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Abstract—In this paper we design a cognitive access scheme
for WSNs that coexist with WLANs, considering the problem of
blind and hidden WLAN terminals. The cognitive access scheme
relies on a-priory known WLAN idle time distribution functions
and repeated channel measurements to optimize the size of the
transmitted data unit and the transmission distance, such that
the normalized transmission energy is minimized. We compare
the proposed scheme with simple carrier sensing and random
access solutions and show that the energy gain is significant under
typical WLAN utilization values.

I. INTRODUCTION

Wireless LANs (WLANs) and wireless sensor networks
(WSNs) operate often in the same geographic area and spec-
trum space. Due to the significant difference of the WLAN
and WSN transmission powers, WLAN transmissions cause
significant interference in the sensor network, making the
sensor network communication unreliable, while the sensor
network has negligible impact on the WLAN operation [1].
The goal of our work is to introduce cognitive capabilities

in the WSN to decrease the negative effect of the co-existing
WLAN. Specifically, we consider energy limited sensor net-
works, where the main goal of the cognitive operation is to
increase energy efficiency and to prolong in this way the
network lifetime. We define a cognitive access scheme that
uses energy optimal packet size and transmission distance and
applies repeated spectrum sensing to decide about transmis-
sion opportunities, utilizing a-priory known WLAN channel
occupancy distributions. We build our work on the results
of [2], where empirical WLAN channel occupancy models
are defined, and on the results of [1] where the problem of
blind WLAN terminals is considered in a scenario similar to
ours, and the possibility of estimating the WLAN idle period
distribution is demonstrated.
While the issue of energy efficient transmission in WSNs

has been widely discussed [3], [4], even for coexisting net-
works [5], the effect of sensing and coordination impairments
on the energy efficiency has not yet been addressed [6].
The rest of the paper is organized as follows. We describe

the networking scenario in Section II, and the proposed cogni-
tive access control in Section III, along with the model of the
successful packet transmission and the optimization problem
formulation. We evaluate the performance of our scheme in
Section IV, and conclude the work in Section V.

II. THE NETWORKING SCENARIO

We consider a mesh IEEE 802.15.4 compliant WSN and
a WLAN coexisting in the same geographic area, where the
WSN operates on a narrow 3MHz band within the WLAN
channel. Our goal is to introduce cognitive functionalities
to the WSN channel access control and next hop selection,
without significant modifications in the WSN protocol stack.
To define the cognitive access scheme we take into account
the main channel access characteristics of WLANs and WSNs.
The cognitive WSN scheme has two main building blocks:
• The packet size and the next hop distance are optimized
based on the WLAN channel occupancy statistics and the
sensing performance;

• An efficient sensing process is applied to predict whether
there is sufficient WLAN idle time for the transmission
of a WSN packet.

Since our goal is to decrease the energy consumption of
the WSN nodes, we measure the performance of the proposed
solution in terms of normalized energy cost, defined as the
energy required to successfully transmit one unit of informa-
tion over one unit of distance. That is, we do not impose
strict constraints on the data delivery delay or on the network
throughput, and do not take the WSN to WLAN interference
into account, as its effect is negligible. Some assumptions are
posed to simplify modeling. i) The WLAN user terminals are
uniformly distributed around the WLAN access point, and all
WLAN and WSN nodes are static. ii) Power and rate control
are not applied in any of the networks. iii) The WSN load
is very low, thus contention and in-network interference have
a negligible impact on the WSN. While we aim at relaxing
these assumptions in future work, we believe that they do not
significantly affect the conclusions of the paper.
The performance of the proposed system depends on the

WLAN channel occupancy, on WLAN interference and on
the sensing performance, which are modeled as follows.

A. WLAN Channel Occupancy Model
Following the main ideas of [2], we consider a two-state

semi-Markovian system to model the WLAN active (A) and
idle (I) periods, parameterized with fA(t), fI(t) respectively,
with average values TA, T I and steady state probabilities pA,
pI . The function fA(t) corresponds to the transmission time
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of a single WLAN packet and is independent from the WLAN
load. The idle time distribution is the linear combination of the
back-off time f (1)

I (t) and WLAN inactivity period distributions
f
(2)
I (t), that is, fI(t) = p · f (1)

I (t) + (1− p) · f (2)
I (t), where p

denotes the percentage of idle periods due to back-off process
and depends on the WLAN traffic pattern. The back-off time
distribution is considered uniform and independent of the
WLAN load. In this paper we assume that the back-off times
are always shorter than the packet transmission times, which is
typical in most cases. The length of the inactivity periods can
be approximated with a generalized Pareto distribution, with
parameters depending on the WLAN traffic pattern. Since the
short back-off periods can not be used efficiently for WSN
transmissions, the cognitive access control scheme should filter
out these periods.

B. Interference Modeling and Sensing Framework
Sensors can successfully receive a packet, if the average

experienced signal-to-noise-plus-interference ratio (SINR) is
above a predefined power threshold, λ, which is the same
for each sensor. We consider path-loss based channel model,
which leads to a disc shaped interference region around each
sensor. Since the path attenuation exponent is the same for
the two coexisting networks, the radius of the interference
region, RI(r), is given –neglecting noise power – as RI(r) =
r(λPWLANPWSN

)
1
α , where r is the distance of the transmitting and

receiving sensor, α denotes the path-loss exponent, λ is the
SINR bound and PWSN, PWLAN denote the transmitting powers
of the WSN and WLAN, respectively.
Since our goal is to extend existing WSN protocol stacks –

specifically 802.15.4 – with cognitive functionality, we build
the sensing framework on sensing functions implemented in
today’s sensor nodes [7]. The sensors employ energy detection
for a sensing period, ts. After sensing, the spectrum is declared
to be idle (I) or active (A) by comparing the measured energy
to a tunable energy decision threshold γ. The probability of
false alarm pFA depends on γ and ts, while the probability
of missed signal detection depends on PWLAN as well as on
the distance y between a WLAN transmitter and a receiving
sensor, that is, pMD = pMD(y). A detailed description of the
performance of energy detection is presented in [8].
For the considered networking scenario we can approx-

imate the location of the WLAN transmitters around the
receiving sensor with a uniform distribution. Then the un-
conditioned probability of missed signal detection is pMD =

1
πR2

max

∫ Rmax
0

pMD(y) · 2πydy, where Rmax denotes the maxi-
mum possible distance. Due to the large WLAN coverage area,
AWLAN, and the limited spectrum sensing time, the probability
of detecting WLAN transmitters far away is rather low, and is
expected to affect the efficiency of the cognitive scheme.

III. COGNITIVE CHANNEL ACCESS CONTROL
A. Protocol Description
We assume that WSN nodes follow a duty cycle and a

slot synchronized MAC. At the beginning of the duty cycle
each sensor performs spectrum sensing. The goal of spectrum
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Fig. 1. The considered interference modeling scheme; TR-RR communica-
tion is successful as long as WLAN active users lie outside the interference
regions of the pair of communicating sensors.

sensing in the cognitive system is twofold: to decide whether
spectrum is idle and to evaluate, whether an idle period is
due to WLAN back-off, or inactivity. To filter out the back-
off periods, nodes perform repeated spectrum sensing with
a time interval of tgap, set as the maximum possible value
of the back-off periods, given by f

(1)
I . That is, the length

of the sensing window is Ts = 2ts + tgap. Since according
to fA(t) active periods can not be shorter than Ts, nodes
that sense idle spectrum at both sensing instances assume
that the spectrum was idle in the entire time, and thus it is
idle due to WLAN inactivity. Nodes with idle measurements
remain awake to transmit (TR node) or to receive (RR node)
a packet. We consider two cases of MAC: TR nodes may
transmit immediately after spectrum sensing, or may perform
an RTS/CTS handshake, which adds a time overhead of t hs in
the WSN duty cycle. Nodes transit to sleep mode if at least one
of the sensing instances showed the spectrum to be occupied.
Since the channel occupancy decision is based on local

sensing information, the TR node may need to select an
RR nearby, to ensure that the receiver experience a simi-
lar interference environment. Shorter transmission distances,
though, imply that the energy efficiency of a multi-hop packet
transmission from a source to a destination decreases (sensors
transmit with fixed power and coding rate as often the case in
practice). Similarly, selecting large packets may increase the
energy efficiency due to the low control overhead, however,
it decreases the probability that the WLAN idle period is
long enough for successful transmission. Therefore, both the
transmission distance and the packet size must be selected
through careful optimization.

B. Probabilistic Model of Successful Packet Transmission
We derive an analytic model for the successful packet trans-

mission and formulate the optimization problem along with a
simple model for the energy cost of WSN communication.
Let us assume that the TR discovers an opportunity for

transmission after a pair of idle spectrum measurements. A
packet will be successfully transmitted from the TR to the
RR if: 1) the RR node is active as well as result of a pair
of idle spectrum measurements; 2) there is no transmitting
WLAN user inside the interference regions of the TR and RR
during handshake time if handshake is supported, and in the
interference region of RR otherwise; 3) no WLAN user inside
the interference region of RR starts transmitting at any time



during the transmission of the WSN packet. Note, that due
to our assumption on low WSN load, TR nodes always get
transmission opportunity if requirements 1 and 2 are met.
We proceed with the derivation of the probability of success-

ful packet transmission as follows. First we derive the idle and
active spectrum status probabilities, conditioned on the TR idle
spectrum measurements. We then determine the distribution of
the interference-free time available for TR-RR communication.
The probability of successful packet transmission is then
expressed with respect to these terms and the conditional
probability of the RR node being active.
We denote the TR idle sensing events during the first and

the second measurement as Î1 and Î2, and define by S
(xi,yi)
i

the status of the spectrum at distances xi, yi from the TR and
RR sensors, respectively, during the i-th measurement, with
S
(xi,yi)
i ∈ S = {A, I}, where A, I denote ”active” and ”idle”
spectrum status, i = 1, 2 and (xi, yi) ∈ X × Y = AWLAN. Si

defines the status of the spectrum indexed by the measurement
time, regardless of spatial dependence. For an arbitrary point
in time and space we omit both indexes. The densities fX(x),
fY (y) and fXY |r(x, y) denote the spatial distribution of the
WLAN users with respect to the TR and RR separated by
distance r (Figure 1) and are derived with basic geometry.
1) Spectrum status: To calculate (Sy1

1 , Sy2

2 )|Î1, Î2 for all
x ∈ X with S1, S2 ∈ S we use the decomposition:

P{(Sy1

1 , Sy2

2 )|Î1, Î2} = P{Sy1

1 |Î1}P{Sy2

2 |Sy1

1 , Î2}. (1)

We compute the first factor of (1), P{S y1

1 |I1}, by applying
the Bayes rule as:

P{I1|Î1} = pI (1−pFA)
pI (1−pFA)+pApMD

,

P{Ay1

1 |Î1} =
pA

∫
X pMD(x)fXY |r(x,y1)dx

pI(1−pFA)+pApMD
.

(2)

For the derivation of the second factor of (1) we first need to
determine the updated status distribution conditioned on the
status during the first measurement, S y2

2 |Sy1

1 . For S1 = I ,
(Figure 2.a,c), we obtain:

pI2|I1 = P{Remaining idle time > tgap} = FRI (tgap),

pAy2
2 |I1 = [1− pI2|I1 ]fY (y2).

(3)

where fRS(t) =
∫∞
t fS(z)/zdz, S ∈ {A, I} assuming that the

first measurement is uniformly distributed within the active or
idle period. For S1 = A,S2 = I , (Figure 2.b) we obtain:

pI2|Ay1
1

=
∫ tgap
0

F I(tgap − z)fRA(z)dz, ∀y1. (4)

Finally, for S2 = A we need to distinguish between a
continuous active period and the case when there is a short idle
period between the two sensing measurements (Figure 2.d):

pAy2
2 |Ay1

1
= FRA(tgap)δ(y1)+(1−pI2|Ay1

1
−FRA(tgap))fY (y2).

(5)
We can now express the second factor of (1). For S2 = I:

P{I2|I1, Î2} =
pI2|I1 (1−pFA)

pI2|I1 (1−pFA)+pMDpA2|I1
,

P{I2|Ay1

1 , Î2} =

=
pI2|A1

(1−pFA)

pI2|A1
(1−pFA)+

∫
Y p

A
y2
2 |Ay1

1

∫
X pMD(x)fX|y2 (x,y2)dxdy

.

(6)

Similarly, for S1 = {I1, Ay1

1 }, S2 = A, we obtain:

P{Ay2

2 |S1, Î2} =

=
p
A

y2
2

|S1

∫
X

pMD(x)fX|y2 (x,y2)dx

pI2|S1
(1−pFA)+

∫
Y p

A
y2
2

|S1

∫
X pMD(x)fX|y2 (x,y2)dxdy

.
(7)
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Fig. 2. Spectrum status cases at the time of the sensing measurements.

2) Remaining TR transmission time: The remaining trans-
mission time distribution needs to be derived for each spectrum
status (S1, S2). If the spectrum was idle during both sensing
measurements, the WLAN can be considered as inactive, as
explained in Section III. Considering that the beginning of the
sensing period Ts = 2ts+ tgap ≈ tgap

1 is uniformly distributed
inside the current WLAN inactive period, the remaining idle
time has the following density function:

fRI |I1,I2(t) =
∫∞
t+tgap

1
z f

(2)
I (z)dz/FRI (tgap). (8)

The distribution of the remaining idle time is, however,
different when one or both spectrum measurements have been
erroneous, since now the spectrum may be or become idle due
to back-off as well. Consider first, that the spectrum status was
(A1, I2), so the first measurement was erroneous. Since the
spectrum is idle during the second measurement, the transition
from active to idle occurs sometime before tgap. Consequently,
the remaining idle time after the second measurement has the
following density:

fRI |A1,I2(t) =
1

FRA
(tgap)

∫ tgap
0 fRA(z)

fI (t+tgap−x)

F I (tgap−z)
dz. (9)

For S2 = A the spectrum is active after the second measure-
ment, so successful TR-RR communication requires that the
WLAN source lies outsider the interference region(s). If this
requirement is satisfied, the TR can reliably transmit within
the remaining active spectrum period, and in the idle period
that follows immediately.
For (I1, A2) (Figure 2.c) the distribution of the remaining

idle time after the second measurement is:

fRI |I1,A2
(t) = 1

FRI
(tgap)

∫ tgap
0 fRI (z)

fcycle(t+tgap−z)

F cycle(tgap−z)
dz (10)

where fcycle(t) = fA(t) ∗ fI(t) is the density function of the
duration of a WLAN cycle defined as a pair of successive
active and idle periods.
We consider finally the case (A1, A2) (Figure 2,d), when

the spectrum is indeed active despite the idle measurements.
For the subcase of a continuous active period between the two
measurements the remaining transmission time is:
fRI |Ay1

1 ,A
y1
2
(t) = 1

FRA
(tgap)

∫∞
tgap

fRA(z)fI(t+ tgap − z)dz, (11)

1The time gap between successive sensing measurements is at least an order
of magnitude larger than the sensing measurement periods



while in the case of a short idle period:

fRI |Ay1
1 ,A

y2
2
(t) = 1

FRA
(tgap)

·

·
∫ tgap
0

fRA(z1)
∫ tgap−z1
0 fI(z2)
FI(tgap−z1)

· fcycle(t+tgap−z1−z2)

FA(tgap−z1−z2)
dz1dz2.

(12)

(8)-(12) give the remaining transmission time distribution after
spectrum sensing. However, the expiration of this time period
does not affect the TR-RR communication, as long as the ac-
tivated WLAN sources lie outside the RR interference region.
Consequently, a geometric number of successive WLAN cycle
periods must be added to the remaining time computed above.
The density function of this additional interference-free time
fĨ(t) can easily be calculated in the Laplace domain. The total
remaining time available for WSN communication is finally:

fTRI
|S1,S2

(t) = fRI |S1,S2
(t) ∗ fĨ(t), ∀S1, S2 ∈ S. (13)

3) The probability of successful transmission without/with
handshake: Let us consider the case without handshake first.
We define the event tuning T , when the TR and RR nodes
start to communicate successfully. As handshake is not im-
plemented, packet transmission starts immediately after the
sensing period and successful packet transmission requires
tuning and adequate idle time.
The tuning probability under different spectrum status is:

P{T , S1, I2|Î1, Î2} =
∫ ∫

Y2 P{(Î(R)
1 , Î

(R)
2 )|S1, I2}P{S1, I2|Î1, Î2}dy1dy2,

P{T , S1, A
y2

2 |Î1, Î2} =
∫
Y
∫
Y\{y:y≥RI(r)} P{(Î(R)

1 , Î
(R)
2 )|S1, A

y2

2 }·
·P{S1, A

y2

2 |Î1, Î2}dy1dy2,

(14)

where P{(Î(R)
1 , Î

(R)
2 )|S1, S2} is the probability of idle mea-

surements at the receiver under given spectrum status, and can
be calculated from pFA and pMD(y).
Finally, the probability of successful packet transmission

without handshake is calculated from (13) and (14) by aver-
aging over the spectrum status:

P{Successful Transmission|r, t} =
∑

S2 FTRI
|S1,S2

(t) · P{T , S1, S2|Î1, Î2}.
(15)

When handshake is adopted, the successful RTS/CTS hand-
shake (HS) offers the a-posteriori knowledge of both success-
ful tuning and user-free TR interference region, to the cost
of a time overhead equal to ths. Therefore, the probability of
successful transmission becomes:

P{Successful Transmission with HS|r, t} =

=
∑

S2 FTRI
|S1,S2

(t+ ths)P{S1, S2|Î1, Î2, THS}.
(16)

where the status probabilities conditioned on tuning are given
in (17). The a priori tuning probability is computed as:

P{THS} =
∑

S2 P{T , S1, S2|Î1, Î2}, (18)

with the additional constraint x ≥ RI(r) applied directly in
the integrals of the nominator of (7).

TABLE I
PARAMETER SET FOR THE PERFORMANCE EVALUATION.

WLAN Tx-Power (PWLAN): 15dBm WSN Tx-Power(PWSN): -3dBm
Path-Loss (α): 4 SINR (λ): 3dB

WSN Power Cons.(P ): 35mW Tx-Rate(R): 250kbps
Sensing Time (ts): 16μs inter-sens. period(tgap): 0.5ms

Handshake overhead(ths ): 64μs WSN pckt. overhead(Lhd): 17Bytes

C. Energy cost model and optimization for energy efficiency
We consider a simple energy model with constant power

consumption, P , at the sensors at all active states (sensing,
transmission and reception), while the power spent at the
sleep state is negligible, and assume that transmission attempts
are stochastically independent, due to the long WSN duty
cycle. The transmission duration of a packet of length L is
tL = (L+Lhd)/R, where R is the WSN transmission rate and
Lhd denotes the header protocol overhead. When handshake is
not used, the expected energy cost for the transmission to a
receiver at distance r can be modeled as:

E(r, L) =
P · (tL + 2ts)

P{Successful Transmission|r, tL}
.

With handshake a number of tuning and transmission attempts
may be needed for successful packet transmission, and the
energy consumption must also include the handshake time ths.
The expected energy cost for tuning is ET (r) =

P ·(ths+2ts)
P{THS} ,

and the total cost for packet transmission becomes:

EHS(r, L) =
ET (r) + P · tL

P{Successful Transmission with HS|r, tL}
.

Given the energy cost models, we optimize parameters L, r
and detection threshold γ, such that the energy cost normalized
with L · r is minimized.

IV. PERFORMANCE EVALUATION
We evaluate the performance of the proposed solution

considering the normalized energy cost under different WLAN
loads and traffic distribution. For comparison, we have mod-
eled the energy consumption of a CSMA-based MAC scheme
without repeated sensing and that of a random channel ac-
cess scheme, both under optimized packet size and trans-
mission distance. These models are similar to the presented
ones, and are not shown due to space limitation. Both
cases with or without handshake functionality are presented
for comparative evaluation. Following [2], [9] we consider
fA ∼ U(0.5, 1.5ms), f (1)

I ∼ U(10μs, 0.5ms) and f
(2)
I ∼

GPareto(μ, σ, ξ) with location parameter μ = 0, scale param-
eter ξ = −0.3095 and shape parameter σ determined by the
desired WLAN load and p. The rest of the parameters are
summarized in Table I.
Figures 3 and 4 depict the performance of the proposed cog-

nitive MAC compared to CSMA and random access schemes,
for both cases with and without handshake functionality, as
a function of WLAN spectrum load. In Figure 3 the load is
increased by increasing the percentage p of back-off periods,
while keeping the inactivity period distribution f

(2)
I constant,



P{S1, S2|Î1, Î2, THS} =

∫
Y
∫
XY\{x2,y2≤RI(r)} P{THS |Sy1

1 ,S
(x2,y2)
2 }P{S(y1

1 ,S
(x2,y2)
2 |Î1,Î2}dx2dy1dy2

∑
(S1,S2)∈S2

∫
Y
∫
XY\{x2,y2≤RI(r)} P{THS |S(y1

1 ,S
(x2,y2)
2 }P{Sy1

1 ,S
(x2,y2)
2 |Î1,Î2}dx2dy1dy2

(17)
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Fig. 3. Energy Cost with respect to WLAN Load,
under different percentages of back-off idle periods
in fI(t), T
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

8.5

9

9.5

10

10.5

11

11.5

12

12.5

Parameter p

N
or

m
al

iz
ed

 E
ne

rg
y 

C
os

t 
m

Jo
ul

e/
(b

it 
m

et
er

)

Cognitive MAC
CSMA−based MAC
Random Medium Access

Fig. 5. Energy Cost with respect to the parameter
p that shapes the mixed idle distribution. Fixed
WLAN Load = 22%.

while in Figure 4 we keep p constant, and decrease the average
length of the inactivity period. We can see that the increase
of the energy consumption is significantly different in the
two cases, that is, the average WLAN load is not enough to
characterize the WSN efficiency. For example, in Figure 3 –
when low load means low probability of back-off periods –
the cognitive scheme does not increase the efficiency, while
in Figure 4, when half of the the idle periods are back-offs
even under low load, the filtering of the back-off periods in the
cognitive scheme leads to significant gain. We observe that the
additional energy cost and sensing time can make the CSMA
and cognitive schemes inefficient in low and high WLAN
load regimes. In both cases, however, the cognitive scheme
outperforms significantly the others for typical, moderate
WLAN load values. Handshaking increases the efficiency in
particular when the load is increased under constant inactive
period distribution when the load hardly affects the energy
efficiency. Figure 5 compares the performance of the three
systems for constant WLAN load, tuned by the parameter p,
simultaneously increasing the average length of the inactive
periods. The cognitive system clearly outperforms the other
systems in all but the marginal cases, when it also gives a ro-
bust performance, independently of the traffic characteristics.
Consequently, an adaptive medium access scheme is necessary
to cover all range of possible WLAN loads. Finally, in Figure 6
we evaluate the effect of sensing performance for the scenario
of Figure 4, by increasing the channel detection time and
comparing the results to the perfect sensing case. We can
conclude, that the energy consumption of the cognitive scheme
is close to the lower bound for acceptable sensing time values.

V. CONCLUSION

In this paper we have proposed a cognitive channel access
scheme for WSNs to minimize the normalized transmission
energy cost under WLAN interference, specifically consider-
ing the limited sensing capability of the sensor nodes. We have
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Fig. 6. Energy Cost with respect to WLAN Load for various channel
detection times, with perfect sensing schemes for comparison.

shown that the proposed solution achieves significant perfor-
mance gain compared to traditional channel access solutions
under typical WLAN load values. The work will be extended
by the design of the complete cognitive cycle, including the
in-network estimation of WLAN channel occupancy functions.
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