steps are presented in figure 4.

As the modulation classes are finite a supervised learning

based decision tree classification algorithm can be used here.

In this study decision tree algorithm based on C4.5 [15] is

used for training set generation and classification purposes.

The algorithm is developed in JAVA environment called as

J48 and included in WEKA [16]. J48 decision tree algorithm

is relatively faster for numeric data inputs that makes it most

suitable for the proposed classification system.

V. SIMULATION RESULTS

A recorded continuous voice signal modulated by AM and

FM schemes has been generated as the input signal for the

analog modulation. For the digital modulation, PN sequence

modulated with 2ASK, 2FSK, BPSK, QPSK, π/4QPSK and

MSK scheme have been used as the input signal. A 500KHz

carrier signal has been used with a bandwidth of 250KHz.

For this simulation a random frequency deviation from 10 to

20KHz has been added with the modulated signal. Later the

offset is corrected by the CFO estimation. For digital schemes

the symbol rate is used as 20ksps. The roll-off factor of 0.5
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Fig. 5. Classification performance without pre-processing

is used for the raised cosine filter. A frequency deviation of

5KHz is used for FSK modulation. AWGN of 0-15dB have

been considered for this simulation.

Received sample streams are divided into 100 segments

with 1024 samples in each segment. The classification al-

gorithm is applied to each segment. The final decision is

made by the majority rule[2]. At first signals for each target

modulation type with SNR 0-15 dB has been generated to

train the system. Afterward new signals with different voice

data and PN sequence have been generated and feed to the

trained system for classification. The performance of the

classification is checked for the system with and without

the pre-processing block in figure 2. Figure 5 represents the

classification performance without any pre-processing. The

performance for the digital modulation (especially M−ray

PSK) schemes has been degraded because of confusion among

same type of signals. Figure 6 is showing the results after

pre-processing. These results confirm the necessity of pre-

processing to improved the classification success rate. In this

simulation, success rate is improved by more than 10%. So

this study suggests necessity of frequency correction and re-

sampling of the received signal before the feature extraction.

Black curves in figure 6 are obtained by using the parameters

used by [4]. Seven parameters have been calculated from the

generated signals and the performance are obtained by using

a decision tree algorithm. The proposed system outperformed

these parameters by a big margin also.

VI. CONCLUSION

A decision tree based modulation classification system

has been investigated in this study. Four SSC parameters

and two time-frequency based parameters are used for the

classifications. The frequency offset correction and symbol

rate estimations have improved the classification performance.

Effect of symbol timing error on the features and physical

implementation are identified as potential future study. The

system also considered narrowband signals. Performance of

wideband systems for the proposed algorithm is another inter-

esting future study.
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